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Three-body resonances in two-meson–one-baryon systems
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We report four �’s and three �’s, in the 1500–1800 MeV region, as two meson–one baryon S-wave (1/2)+

resonances. We solve Faddeev equations in the coupled channel approach. The invariant mass of one of the
meson-baryon pairs and that of the three particles have been varied and peaks in the squared three body T -matrix
have been found very close to the existing S = −1, J P = 1/2+ low lying baryon resonances. The input two-body
t-matrices for meson-meson and meson-baryon interaction have been calculated by solving the Bethe-Salpeter
equation with the potentials obtained in the chiral unitary approach.
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Hyperon physics is still relatively unexplored and there are
many open problems to be studied. The hyperon resonances,
for example, have a poor status as compared to the nucleon
ones [1]. Though some of them, like the low-lying JP = 1/2−
resonances, �(1405),�(1670), . . ., can be represented as
dynamically generated and relatively well understood states
within the unitary chiral models, the low lying JP = 1/2+
domain remains far less understood, both experimentally and
theoretically. For instance, quark models seem to face difficul-
ties in reproducing properties of the resonances in this sector
[2]. The neat reproduction of the low-lying 1/2− states in
the S-wave meson-baryon interaction, using chiral dynamics,
suggests that the addition of a pseudoscalar meson in the
S-wave could lead to an important component of the structure
of the 1/2+ resonances. There exist results which hint toward
this possibility, e.g., in [3] it was found that the two meson
cloud gave a sizable contribution to the mass in the spectrum of
the 1/2+ baryon antidecuplet. Chiral dynamics has been used
earlier in the context of the three nucleon problems, e.g., in [4].
In this Rapid Communication we present the first study of two
meson–one baryon systems where chiral dynamics is applied
to solve the Faddeev equations. As shall be described below,
our calculations for the total S = −1 reveal peaks in the πK̄N

system and its coupled channels which we identify with the
resonances �(1770), �(1660), �(1620), �(1560),�(1810),
and �(1600).

We start by taking all combinations of a pseudoscalar
meson of the 0− SU(3) octet and a baryon of the 1/2+
octet which couple to S = −1 with any charge. For some
quantum numbers, the interaction of this two body system
is strongly attractive and responsible for the generation of
the two �(1405) states [5] and other S = −1 resonances.
We shall assume that this two-body system formed by K̄N

and coupled channels remains highly correlated when a third
particle is added, in the present case a pion. Altogether, we
get 22 coupled channels for the net charge zero configuration:
π0K−p, π0K̄0n, π0π0�0, π0π+�−, π0π−�+, π0π0�,

π0η�0, π0η�, π0K+�−, π0K0�0, π+K−n, π+π0�−,

π+π−�0, π+π−�,π+η�−, π+K0�−, π−K̄0p, π−π0�+,
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π−π+�0, π−π+�,π−η�+, π−K+�0. We assume the
correlated pair to have a certain invariant mass,

√
s23, and the

three body T -matrix is evaluated as a function of this mass
and the total energy of the three-body system.

The input required to solve the Faddeev equations, i.e., the
two body t-matrices for the meson-meson and meson-baryon
interactions have been calculated by taking the lowest order
chiral Lagrangian following [6–9] and using the dimensional
regularization of the loops as done in [8,10], where a good
reproduction of scattering amplitudes and resonance properties
was found. Instead, a cut off could also be used to regularize
the loops as shown in [7,10]. Improvements introducing
higher order Lagrangians have been done recently, including a
theoretical error analysis [11] which allows one to see that the
results with the lowest order Lagrangian fit perfectly within
the theoretical allowed bands.

A shared feature of the recent unitary chiral dynamical
calculations is the on-shell factorization of the potential and
the t-matrix in the Bethe-Salpeter equation [6,7,10,12–15],
which is justified by the use of the N/D method and dispersion
relations [10,16]. Alternatively, one can see that the off-shell
contributions can be reabsorbed into renormalization of the
lower order terms [6,7]. We develop here a similar approach
for the Faddeev equations.

