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Background: The meson exchange current (MEC) contribution is important in the neutron-proton
bremsstrahlung process (npγ ) when the two nucleon-scattering angles are small. However, our understanding of
such effects is limited, and the reason why meson exchange current effects dominate the npγ cross section has
not been thoroughly investigated. Purpose: The primary focus of this investigation is to understand the origin of
the MEC contribution, to identify the leading MEC amplitudes, and to comprehend why these MEC amplitudes
dominate the npγ cross sections. Method: We used a new method that combines the one-boson-exchange
(OBE) approach with the soft-photon approach to define 10 different npγ amplitudes. These amplitudes are
used to calculate npγ cross sections at 225 MeV for nucleon laboratory scattering angles lying between 12◦

and 43◦. The results of these calculations are then compared to investigate the meson exchange current effect in
npγ . Results: (i) The OBE amplitude MPS

npγ,µ and the two-u-two-t special (TuTts) soft-photon amplitude MTuTts
npγ,µ

predict quantitatively similar npγ cross sections. (ii) The MEC effect is found to be significant when the two
nucleon-scattering angles are far from the elastic limit (45◦), but the effect is insignificant when the nucleon
angles approach the elastic limit. (iii) The origin of the MEC effect and the leading MEC amplitudes have been
identified in this investigation. Furthermore, the reason is now clear why the leading MEC amplitudes dominate
the npγ cross section when the nucleon-scattering angles are small. (iv) The contribution from the anomalous
magnetic moments of the proton and the neutron is confirmed to be negligibly small. (v) In general, the theoretical
cross sections using the amplitude MPS

npγ,µ, or the amplitude MTuTts
npγ,µ, are consistent with the triple differential

cross sections recently measured at the Los Alamos National Laboratory. However, there exists an unexplained
discrepancy between theory and experiment in some cases. Conclusions: The findings of this investigation have
enhanced our understanding of the meson exchange current effect in npγ . The comparative amplitude method
introduced can be used for other bremsstrahlung investigations.
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I. INTRODUCTION

Recently, the first triple differential cross section for the
neutron-proton bremsstrahlung (npγ ) process was published
[1]. The npγ process, unlike the proton-proton bremsstrahlung
(ppγ ) process, is sensitive to the exchange of charged mesons
mediating the nucleon-nucleon interaction. In this work we
explore the origin of the dominance of the meson exchange
current (MEC) diagrams in the npγ cross section.

The MEC effect in the npγ process has been investigated
by many authors using various models and approximations.
Most previous investigations focused on the nonrelativistic
potential-model approach [2–5]. To motivate our use of a
relativistic approach in this work and to identify the differences
between our approach and the potential-model approach, we
briefly review what was learned from Refs. [2–5]. We use

that opportunity to compare the findings of Ref. [2] and
Refs. [3–5] and to provide an alternative physical interpre-
tation of the conclusion regarding MEC effects obtained in
Ref. [3].

In the potential model the npγ amplitude can be defined
from an electromagnetic potential Vem that is composed of two
terms: V 1

em and V 2
em. (We follow the notation of Ref. [2]). The

potential V 1
em is generated from the coupling of the electromag-

netic field to the nucleon currents, whereas the potential V 2
em is

generated from the coupling of the electromagnetic field to the
MEC. Starting from potential V 1

em, one can define an external
amplitude �ME(V 1

em) and a rescattering amplitude �MR(V 1
em). It

was shown in Ref. [2] that �MR(V 1
em) can be separated into two

amplitudes, �MR0(V 1
em) and �MR1(V 1

em), plus higher-order O(K)
terms, to derive the low-energy theorem. {Note: �MR(V 1

em) =
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�MR0(V 1
em) + �MR1(V 1

em) + O(K) [2].} Similarly, the potential
V 2

em can be used to define the MEC amplitude �MX(V 2
em). The

internal amplitude �MI is equal to the sum of �MR(V 1
em) and

�MX(V 2
em). The total amplitude �MT , which combines �ME(V 1

em)
and �MI , can be written as the sum of the four amplitudes
�ME(V 1

em), �MR0(V 1
em), �MR1(V 1

em), and �MX(V 2
em), if higher-order

terms O(K) are omitted. This total amplitude �MT was used
in Ref. [2] to prove that it satisfies the soft-photon theorem
(the low-energy theorem). Furthermore, the same �MT (but
including some other higher-order terms in the photon energy
K) has also been used by the authors of Refs. [3,4] to calculate
npγ cross sections and to study the MEC effect in npγ .
Some important results and implications can be summarized
as follows:

