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Assisted tunneling of a metastable state between barriers
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The assisted tunneling of a metastable state between barriers is investigated analytically by means of a
simplified one-dimensional model. A time dependent perturbation changes the pole spectrum of the wave
function introducing a larger decay constant. New insights about the decay of a metastable state are found. The
scheme is exemplified for parameters corresponding to the nuclear process of α decay.
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Introduction. Quantum tunneling is the conventional the-
oretical paradigm for the explanation of a gamut of atomic,
molecular, and nuclear phenomena. Classically forbidden
regions can be accessed by a quantum object whose behavior
is described in terms of a wave function.

Shortly after the advent of quantum mechanics, Gurney
and Condon and simultaneously Gamow, explained the huge
differences between α decay lifetimes of similar unstable
nuclei using the concept of tunneling through a barrier [1,2].
This framework has remained as reliable today as when it was
proposed almost a century ago [3,4]. The question of assisting
tunneling, i.e., accelerating or decelerating the decay process is
of the utmost importance in the nuclear context and elsewhere.
In the nuclear case, acceleration of the decay process could
change dramatically the treatment of radioactive waste as well
as providing alternative fuel sources.

Analytical expressions for the various tunneling processes
are extremely important. It is virtually impossible to follow
numerically the evolution of a wave function to the long times
involved in decay processes. There is a huge gap between
the natural time scale of nuclear phenomena of the order of
10−24 s and the decay time scale of the order of milliseconds
to millions of years [6]. The situation is somewhat, but not
radically different, for atomic phenomena.

Not surprisingly, assisted tunneling is extensively investi-
gated for solid state systems. The main theoretical tool in this
endeavor is the Floquet formalism [7]. This method involves
large matrices and it is computationally quite intensive [8].
Other methods such as the “elevator effect” model of resonance
assisted activation attempt to attack the problem in a semi-
analytic manner [10]. Ivlev [9] has recently developed a
complex time method to investigate assisted tunneling, aimed
at a nonperturbative approximate treatment of the tunneling
through special barriers.

There seems to be a clear consensus, that exposing a system
to external excitations, time harmonic or not, can enhance its
tunneling rate. The absence of exact analytical results, and
reliable long term numerical results, especially for the nuclear
case, makes difficult the assessment of experimental feasibility
of implementing assisted activation.

In the present work we investigate an extremely simple
model of a one dimensional quantum mechanical system

*hope@vms.huji.ac.il,germankal@hotmail.com

located initially between fixed barriers. A time harmonic
potential such as a low frequency -as compared to the natural
frequency of the system- electric field, is then applied. The
simplicity of the model allows a full, albeit perturbative,
exact analytical solution. The perturbation causes a qualitative
change in the pole structure of the wave function. The spectrum
of poles arising from the normalization of the wave function
that rule the decaying behavior of the metastable state, is
extended. These poles in the complex momentum space
appear as the wave function is expanded in a complete set
of the unperturbed system. The poles contribute in a contour
integration of the wave amplitudes in momentum space [4].
They are not introduced ad hoc, as Gamow did with his
complex energy method, but, arise in a systematic expansion
of the wave function naturally. The time development of the
wave function is dominated by the lowest energy poles. The
introduction of the perturbation opens a new line of poles.
Here again only one of them appears important. This new pole
produces a bigger decay constant.

The result is not specific to time varying fields. The new
line of poles arises even for a static spatially inhomogeneous
potential such as that of a constant electric field. In a nuclear
setting, such a static field will be certainly almost completely
screened by the atomic electrons, whereas for a time varying
potential, the efficiency of such screening is diminished. A
discussion of the electronic screening problem is beyond the
scope of the present work. We henceforth treat only a time
harmonic perturbation that vanishes in the zero frequency
limit.

The external vibration shakes the system back and forth
between barriers and accelerates the tunneling process. We
analyze the general and, mostly qualitative results, based
on the pole spectrum. New insights into some troubling
aspects of metastable state decay are offered later in this
Rapid Communication. Extensive mathematical details will
be presented in a forthcoming work.