The full three-body T -matrix can be written as a sum of the
auxiliary T -matrices T 1, T 2, and T 3 [17]:

T = T 1 + T 2 + T 3, (1)

where T i, i = 1, 2, 3, are the normal Faddeev partitions, which
include all the possible interactions contributing to the three-
body T -matrix with the particle i being a spectator in the last
interaction. The Faddeev partitions satisfy the equations

T i = t iδ3(�k ′
i − �ki) + t igij T j + t igikT k, (2)

where �ki(�k ′
i ) is the initial (final) momentum of the ith particle

in the global center of mass system, t i is the two-body t-matrix
for the interaction of the pair (jk) and gij is the three-body
propagator or Green’s function, with j �= k �= i = 1, 2, 3.

Iterating Eq. (2) and removing the term with δ3(�k ′
i − �ki),

which correspond to a “disconnected diagram” [18], will
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MARTÍNEZ TORRES, KHEMCHANDANI, AND OSET PHYSICAL REVIEW C 77, 042203(R) (2008)

(a)

k2 k2

(b)

k2 k2
kint

k1

k3

k1

k3 k3 k3

k1

t2

t1

k1

kint
t1

t3

FIG. 1. Diagrammatic representation of the terms (a) t1g12t2,
(b) t1g(13)t3.

give

T i = t igij t j + t igiktk + t igij t j gjktk + t igij t j gji t i

+ t igiktkgkj tj + t igiktkgki t i + · · · . (3)

The first two terms of the Eq. (3), for the case i = 1, are
represented diagrammatically in Fig. 1, where the t-matrices
are required to be off-shell. However, the chiral amplitudes,
which we use, can be split into an “on-shell” part (obtained
when the only propagating particle of the diagrams, labeled
with �kint in Fig. 1, is placed on-shell), which depends only on
the c.m. energy of the interacting pair, and an off-shell part
proportional to the inverse of the propagator of the off-shell
particle. This term would cancel the particle propagator (for
example that of the third particle in Fig. 1(a) resulting in a
three-body force [Fig. 2(a)]. In addition to this, three-body
forces also stem directly from the chiral Lagrangians [19]
[Fig. 2(b)].

We find that the sum of the off-shell parts of all six t igij t j

terms, together with the contribution from Fig. 2(b) cancels
exactly if the SU(3) limit is considered and the momentum
transfer for the baryon is assumed to be small. In a realistic
case we find this sum to be smaller than 5% of the total on-
shell contribution. Hence, only the on-shell part of the two
body (chiral) t-matrices is significant. The diagrams in Fig. 1
can then be expressed mathematically (reading the diagrams
from right to left as a convention) as t1g12t2 and t1g13t3,
respectively, where the t i-matrices depend only on the center
of mass energy of the interacting particles.

The t igij t j terms correspond to the situation where there
are no loops and hence the gij propagators are written in terms
of the on-shell variables

gij =
(

D∏
r=1

Nr

2Er

)
1√

s − Ei(�k′
i) − Ej (�kj ) − Ek(�k′

i + �kj ) + iε

with
√

s being the total energy in the global c.m. system.

El =
√
�k2
l + m2

l is the total energy of the particle l and Nl

is a normalization constant (Nl = 1 for the meson-meson

FIG. 2. The origin of the three body forces (a) due to cancellation
of the propagator in Fig. 1(a) with the off-shell part of the chiral
amplitude, (b) at the tree level.

interaction and Nl = 2Ml for the meson-baryon interaction,
where Ml is the corresponding baryon mass) and D is the
number of particles propagating between two consecutive
interactions.

These propagators (and all other angle dependent expres-
sions in the formalism) are projected in S-wave. A proper
Lorentz boost has been made for transformation of the
momenta from the center of mass frame of two particles to
the global center of mass frame whenever needed. A technical
remark is here in order: to avoid the evident divergence in
these on-shell propagators at the threshold of a channel and
to continue the Faddeev equations analytically below the
threshold, we fix the momentum of the particle to a minimum
value, Pmin = (for example, 50 MeV). It should be mentioned
that the results are almost insensitive to a change in the value
of the Pmin, since a change in Pmin of ∼40–50% results into a
shift in the peak position by less than 2 MeV.

The first term with a non trivial structure, from the point
of view of the on-shell factorization of the t-matrices in
the Faddeev equations, is the one involving three successive
pair interactions, where a loop function of three particle
propagators appears for the first time. We show the diagrams
with such a structure for the T 1 partition in Figs. 3(a)–3(d).