(i) It is well known that the soft-photon theorem is a
fundamental theorem for all bremsstrahlung processes.
Any valid bremsstrahlung amplitude must satisfy this
theorem. In Ref. [2] [using the potential V 2

em defined in
Eq. (7)], it is proven that the total amplitude �MT used in
the potential-model approach is, indeed, consistent with
(obeys) the soft-photon theorem. This results because
the rescattering amplitude �MR1(V 1

em) precisely cancels
the MEC amplitude �MX(V 2

em) [i.e., the “cancellation
condition” is �MR1(V 1

em) + �MX(V 2
em) ≡ 0]. Therefore, the

final form of the total amplitude �MT actually includes
only the external amplitude �ME(V 1

em) and the internal
amplitude �MR0(V 1

em). It should be emphasized that this
expression for �MT is independent of the potential V 2

em

that generates �MX(V 2
em). This result from Ref. [2] has

the following implications: (A) In the potential-model
approach the npγ total amplitude �MT can be expressed
in two different ways. The first expression for �MT is the
sum of �ME(V 1

em), �MR(V 1
em), and �MX(V 2

em). The second
expression for �MT is the sum of �ME(V 1

em) and �MR0(V 1
em).

The equality of the two expressions occurs because
�MR0(V 1

em) is equal to the sum of �MR(V 1
em) and �MX(V 2

em).
That is, we have �MR0(V 1

em) = �MR(V 1
em) + �MX(V 2

em). The
second expression for �MT , which is actually the soft-
photon amplitude, depends on �MX(V 2

em) only implicitly
(indirectly). Another important point is that the small
contribution from the rescattering amplitude �MR(V 1

em)
does not imply that the individual contributions from
�MR0(V 1

em) and �MR1(V 1
em) must be small. Both can have

similar large amplitudes but differ in sign. This is indeed
the case for the npγ process. (B) The second expression
for �MT [= �ME(V 1

em) + �MR0(V 1
em)] demonstrates that a

soft-photon amplitude can be constructed by using
Low’s prescription (or a modified Low prescription).
The internal amplitude in this soft-photon approach
can be obtained entirely from the external amplitude
by imposing the “gauge invariant condition.” In other
words, because of the “cancellation condition,” the
amplitude �MX(V 2

em) does not play a direct role in the
derivation of the soft-photon amplitude. The relativistic
soft-photon amplitude used in this work for the study

of the MEC effect in npγ is a good example. However,
there is a disadvantage in using the soft-photon amplitude
to investigate MEC effects in npγ . It is difficult to
identify the precise MEC contribution from a soft-photon
amplitude, because the amplitude does not involve an
explicit MEC amplitude. (C) Any npγ amplitude (in
the potential-model approach) that does not satisfy
the “cancellation condition” violates the soft-photon
theorem. For example, as pointed out in Ref. [2], an
amplitude that includes only the exact �ME(V 1

em) and
�MR(V 1

em) would not be a valid amplitude, because it
would violate current conservation.

(ii) The first expression for the total amplitude �MT (but
including some higher-order terms in K) was used
by Brown and Franklin [3] to calculate npγ cross
sections and to investigate the MEC effect in npγ .
Specific conclusions from their calculations relevant to
this discussion were:

(a) The contribution from the rescattering amplitude
�MR(V 1

em) was small, about 10%.
(b) The contribution from the MEC amplitude �MX(V 2

em)
was significant; more precisely, the cross section
calculated using the external amplitude �ME(V 1

em)
plus the MEC amplitude �MX(V 2

em) was more than
two times larger than that calculated using �ME(V 1

em)
alone.

(c) The contribution from the sum of the two amplitudes
�ME(V 1

em) and �MX(V 2
em) dominated the exact cross

section calculated from the total amplitude �MT .
Most of those findings were confirmed by Herrmann,
Speth, and Nakayama [4] and by Nakayama [5], although
the latter calculations omitted the rescattering amplitude
�MR(V 1

em). If one compares these calculations with that
which was demonstrated in Ref. [2], one may perceive
that an apparent contradiction exists between Ref. [2] and
Refs. [3–5]. For example, in Ref. [2] it was shown that the
second expression for �MT , which is consistent with the
soft-photon theorem, is independent of V 2

em. However,
the first expression for �MT , which involves the explicit
MEC amplitude �MX(V 2

em) generated from V 2
em, was

used in Refs. [3–5]. Actually, there is no contradiction
between Ref. [2] and Refs. [3,4]. The “cancellation
condition,” which was proved in Ref. [2], is an exact
result, and it leads to the internal amplitude being defined
to be �MR0(V 1

em), the sum of �MR(V 1
em) and �MX(V 2

em). The
required cancellation of the two amplitudes �MR1(V 1

em)
and �MX(V 2

em) occurs numerically in the calculations
of Refs. [3,4]. The cancellation between �MX(V 2

em) and
�MR1(V 1

em) is required to preserve current conservation.
Because of this cancellation, the amplitude �MT used
in Refs. [3,4] satisfies the fundamental soft-photon
theorem. Furthermore, because �MR(V 1

em) is small, the
internal amplitude �MR0(V 1

em) is approximately equal
to the MEC amplitude �MX(V 2

em). That is, �MR0(V 1
em) ≈

�MX(V 2
em) explains the conclusion regarding MEC effects

in Ref. [3].
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In addition to the potential-model approach, other ap-
proaches can be utilized to study the MEC effects in the npγ