The model. The Schrödinger equation for the one-
dimensional system located in between barriers is taken to
be

i
∂�

∂t
= −1

2 m

∂2�

∂x2
+ λ (δ(x + x0) + δ(x − x0))�. (1)

Comparing to a finite size square barrier, λ represents the
height multiplied by the width. For nuclear α decay λ ≈ 2,

m ≈ 20 fm−1, x0 ≈ 10 fm, mλx0 = 400 � 1.
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We choose as initial nonstationary wave, a gaussian wave
packet. This allows a full analytical treatment. In α decay, it
would correspond to a preexisting spatially symmetric state:

�(x, t = 0) = Ne
− x2

�2 (2)

with N a constant factor normalization, and � is the width
parameter of the packet. Inside the barrier region the packet
disperses if � < x0, but, soon enough it stops dispersing due
to the presence of the barriers. It can then spread only through
the tunneling process governed by the barriers.

The even (e) and odd (o) stationary states of Eq. (1) are
readily found to be

ne(k)χe(x) =
{

cos(kx) if |x| < x0

A cos(kx) ± B sin(kx) if x > x0 or x < −x0,
(3)

no(k)χo(x) =
{

sin(kx) if |x| < x0

±C cos(kx) + D sin(kx) if x > x0 or x < −x0.
(4)

The set of even-odd functions is orthonormal and complete.
The normalization factors1 are extremely important and
determine the location of the poles in the complex plane. As
shown below, these poles govern the exponential decay of
metastable wave functions.

The normalization factors are

(ne(k))2 = π (A(k)2 + B(k)2),

A(k) = 1 − sin(2 k x0)
mλ

2k
,

B(k) = mλ

k
(cos(kx0))2,

k2(ne(k))2 = π

((
k − sin(2 k x0)

mλ

2

)2

+ (mλ(cos(kx0))2)2

)
,

(5)

(no(k))2 = π (C(k)2 + D(k)2),

C(k) = −mλ

k
(sin(kx0))2,

D(k) = 1 + sin(2 k x0)
mλ

2k
,

k2(no(k))2 = π

((
k + sin(2 k x0)

mλ

2

)2

+ (mλ(sin(kx0))2)2

)
(6)

The time harmonic potential perturbation reads

V (x, t) = µx sin(ωt) (7)

with µ a coupling constant. For an external electric field of
intensity E0 interacting with an α particle of charge 2|qe|, µ =
2|qe|E0.

The wave function is expanded in the complete set of even
and odd states

�(x, t) =
∑
i=e,o

∫ ∞

0
χi(k, x)ai(k, t)e

−ik2 t
2m dk (8)

dots denoting derivatives with respect to t .

1The determination of the normalization and the completeness issue
will be dealt with in an extended version of the paper [5].

The Schrödinger equation for the amplitudes ae,o becomes

iȧe(k) =
∫

e− (k′2−k2)t
2m

×〈χe(k, x)|V (x, t)|χo(k′, x)〉dk′ao(k′, t),
(9)

iȧo(k) =
∫

e− (k′2−k2)t
2m

×〈χo(k, x)|V (x, t)|χe(k′, x)〉dk′ae(k′, t).

The leading contribution to the matrix element of the
interaction can be evaluated exactly

〈χe(k, x)|V (x, t)|χo(k′, x)〉
=

∫ ∞

−∞
χe(k, x)V (x, t)χo(k′, x)dx

≈ µπ
1

ne(k)no(k′)
∂δ(k − k′)

∂k′ sin(ωt). (10)

Inserting Eq. (10) in Eq. (9) we obtain

iȧe(k, t) = − π

no(k)ne(k)

(
a′

o(k, t) − n′
o(k)/no(k)ao(k, t)

− ikt

m
ao(k, t)

)
µ sin(ωt),

(11)

iȧo(k, t) = − π

no(k)ne(k)