We write all these t igij t j gjktk terms as t iGijk

(t j gjktk)|on-shell where

Gi j k =
∫

d3k′′

(2π )3

Nl

2El

Nm

2Em

F i j k(
√

s, �k′′)
√

slm − El(�k′′) − Em(�k′′) + iε

(4)

with i �= j, j �= k, i �= l �= m and
√

slm is the invariant mass
of the (lm) pair. Equation (4) consists of the two particle
propagator in the first cut [shown as a dashed line in
Fig. 3(a) as an example] and the F i j k function, which is
defined as

F i j k = t j (
√

sint(�k′′))
(

gjk|off-shell

gjk|on-shell

) [
t j

(√
sint(�kj ′)

)]−1
. (5)

sint(�k′′) = s − m2
j − 2

√
sEj ( �k′′) denotes the invariant mass

required to calculate the t j -matrix in the loop integral of
Gijk . The term gjk|−1

on-shell[t
j (

√
sint(�kj ′))]−1 appearing in F i j k

of Eq. (5) cancels the (t j gjk)|on-shell of t iGijk(t j gjktk)|on-shell

and produces the t igij t j gjktk term with gij tj depending on the
proper off-shell variable, �k′′ of the loop. This procedure allows
us to render the Faddeev equations into a set of algebraic
equations, as we see below. To regularize the integrals of
Eq. (4) we shall use the cut off as in [6,7] which is of the
order of 1 GeV. The results are rather insensitive to this cut
off, due to the convergence of these loops which involve three
propagators.

So far we have discussed diagrams with two or three
t-matrices. It has been shown that the introduction of a third
interaction replaces the propagator g by a loop function G.
The formalism is further developed by making the same
substitution whenever a new interaction is added.
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FIG. 3. Different diagrams involving three
pair interactions corresponding to the T 1 partition.

The Faddeev partitions of Eq. (3) in this prescription can
be rewritten as

T i = {t igij t j + t iGijktj gjktk + t iGiji t j gji t i + · · ·}
+ {t igiktk + t iGikj tkgkj tj + t iGiki tkgki t i + · · ·}

= T
ij

R + T ik
R , (6)

where the T i partition has been rewritten in terms of the two
infinite series T

ij

R and T ik
R , which sum all the diagrams with

the last two interactions written in terms of t i , t j and t i , tk ,
respectively. Hence, we obtain six partitions (which is double
of those in the original Faddeev equations):

T
ij

R = t igij t j + t i
[
GijiT

ji

R + GijkT
jk

R

]
(7)

with i �= j �= k.
It remains to define the invariant masses on which the two-

body t-matrices and the propagators depend. The expression

for the s12 and s13 obtained from the energy conservation in
terms of the external (on-shell) variables is

sij = s + m2
k −

√
s(

√
s − E1)

(
s23 + m2

k − m2
j

)
s23

(8)

with E1 = (s − s23 + m2
1)/(2

√
s). However, it should be noted

that the t-matrices t j (
√

sint(�k′′)) in the loop [Eq. (4)] are
calculated in terms of a running variable as required.

There are two independent variables in the formalism√
s,

√
s23, as a function of which we plot the squared T ∗

R -matrix
(T ∗

R = ∑
ij

(T ij

R − t igij t j )), since the t igij t j terms evidently do

not have a resonance structure and just provide a background
to the amplitudes.

We now report the four isospin one states found in our
study. In Fig. 4, we show a plot of the squared T ∗

R -matrix and
its projection, for ππ� → ππ� in the total isospin I = 1
configuration obtained by keeping the two pions in isospin
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FIG. 4. Two � resonances in the ππ� am-
plitude in I = 1, Iπ = 2 configuration.
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Iπ = 2. We see two peaks; one at
√

s = 1656 MeV with the
full width at half maximum ∼30 MeV and another at

√
s =

1630 MeV with � = 39 MeV. We identify the peak at
√

s =
1656 MeV with the well established �(1660 − i100/2) [1] as
a resonance in the ππ� system, which is a new finding. It
is interesting to recall that the excitation of this resonance is
claimed in the study of the K−p → π0 π0 �0 reaction [20].
Note that since we are plotting the squared amplitude, which
would be proportional to a cross section of a certain process,
we can associate our results to the ordinary masses of the PDG
and not to the “pole positions” also quoted there.