process. Because each approach has advantages and limita-
tions, more than one approach should be used to investigate
the important MEC effect issue. Two additional approaches
that utilize relativistic and gauge invariant bremsstrahlung
amplitudes, the two-u-two-t special (TuTts) amplitude [6–10]
and the one-boson-exchange (OBE) amplitude [11–14], were
previously employed to investigate the photon emission mech-
anism governing the three NNγ processes (ppγ, npγ , and
nnγ ) as well as noncoplanaroty effects in ppγ and npγ . Using
the TuTts amplitude, it was shown that MEC effects dominate
the npγ cross section when the scattering angles are small (i.e.,
when one is far from the elastic limit) [6,7]. A similar result
can also be obtained from the OBE amplitude. These results
confirm the finding of the potential-model approach. Nonethe-
less, the physical reason why MEC effects should dominate
the npγ cross section has not been thoroughly understood.

In this work we use a new method that combines the OBE
approach and the soft-photon approach to define 10 different
npγ amplitudes (including the OBE amplitude MPS

npγ,µ [14],
the TuTts amplitude MTuTts

µ , and the other amplitudes derived
from MPS

npγ,µ). These amplitudes provide more direct informa-
tion and precise definitions regarding MEC effects in npγ . We
utilize them to calculate npγ cross sections for the projectile
energy of 225 MeV and for nucleon laboratory scattering
angles lying between 12◦ and 43◦. The primary focus of this
investigation is to understand the origin of the large MEC
effect, to identify the leading MEC terms, and to understand
why these MEC terms dominate the npγ cross section.

II. npγ AMPLITUDES

The detailed expression for the npγ amplitude MPS
npγ,µ

[with the pion-nucleon coupling treated as a pseudoscalar
(PS) interaction] can be found in Ref. [14]. This amplitude
is obtained from two distinct sets of photon emission dia-
grams: the neutral-meson-exchange (NME) diagrams and the
charged-meson-exchange (CME) diagrams. These two sets of
diagrams are shown in Figs. 1(a), 1(b), and 1(c). In Fig. 1(a) we
depict NME diagrams, which involve four different external
photon emission processes. In these diagrams A0 represents
10 different neutral mesons (π0, ρ0, δ0, t0

1 , a0
1, η, σ, ω, t0, a0)

that can be exchanged between the proton p and the
neutron n, gpA0p represents the coupling constant mediating
the coupling of the meson A0 to the pp current, gnA0n

represents the coupling constant mediating the coupling of
the meson A0 to the nn current, and λα(α = 1, 2, 3, 4, 5)
represents the five Fermi covariants. Other factors, which
are irrelevant to our investigation, are suppressed. All NME
diagrams can contribute to generate an amplitude MNME

µ . This
amplitude may depend on many fundamental constants. In this
investigation, however, we focus on the following: the proton
charge e, the square of the coupling constants g2

A0 , and the
anomalous magnetic moments of the proton κp and the neutron
κn. Following isospin symmetry (charge independence), we
define

gA0 = |gpA0p| = |gnA0n|. (1)

Thus, the amplitude MNME
µ can be expressed as a function of

g2
A0 , e, κp, and κn:

MNME
µ ≡

∑

A0

MNME
µ

(
g2

A0 , e, κp, κn

)
. (2)

It satisfies the gauge condition MNME
µ Kµ = 0.

There are two types of CME diagrams. We refer to the
first kind as the external CME diagrams, because they involve
only external photon emission, and to the second kind as the
internal CME diagrams, because they involve only internal
photon emission. The external CME diagrams are depicted in
Fig. 1(b). In the processes represented by these diagrams, an
incoming proton converts into an outgoing neutron by emitting
a charged meson A+ or an incoming neutron converts into
an outgoing proton by absorbing a charged meson A+. Here
the A+ represents any of the five possible charged mesons
(π+, ρ+, δ+, t+1 , a+

1 ) used in our OBE model. The gpA+n

represents the coupling constant connecting the charged meson
A+ to the (p − n) vertex, whereas the gnA+p represents the
coupling constant connecting the charged meson A+ to the
(n − p) vertex. The entire set of CME diagrams contributes to
the generation of the external CME amplitude MCME

(E)µ , which
is a function of g2

A+ , e, κp, and κn. Here we assume that

gA+ = |gpA+n| = |gnA+p|. (3)

Thus, we have

MCME
(E)µ ≡

∑

A+
MCME

(E)µ

(
g2

A+ , e, κp, κn

)
. (4)

From isospin symmetry follows the important relationship
between gA+ and gA0 ,

gA+ = √
2gA0 , (5)

for the five isotriplet mesons (π, ρ, δ, t1, a1). For example, if
A+ represents π+ (or a+