(
a′

e(k, t) − n′
e(k)/ne(k)ae(k, t)

− ikt

m
ae(k, t)

)
µ sin(ωt)

primes denoting derivatives with respect to k.
Rescaling to dimensionless variables

k → k̃ = k√
mω

,

t → t̃ = ωt, (12)

µ → µ̃ = µ√
ω3m

,
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Eq. (11) becomes

iȧe(k, t̃ ) = −µ̃
π

no(k)ne(k)
(a′

o(k, t̃ ) − n′
o(k)/no(k)ao(k, t̃ )

− ikt̃ao(k, t̃ )) sin(t̃ ),
(13)

iȧo(k, t̃ ) = −µ̃
π

no(k)ne(k)
(a′

e(k, t̃ )

− n′
e(k)/ne(k)ae(k, t̃ ) − ikt̃ae(k, t̃ )) sin(t̃ ),

primes denoting derivatives with respect to k and dots
representing derivatives with respect to t̃ .

µ̃ is the relevant parameter of the problem. It is small
for external angular frequencies ω3

min > µ2m.2 For lower fre-
quencies, nonperturbative solutions are required. The smaller
the electric field, the lower the frequency for which the
perturbative solution will be appropriate.

The amplitudes of Eq. (13) are further expanded in powers
of µ̃:

ae(k, t̃ ) =
∞∑

n=0

b(n)
e (k, t̃ )µ̃n,

(14)

ao(k, t̃ ) =
∞∑

n=1

b(n)
o (k, t̃ )µ̃n

with initial conditions

b(n)
e,o(k, t = 0) = 0 for n � 1,

(15)

b(0)
e (k, t̃ ) = b0(k)/ne(k) =

∫ ∞

−∞
Ne

− x2

�2 χe(k)dx.

We extracted the normalization factor of the even wave func-
tions ne(k) for the sake of convenience. It is straightforward to
show that all the odd n powers of ae(k, t̃ ) vanish identically,
and the same is true for the even n powers ao(k, t̃ ). The
substitution of Eqs. (14) into Eq.(13) produces a separate
equation for each order n. The equations are integrable exactly
order by order, although the expressions of higher order
amplitudes become increasingly involved.

Poles of the wave function. Figure 1 shows π
k2ne(k)2 and

π
k2np(k)2 for the parameters mλx0 = 400, x0 = 10 fm. The thin
and tall spikes are due to the extreme closeness of the minima
of the normalization factors to their complex zeros.

The amplitudes of Eq. (14) determine the wave function
through Eq. (8). Integration over k is dominated by the pole
structure of the normalization factors no,e(k).

The normalization factors of Eqs. (5) and (6) are even in
the argument k. Consequently, the behavior around their zeros
can be expressed in the form

k2n2
e,o ≈ γ (j )

e,o

(
k2 − k(j )

e,o

2)2 + β(j )
e,o, (16)

where j enumerates the pole number.

2For example, in α decay case with µ ≈ 1 eV2 corresponding
to a strong electric field amplitude of E0 ≈ 5106 Volt/m, ωmin >

1012 sec−1.

For the δ barriers we have chosen, and in the limit of
mλx0 � 1, we can find simple expressions for the locations
of the poles as well as the value of the norm factors on the real
axis at k = k

(j )
e,o:

ke = (2n + 1)πmλ

2(1 + mλx0)
, ko = nπmλ

(1 + mλx0)
,

γe = π
2mλx3

0 (mλx0 + 4)

(2n + 1)2π2
, γo = π

mλx3
0 (mλx0 + 4)

4n2π2
, (17)

βe = (2n + 1)4π4

16m2λ2x4
0

, βo = n4π4

m2λ2x4
0

.

The poles qn, qm are located symmetrically above and
below the real momentum axis at kx0 approximately equal
to an odd multiple of π

2 for the even case and, and a multiple
of π for the odd case, where the bound states of the infinite
wall case lay:

qe
n =

(
(2n + 1)πmλ

2(1 + mλx0)

)2

± i

√
βe

γe

,

(18)

q2
o =

(
nπmλ

(1 + mλx0)

)2

± i

√
βo

γo

.