The peak in squared T ∗
R -matrix observed at 1630 MeV with

a width of 39 MeV needs a special attention. The two-star
resonance �(1620) [1], though listed as a 1/2− state, seems
to be a very unclear case. The partial wave analysis and the
production experiments have been kept separately in [1] since
it is difficult to know the quantum numbers from the production
experiments and if more than one resonance contributes to a
single bump. Interestingly, there is a 1/2+ state found by the
partial wave analysis work of Martin et al. [21] in this region.
The authors of [21] use a multichannel partial wave analysis
of the K̄N data and find a resonance at 1597 MeV. This result
has however been listed under the �(1660) in [1]. Another
partial wave analysis of the K̄N → �π reaction made by
Armenteros et al. [22] find a 1/2+ P11 resonance at 1610 MeV
with a width of 60 MeV. These findings would provide some
phenomenological support to our claim of a 1/2+ � resonance
around ∼1620 MeV.

We find two more peaks in the I = 1 sector; one at
√

s =
1590 MeV with a width ∼70 MeV in I = 1, Iπ = 0 state and
another at

√
s = 1790 MeV with � = 24 MeV in I = 1, Iπ =

2 case. The former one supports the existence of the �(1560)
“bump”, whose spin-parity is unknown [1]. Our results would
associate a 1/2+ to the spin-parity of this resonance. The latter
finding supports the one-star �(1770).

Next, we discuss the three isospin zero states obtained in
these calculations. First we look at states observed in πK̄N

with IπK̄ = 1/2. Two peaks in the �(1600) MeV region have
been found at

√
s = 1568 with a width of 60 MeV (which

is shown in Fig. 5) and at 1700 MeV with � = 136 MeV.
One should note that the PDG quotes a mass for the �(1600)

between 1560 MeV and 1700 MeV and the width between
50 MeV and 250 MeV. We should also note the quoting of the
PDG concerning this resonance, “There are quite possibly two
P01 states in this region”. Our results reinforce this hypothesis.

Finally, in the ππ� amplitude for the I = 0, Iπ = 0
configuration we find a similar structure at 1740 MeV with
the full width at half maximum being 20 MeV. We identify
this peak as the �(1810 − i150/2) resonance, which is listed
as a three-star 1/2+ resonance by the particle data group [1].
We would like to draw the attention of the reader to the large
variation in the peak positions as well as the widths reported by
different partial wave analyzes [1] for the �(1810) resonance
(the peak position changes from 1750 MeV to 1850 MeV and
the width from 50–250 MeV).

We do not find any states with exotic isospin, I = 2, 3.
We have also investigated the theoretical uncertainties of

the model. We have already mentioned that Pmin and the cutoff
in the three particle loop do not play any relevant role. In
addition, we have checked the sensitivity of our results to
the change in the two-body input parameters. We have varied
the pion decay constant and the two-body cutoffs, by about
5%, which still guarantees a fair agreement of our two-body
cross sections with the experimental ones. We find changes in
the peak positions by less than 5 MeV from each source, or
7 MeV when summed in quadrature. This gives us an idea of
the accuracy of our results.

The states obtained are not exotic and their quantum
numbers can be reached with just three quarks. What our
findings are telling is that in nature these three quark states
unavoidably couple to two mesons and one baryon, and, for
the states that we have found, the two meson one baryon
components overcome the weight of the original three quarks
seed. This particular nature could be tested experimentally by
means of different reactions, among which, the strong three
body decay channels and the radiative decays [23] should
play an important role and deserve further theoretical and
experimental studies.

We conclude the discussion by emphasizing that all the
low lying 1/2+� and � resonances in the PDG [1], up to the
1800 MeV energy region, get dynamically generated as two
meson-one baryon states in these calculations. In addition,
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FIG. 5. A � resonance in the πK̄N

amplitude at 1568 MeV in I = 0, IπK̄ =
1/2.
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we predict the quantum numbers of the �(1560) and also
find evidence for a 1/2+� resonance at ∼1620 MeV. It is
rewarding to see that the widths obtained in this work, which
correspond to decay into three-body systems, are smaller
than the total ones to which the two-body decay widths also
contribute. There would be no contradiction with these two
body channels having a smaller weight in the resonance wave
functions, as implicitly assumed in our study, and having a fair
contribution to the total width, since some of the three-body
channels to which the resonances couple are kinematically
closed for decay, and others which are open have a far

smaller phase space than that available for two body decay
channels.
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