1 ), then A0 represents π0 (or a0
1). Thus,

for these mesons we can write

MCME
(E)µ

(
g2

A+ , e, κp, κn

) = MCME
(E)µ

(
2g2

A0 , e, κp, κn

)
. (6)

Finally, we illustrate the internal CME diagrams in
Fig. 1(c). The symbols used in Fig. 1(c) are identical to those
used in Fig. 1(b). The important difference between these
two figures is that the photon is emitted from the external
nucleon line in Fig. 1(b), whereas the photon is emitted from
the exchanged (internal) charged meson A+ in Fig. 1(c). The
diagrams in Fig. 1(c) illustrate the MEC effects contributing
to npγ . Note that the diagrams in Fig. 1(c) also include the
contribution from the extra gauge factors that are required for
current conservation. See Eq. (14) of Ref. [14]. Again, these
internal CME diagrams can be used to generate an internal
CME amplitude MCME

(I )µ , which is a function of g2
A+ and e,

MCME
(I )µ ≡

∑

A+
MCME

(I )µ

(
g2

A+ , e
)
. (7)

For the five mesons (π, ρ, δ, t1, a1) we may also write

MCME
(I )µ

(
g2

A+ , e
) = MCME

(I )µ

(
2g2

A0 , e
)
. (8)

The complete CME amplitude can then be expressed as

MCME
µ ≡ MCME

(E)µ + MCME
(I )µ (9)
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FIG. 1. Diagrams for the
npγ process: (a) neutral-meson
exchange (NME) diagrams; (b)
external emission charged-meson
exchange (CME) diagrams; (c)
internal emission charged-meson
exchange (CME) diagrams.

=
∑

A+

[
MCME

(E)µ

(
g2

A+ = 2g2
A0 , e, κp, κn

)

+ MCME
(I )µ

(
g2

A+ = 2g2
A0 , e

)]
. (10)

The amplitude MCME
µ satisfies the gauge condition,

MCME
µ Kµ = 0. (11)

The total npγ amplitude MPS
npγ,µ can be obtained by

combining Eq. (2) for MNME
µ and Eq. (9) [or Eq. (10)] for

MCME
µ ,

MPS
npγ,µ ≡ MNME

µ + MCME
µ (12)

=
∑

A0

MNME
µ

(
g2

A0 , e, κp, κn

)

+
∑

A+

[
MCME

(E)µ

(
g2

A+ = 2g2
A0 , e, κp, κn

)

+MCME
(I )µ

(
g2

A+ = 2g2
A0 , e

)]
. (13)

Here, MNME
µ involves all 10 neutral mesons and MCME

µ

involves only the 5 charged mesons (π+, ρ+, δ+, t+1 , a+
1 ). To

investigate the MEC effect in the absence of the anomalous
magnetic moment effect, we define the following additional
npγ amplitudes:

(i) We define an amplitude M (1)
µ that is identical to the

expression for MPS
npγ,µ given by Eq. (13) except that it

has κp = κn = 0; that is,

M (1)
µ = (

MPS
npγ,µ

)
κp=κn=0. (14)

(ii) Replacing gA+ given by Eq. (5), we define a new
amplitude M (2)

µ that can be expressed in terms of the

substitution

gA+ → gA0 . (15)

That is, M (2)
µ is defined by

M (2)
µ = (

MPS
npγ,µ

)
g2

A+→g2
A0

=
∑

A0

MNME
µ

(
g2

A0 , e, κp, κn

)

+
∑

A+

[
MCME

(E)µ

(
g2

A+ → g2
A0 , e, κp, κn

)

+MCME
(I )µ

(
g2

A+ → g2
A0 , e

)]
. (16)

(iii) We define an amplitude M (3)
µ that can be expressed in

terms of MCME
µ given by Eq. (10) but with κp = κn = 0,

M (3)
µ = (

MCME
µ

)
κp=κn=0. (17)

(iv) The leading external amplitude, which we define to be
M (4)

µ , was used in Refs. [6,7] in investigating the MEC
effect. The derivation of this amplitude in our OBE
model differs somewhat from that given in Refs. [6,7].
Six Mandelstam variables (two “s,” two “t,” and two
“u”) can be defined for the npγ process. The variables
s̄, t̄ , and ū are the averages of the two “s,” two “t,” and
two “u” variables, respectively. They satisfy the on-shell
condition

s̄ + t̄ + ū = 4m2, (18)

where m is the nucleon mass, which we define to be
the average of the proton mass and the neutron mass in
our calculations. If we choose (s̄, t̄ , ū) to be the on-shell
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point and expand the amplitude MPS
npγ,µ about this point,

then we can obtain the following soft-photon expansion:

MPS
npγ,µ = Aµ(ū, t̄)

K
+ Bµ(ū, t̄) + Cµ(ū, t̄)K + · · · .