The imaginary parts of the poles are orders of magnitude
smaller than the real parts. For example, inserting the param-
eters corresponding to α decay, the first even pole appears at
qe,n=1 ≈ 0.024 ± i3 × 10−7 fm−2. For a finite size width, the
imaginary parts are much smaller. The sharp spikes seen in
Fig. 1 lead to the dominance of the poles in the spectrum of
momenta.

When Eq. (8) is evaluated by contour integration in the
complex k2 plane, the contour has to be closed from below.
In the lower half-plane the convergence is insured by the

exponential e−i k2 t
2m .

FIG. 1. π

k2ne(k)2 and π

k2np (k)2 as a function of k in units of fm−1 for
the parameters mλx0 = 400, x0 = 10 fm.
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The poles are separated from each other, their contribution
adds up. The negative imaginary part of each pole induces
a time decaying exponential. Each exponent determines a
different decay constant and decay time. If the original wave
function is even in space, as in the expression of Eq. (2), only
even poles contribute to the unperturbed decay process. Due to
the initial confinement of the wave to the interbarrier region,
the most important contribution arises from the first even
pole. The influence of higher order poles is hindered by the
wave packet transform to momentum space

�(k) ∼ e− k2�2

4 . (19)

Therefore, the first pole drives the decay process and
determines the lifetime of the quasistationary state.

Acceleration of the decay process. The structure of the
solution of Eq. (11) for the amplitude series of Eq. (14) and to
the lowest order in µ for the even amplitude is found to be

ae(k̃, t̃ ) = ne(k̃)b0(k̃)

(
1

n2
e

+ µ̃2b̃(2)
e (k̃, t̃ )

)
,

b̃(2)
e (k̃, t̃ ) = e1(t̃ ) + e2(t̃ )k̃2

n4
en

2
o

+ e3(t̃ )k̃n′
o

n4
en

3
o

+ k̃e4(t̃ )n′
e + e5(t̃ )n′′

e

n5
en

2
o

+ e6(t̃ )

n6
en

2
o

+ e7(t̃ )n′
en

′
o

n5
en

3
o

. (20)

The odd amplitude reads

ao(k̃, t̃ ) = no(k̃)b0(k̃)µ̃b̃(1)
o (k̃, t),

(21)

b̃(1)
o (k̃, t̃ ) = ko1(t̃ )

n2
en

2
o

+ o2(t̃ )n′
e

n3
en

2
o

,

where we have extracted a normalization factor in advance of
the integration over the even-odd set of wave functions χ (k),
as we want to identify the influence of the pole structure on
the amplitudes. In Eqs. (20) and (21) we have suppressed the k̃

dependence of the normalization factors in the denominators
for brevity.

We can readily analyze the structure of the perturbed
amplitudes. The amplitudes in Eqs. (21) and (20) differ from
the unperturbed amplitude b0(k) by the appearance of poles for
the odd set of wave functions introduced by powers of no(k)
in the denominators.

The first even pole of Eq. (17) generates a decay constant
of the form

|e−i
k2
e,n=1 t

2m | → e−�et

�e = 1

2m

√
β1

γ1

= π3

8mx4
0m2λ2

, (22)

whereas the first odd pole generates a decay constant

�o = 8�e. (23)

The factor of 8 is specific to the δ model. In general there
should be roughly this order of magnitude increase in the
decay constant.

At the same time, the real part of the pole that enters the
wave function mainly through the momentum space transform
of the initial wave function of Eq. (19) changes also

e
− π2�2

16x2
0 → e

− π2�2

4x2
0 ,

(24)

e
− π2�2

16x2
0 → e

− 9π2�2

16x2
0 .

The left hand side in both lines in Eq. (24) correspond to the
first even pole contribution whereas the right hand sides pertain
to the first odd pole and the second even pole, respectively.