(19)

Here, Aµ(ū, t̄ ) involves only the leading external con-
tribution (photon emission from the proton charge e)
from the amplitudes MNME

µ and MCME
(E)µ , whereas Bµ(ū, t̄)

and Cµ(ū, t̄) include contributions from all three ampli-
tudes, MNME

µ ,MCME
(E)µ , and MCME

(I )µ . In other words, the
bremsstrahlung contribution from the meson exchange
currents and the anomalous magnetic moments is found
in the second term [Bµ(ū, t̄)] plus the higher-order terms
of the soft-photon expansion given by Eq. (19). We define
the leading ampliitude M (4)

µ to be the leading term of the
soft-photon expansion,

M (4)
µ = Aµ(ū, t̄)/K, (20)

which satisfies the gauge condition M (4)
µ Kµ = 0. The

first two terms of the soft-photon expansion can be used
to define a soft-photon amplitude

MSPA
µ = M (4)

µ + Bµ(ū, t̄). (21)

Following the method used in Refs. [6,7], one can
ascertain that the amplitude MSPA

µ can be used to
investigate MEC effects. However, it is not transparent to
use that method to explain why the MEC contributiuon
dominates the npγ cross section. That is the primary
reason we used the OBE amplitude approach in this
investigation.

Note that our model does not include photon emission
processes involving an internal pion emitting a photon and
converting to either a ρ or ω meson. We anticipate that
the contributions from such processes will be small in the
kinematic region considered in this work.

III. RESULTS AND DISCUSSION

To investigate the meson exchange current effect in the npγ

process, we use eight amplitudes {MPS
npγ,µ given in Eq. (13) or

Eq. (10) of Ref. [14], MNME
µ given in Eq. (2), MCME

µ given
in Eq. (10), M (1)

µ given in Eq. (14), M (2)
µ given in Eq. (16),

M (3)
µ given in Eq. (17), M (4)

µ given in Eq. (20), and MTuTts
µ

given in Eq. (13) of Ref. [7]} to calculate coplanar npγ cross
sections d3σ/d�nd�pdψγ as functions of the photon angle
ψγ for a laboratory incident neutron energy of 225 MeV
and for laboratory scattering angles lying between 12◦ and
43◦. We use Horowitz’s OBE parameters at 200 MeV [12,15]
for the calculation of all npγ cross sections. Some of these
calculations are shown in Figs. 2–5.

(i) In Fig. 2 we compare calculated npγ cross sections with
experimental data [1]. The amplitudes used in the calcu-
lation of these theoretical cross sections are MPS

npγ,µ (the
solid curve), M (1)

µ (the dotted curve), MTuTts
µ (the dashed

curve), and M (4)
µ (the dashed-dotted curve). The physical

values, κp = 1.793 and κn = −1.913, are used in the
amplitudes MPS

npγ,µ and MTuTts
µ , whereas the amplitudes

M (1)
µ and M (4)

µ are independent of κp and κn. Recall that
M (1)

µ is defined in terms of MPS
npγ,µ by setting κp = κn = 0

and M (4)
µ is the leading amplitude. Several interesting

features of this figure and the physical implications of
the results can be summarized as follows:

(a) A comparison of the solid curves with the dashed
curves demonstrates clearly that the two amplitudes
MPS

npγ,µ and MTuTts
µ predict quantitatively similar npγ

cross sections. In our recent investigation of the ppγ

process [13], we also found good agreement between
the OBE amplitude (in particular, the pseudoscalar
amplitude) and the TuTts amplitude when these two
amplitudes were used to describe the KVI cross-
section data [13]. Thus, we find, in general, that these
two relativistic approaches (the OBE approach and the
TuTts soft-photon approach) exhibit similar predictive
power.

FIG. 2. Calculated npγ cross sections and experimental data from Ref. [1]. The solid, dotted, dashed, and dashed-dotted curves were
obtained using the amplitudes MPS

npγ,µ,M (1)
µ ,MTuTts

µ , and M (4)
µ , respectively.
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FIG. 3. Calculated npγ cross sections for the scattering angles denoted, as a function of ψγ . The solid, dotted, dashed, and dashed-dotted
curves were obtained using the amplitudes MPS

npγ,µ, MNME
µ , MCME

µ , and M (4)
µ , respectively.

(b) If we compare the solid curves with the dotted
curves, then we can ascertain that the anomalous
magnetic moment contribution from κn and κp is
negligibly small, confirming an important finding in
Refs. [6,7] that the anomalous magnetic moments play
an insignificant role in the npγ process. Therefore, we
have shown that

M (1)
µ � MPS

npγ,µ � MTuTts
µ . (22)

(c) By comparing the dashed-dotted curves with the solid
curves, it is obvious that the contribution from the
amplitude M (4)

µ [the leading term in the soft-photon
expansion given by Eq. (19)] is small when each
nucleon scattering angle (θn, θp) is less than 32◦.
This fact supports the findings of Refs. [6,7] that the
contribution from the second term of the soft-photon
expansion [Bµ of Eq. (19)], which involves the MEC
effect, dominates the npγ cross section for those

cases involving small nucleon-scattering angles. This
also implies that the cross section difference between
the calculations using the MPS

npγ,µ amplitude (solid
curves) and that using the M (4)

µ amplitude (dashed-
dotted curves) can be used to estimate the size of
the MEC effect. In general, our investigation shows
that (1) the cross section difference is large when
each nucleon-scattering angle is small and that (2) the
difference decreases as the nucleon-scattering angles
increase. As will be shown in Fig. 4(b), such a
difference approaches zero when each scattering angle
tends toward 45◦, the elastic limit. Thus, near the
elastic limit (θn = θp > 40◦) the contribution from the
MEC becomes insignificant and the amplitude M (4)

µ

dominates the npγ cross section, just as is predicted
by the soft-photon theorem. However, one cannot use
the cross-section difference between the solid curve
and the dashed-dotted curve alone to understand why

FIG. 4. Same as described in the caption to Fig. 3 but for different sets of scattering angles.
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FIG. 5. Calculated npγ cross
sections for the scattering an-
gles denoted as a function of
ψγ . The solid, dashed, dotted,
and dashed-dotted curves were
obtained using the amplitudes
MPS

npγ,µ, M (2)
µ , MNME

µ , and M (4)
µ , re-

spectively.

the MEC contribution dominates the npγ cross-section
for small-angle scattering cases.

(d) In general, even though our theoretical calculations
(solid, dashed, and dotted curves) are consistent
with the experimental data [1], there exists a large
discrepancy between theory and experiment for some
cases with photon angles ψγ in the range −180◦ <

ψγ < −60◦. (In this range, the emitted photons that
have relatively lower energies are found on the neutron
side.) The cause remains unclear. However, to the
best of our knowledge, all theoretical calculations
(relativistic or nonrelativistic [3–5]) that are consistent
with the fundamental soft-photon theorem predict
similar npγ cross sections. That is, there are no
large discrepancies among the theoretical calculations.
It seems unlikely that all of these theoretical models
would suffer the same fundamental deficiency.

(ii) In Figs. 3 and 4, we present coplanar npγ cross sec-
tions calculated using amplitudes MPS

npγ,µ (solid curves),
MNME

µ (dotted curves), MCME
µ (dashed curves), and M (4)

µ

(dashed-dotted curves) as a function of ψγ at 225
MeV for (θp, θn) = (12◦, 32◦), (20◦, 32◦), (20◦, 20◦),
(28◦, 28◦), and (43◦, 43◦). These two figures provide
the first elucidation of the separate contributions to the
npγ cross sections of the four major amplitudes. Let
us summarize their interesting features and important
physical implications:

(a) To provide a transparent analysis, let us introduce two
useful soft-photon expansions:

MNME
µ = ANME

µ

K
+ BNME

µ + CNME
µ K + · · · (23)

and

MCME
µ = ACME

µ

K
+ BCME

µ + CCME
µ K + · · · . (24)

From these two expansions, one can see that

MPS
npγ,µ = MNME

µ + MCME
µ (25)

= Aµ

K
+ Bµ + CµK + · · · , (26)

where

Aµ = ANME
µ + ACME

µ , (27)

Bµ = BNME
µ + BCME

µ , (28)

Cµ = CNME
µ + CCME

µ , (29)

and

M (4)
µ = Aµ

K
(30)

= 1

K

(
ANME

µ + ACME
µ

)
. (31)

Here Aµ,Bµ,Cµ,ANME
µ , BNME

µ , CNME
µ ,ACME

µ , BCME
µ ,

and CCME
µ are all functions of ū and t̄ . The content of

Eq. (25) is the same as that of Eq. (12), Eq. (26) is the
same as Eq. (19), and Eq. (30) is the same as Eq. (20).

(b) In Fig. 3 we compare the results of npγ cross
sections calculated using four different amplitudes
for the three cases of (θp, θn) = (12◦, 32◦), (20◦, 32◦),
and (20◦, 20◦). In each case our comparison shows
that the dashed curve (calculated using the MCME

µ

amplitude) dominates the npγ cross section and is
consistently in much better agreement with the solid
curve (calculated using the exact MPS

npγ,µ amplitude)
than the other two curves calculated using the MNME

µ

and M (4)
µ amplitudes. These results have the following

implications:
(1) Based on the analysis given in (a), the contributions

from ACME
µ /K,ANME

µ /K,BNME
µ , CNME

µ (and higher-
order terms) should be small. Thus, the dominant
contribution must come from the BCME

µ term. (It is
unlikely to arise from CCME

µ and higher-order terms.)
Note that the BCME

µ term depends on the anomalous
magnetic moments κp and κn from the external
emission contribution. However, the contribution
from these moments is negligibly small in the npγ

process.
(2) It is well known that the amplitude MNME

µ contributes
nothing to the MEC effect, because it is generated
from the exchange of neutral mesons and involves
only external emission. Similarly, the amplitude
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ACME
µ /K , which belongs to the external emission

class, has nothing to do with the MEC effect. Thus,
although the amplitude MCME

µ , which is generated
from the exchange of charged mesons, has been
regarded as the meson exchange current amplitude,
its leading meson exchange current contribution
actually comes from the BCME