There arise then two effects: An enhancement of the decay
constant by a factor of 8 and, a damping factor. A rough
estimate of the importance of the news terms can now be
performed.

If initially � ≈ x0, then the first odd pole contributes to
the wave function about 10%, while the second even pole
contributes much less than 1%. Even without getting into
the cumbersome details of the wave function, the survival
probability in the inner region between barriers will be
influenced markedly by the introduction of the perturbation.
The wave will tunnel faster.

Flux continuity. The question of conservation of probability
or flux continuity seems unavoidable at this junction. This
problem arises even before adding a harmonic perturbation.
If the wave diminishes with time everywhere it appears as if
unitarity is broken. This should not occur in the evolution
of a wave function with the Schrödinger equation and a
real potential. The contradiction arises in other conventional
approaches to the decay of a metastable state [4]. In the
scattering method the paradox is apparently resolved by
exhibiting another piece in the wave function that increases
exponentially with time.

However, in the present treatment of the problem, the
wave function receives contributions from the poles in the
lower momentum half-plane only. There seems to be no
time increasing piece at all. The exponentials originating from
those poles is decreasing in time. On the other hand, flux has to
be continuous and overall probability should be conserved. The
answer to this conundrum brings to the fore the mathematical
beauty of the decay process.

Consider the two separate regions, the inside zone around
x ≈ 0 and the long distance zone of x → ∞, far away from
the microscopic location of the barriers. In the inner region
the integration over momentum space is dominated essentially
by the poles. This is true until very long times. At very long

times the exponential factor e−i k2 t
2m oscillates wildly for small

changes in the momentum. The integral of Eq. (8) will start
to suppress the importance of the pole share in the integral.
The pole spike will be twisted by the oscillating factor with
alternating positive and negative parts. It is possible to estimate
the time at which the assumption of pole dominance fails as
follows. The width of the pole spikes read off from Eq. (16) is
δ(k2) ≈ γ . For k2 ≈ γ the inverse of the normalization factor
essentially vanishes 1

n2
o,e

→ 0. The pole dominance will end
when

k2t

2m
→ γ t

2m
≈ 1. (25)
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Inspection of the values of γ listed in Eq. (17), it is found that
this time is of the same order of the lifetime 1

�
. Hence, in the

inner region, the wave will decay until a time of the order of
the lifetime. After that time, other contributions to the wave
arising from momenta outside the poles have to be included.
The wave leaks out of the inner region for very long times of
the order of the lifetime of the state.

The behavior in the long distance region is completely
different, even for short times. For x → ∞ the oscillations
in the integrand of Eq. (8) stem from the harmonic functions
in space χ of Eqs. (3) and (4). For the long distance region,
the poles will never dominate, neither at short times nor
at asymptotically long times. The wave is built from the
whole momentum spectrum. Moreover, as time passes and,
in the spirit of the stationary phase approximation, smaller
and smaller momenta will dominate. This effect will enhance
the wave at long distances, due to the momentum space factors
of Eq. (19). Consequently, the wave function will decay in the
inner region and grow in the outer region and probability will

be conserved. The same is true when more than one decay
constant is present.

Conclusions. The investigation of assisted tunneling carried
out in the present work implies that, there are distinctive
qualitative features induced by the introduction of a time
dependent perturbation. The main signal for the process is the
appearance of another decay constant, bigger than the one of
the unperturbed case. The state decays as if it were composed
of two channels with different partial decay widths. A large
component with a longer lifetime and a small, but presumably
non-negligible component, with a much smaller—eight times
smaller for mλx0 � 1—lifetime. Evidently, the fine details are
important for an accurate determination of the wave function,
and will be shown in a coming publication. The reverse process
of tunneling into a region enclosed between barriers could be
affected by the mechanism of assisted tunneling also. Such a
possibility is of relevance for atomic and nuclear processes,
such as nuclear fusion.
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