µ term of Eq. (24).
(3) The MEC effect is significant in each of the three

cases shown in this figure.
(c) We can also see that there is some cancellation between

contributions from the two amplitudes MNME
µ and

MCME
µ , because the dashed curve is slightly higher

than the solid curve at some ψγ angles.
(d) We have exploited two different ways of investigating

the MEC contribution in npγ , the first discussed in
(i)(c) and the second discussed in (ii)(a) and (ii)(b).
In both approaches the MEC effect is included in
the second term (and higher-order terms) of the soft-
photon expansions [i.e., the Bµ term of Eq. (19) or the
BCME

µ term of Eq. (24)]. An important condition for any
npγ cross section to exhibit significant MEC effects is
that the contribution from the leading amplitudes, both
ACME

µ /K and ANME
µ /K [M (4)

µ = (ACME
µ + ANME

µ )/K],
must be small (insignificant). This condition is satisfied
for those npγ conditions with small nucleon scattering
angles (i.e., when one is far from the elastic limit).
In contrast, for those cases with nucleon scattering
approaching the elastic limit, the MEC effect should
become insignificant, simply because the contribution
from both amplitudes ACME

µ /K and ANME
µ /K (and,

therefore, M (4)
µ ) completely dominate the npγ cross

section. Figure 4(b) is a good example illustrating this
point.

(e) Figure 4(b) represents an npγ cross section near the
elastic-scattering limit, (θp, θn) = (43◦, 43◦). We point
out two interesting features:

(1) The dashed-dotted curve [M (4)
µ ] appears to be iden-

tical to the solid curve (MPS
npγ,µ). This is because the

contribution from the leading amplitude M (4)
µ com-

pletely dominates the npγ cross section calculated
using the exact amplitude MPS

npγ,µ. In other words,
M (4)

µ is approximately equal to MPS
npγ,µ.

(2) The dotted curve (MNME
µ ) is quantitatively similar to

the dashed curve (MCME
µ ). There are three reasons for

such excellent agreement between the two curves.
First, the leading amplitude ACME

µ /K completely
dominates the npγ cross section calculated using the
amplitude MCME

µ . That is, ACME
µ /K is approximately

equal to MCME
µ . Second, the leading amplitude

ANME
µ /K dominates the npγ cross section calculated

using the amplitude MNME
µ . In other words, ANME

µ /K

is approximately equal to MNME
µ . Third, |MCME

µ εµ|2
is approximately equal to |MNME

µ εµ|2. Here εµ is
the photon polarization four-vector. Thus, not only
is the cross-section difference between the solid
curve and the dashed-dotted curve zero, but also the
cross section difference between the dashed curve

and the dotted curve is nearly zero over the entire
range of ψγ . This implies that the MEC contribution
is completely negligible for the npγ case with
θp = θn = 43◦. Therefore, we conclude that MEC
effects should play no role in the npγ process near
the elastic-scattering limit with θp, θn � 43◦.

(iii) In Fig. 5 we exhibit coplanar npγ cross sections
calculated using amplitudes MPS

npγ,µ (solid curves),
M (2)

µ (dashed curves), MNME
µ (dotted curves), and M (4)

µ

(dashed-dotted curves) as a function of ψγ at 225 MeV
for (θp, θn) = (12◦, 32◦), (20◦, 20◦), and (28◦, 28◦). Al-
though the results are not shown in Fig. 5, we have
also found that calculations using the amplitudes M (3)

µ

and M (4)
µ yield quantitatively similar npγ cross sections

over the whole range of ψγ . This fact implies that
the anomalous magnetic moment effect must play an
insignificant role in the amplitude MCME

µ , and hence
the amplitude BCME

µ (and other higher-order amplitudes)
should depend mainly on the MEC effect. As we have
already mentioned, the primary focus of this investi-
gation is to understand the origin of the MEC effect,
to identify the leading MEC terms, and to understand
why these MEC terms dominate the npγ cross section
when the two nucleon-scattering angles (θp and θn)
are small. Using the knowledge gained from analyzing
Figs. 2, 3, and 4, we conclude that the origin of the MEC
effect and the dominant MEC terms have been identified.
The amplitude BCME

µ , the second term in the soft-photon
expansion of the amplitude MCME

µ , is the leading MEC
term. An examination of Fig. 5 provides a transparent
explanation of why the amplitude MCME

µ dominates
the npγ cross section when the two nucleon-scattering
angles are small.

(a) The major difference between the two amplitudes
MNME

µ and MCME
µ is that the former involves only

the exchange of neutral mesons, whereas the latter
involves entirely the exchange of positively charged
mesons. In other words, MNME

µ depends on the square
of the coupling constants g2

A0 , whereas MCME
µ depends

on the square of the coupling constants g2
A+ . From

Eq. (5) we find that g2
A+ = 2g2

A0 . It is this important
relationship that explains why the npγ cross-section
contribution arising from MCME

µ is much greater than
the cross section contribution arising from MNME

µ for
small nucleon-scattering angles.

(b) Because our model that involves up to 10 mesons
is complex, consider first a simple example to illus-
trate our point: Consider a model composed only of
π -meson exchange. In this case MNME

µ will be propor-
tional to g2

π0 , whereas MCME
µ will be proportional to

g2
π+ . The npγ cross section, σ (π0), calculated using

MNME
µ (g2

π0 ) will be proportional to g4
π0 , whereas the

cross section, σ (π+), calculated using MCME
µ (g2

π+)

will be proportional to g4
π+ . Because gπ+ = √

2gπ0 ,
we have g4

π+/g4
π0 = 4. This implies that σ (π+) ∼

4σ (π0). It is important that the reader understand
that the ratio R = σ (π+)/[4σ (π0)] is a function of
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θp, θn, ψγ , κp, κn, and e; it is not a constant. For
example, in the case of (θp, θn) = (43◦, 43◦) R is
approximately 1 over the range −180◦ � ψγ � 180◦,
but for (12◦, 12◦), we find 0.42 � R � 8.09 over the
range in ψγ . This conclusion should be qualitatively
correct for the complete calculation of the npγ cross
sections using the 10 neutral and 5 charged mesons.
This is because, as noted above, the npγ cross sections
are dominated by the amplitude MCME

µ for scattering
angles that are far from the elastic limit. In support
of this argument, results of additional calculations are
shown in Fig. 5 and discussed next.

(c) In Fig. 5 the solid curves are calculated using the
amplitude MPS

npγ,µ, which depends on g2
A+ = 2g2

A0 .
That is, MPS

npγ,µ = MPS
npγ,µ(g2

A+ = 2g2
A0 ). However, the

dashed curves are calculated using the amplitude M (2)
µ ,

which is identical to MPS
npγ,µ except that g2

A+ has been
replaced by g2

A0 . That is, M (2)
µ = MPS

npγ,µ(g2
A+ → g2

A0 ).
Figure 5 shows that the dashed curve, which is similar
in size to the dotted curve and the dashed-dotted curve,
is much smaller than the solid curve. This clearly
shows that the npγ cross section calculated using
the amplitude MPS

npγ,µ would be greatly reduced if
g2

A+ were changed from 2g2
A0 to g2

A0 . We point out
that this change affects only the amplitude MCME

µ .
Thus, the leading meson exchange current amplitude
BCME

µ dominates the npγ cross section for small-angle
scattering primarily because of the fact that g2

A+ =
2g2

A0 .

IV. CONCLUSION

In conclusion, the MEC effect in npγ was investigated
using a new method that combines the OBE approach with the
soft-photon approach. The method comprises three elements:
(i) as illustrated in Eq. (12), the exact OBE amplitude MPS

npγ,µ

is separated into the two amplitudes MNME
µ and MCME

µ .
(ii) As defined in Eqs. (23), (24), and (26), three soft-photon
expansions are introduced for MNME

µ ,MCME
µ , and MPS

npγ,µ.
(iii) As defined in Eqs. (14), (16), (17), and (20), four additional

amplitudes are introduced. Each of these amplitudes plus
the TuTts amplitude MTuTts

µ are used to calculate npγ cross
sections at 225 MeV, for scattering angles lying between 12◦
and 43◦. The results were used to systematically investigate
the npγ process. Our study focused on meson exchange
current effects in npγ . The most important findings can be
summarized as follows: (i) the two independent relativistic
amplitudes, MPS

npγ,µ and MTuTts
µ , predict quantitatively similar

npγ cross sections, which are generally consistent with
the measured data in Ref. [1]. However, there remains a
discrepancy between theory and experiment in some cases. The
cause remains unclear, but it seems unlikely that the various
theoretical models would have any common deficiencies.
(ii) The anomalous magnetic moments, κp and κn, play an
insignificant role in the npγ process, because their contribution
is negligibly small. (iii) The MEC effect is found to be
significant when the two nucleon scattering angles are far from
the elastic limit and insignificant when the nucleon scattering
angles approach the elastic limit. (iv) The amplitude MCME

µ

was identified as the origin of significant MEC effects, and the
amplitude BCME

µ was identified as the leading MEC amplitude.
We observed that BCME

µ also dominates the npγ cross section
for small angle scattering, primarily because of the fact that
g2

A+ = 2g2
A0 .

These findings have enhanced our understanding of the
fundamental emission mechanism governing the npγ process,
especially the meson exchange current effect. Our approach
to this investigation should prove useful in gaining further
knowledge of the bremsstrahlung process.
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