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Precise root-mean-square radius of 4He
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We study the world data on elastic electron-helium scattering to determine the 4He charge root-mean-square
radius. A precise value for this radius is needed as a reference for a number of ongoing studies in nuclear and
atomic physics.
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Introduction. The charge root-mean-square (rms) radii
of the helium isotopes are presently receiving considerable
attention. Precise isotope shifts of 3He and the unstable 6He
relative to 4He have been measured by laser spectroscopy [1,2];
an experiment studying the isotope shift of the short-lived
halo-nucleus 8He has recently been completed at GANIL [3].
These isotope shift measurements provide accurate differences
of the rms radii relative to 4He. To deduce absolute radii, the
radius of the reference nucleus 4He needs to be known with
the best possible precision.

The radius of the 4He nucleus is also of great interest
to the ongoing atomic spectroscopy measurement of 4He+
performed using cooled helium ions in a Paul trap [4]. It
is hoped that this experiment reaches a relative accuracy of
2 · 10−14 for the 2S-1S energy difference. As compared to
measurements on the hydrogen atom, precision measurements
of transitions in the one-electron system He+ allow for a
more accurate test of QED, both because of the absence of
hyperfine structure and the better precision of the 4He charge
rms potentially obtainable from electron scattering or muonic
atom experiments. Data on transitions in He+ also will be
sensitive to the higher order QED terms such as the two-loop
contributions, which scale like (Zα)5 [5] and are not yet
accessible in the hydrogen atom. The interpretation of the
results from this 2S-1S measurement will be limited by the
accuracy the 4He charge rms radius is known with.

The 4He rms radius has been determined via various elastic
electron scattering experiments; for a compilation see Ref. [6].
The combined data available up to 1982 were analyzed in
Ref. [7], yielding the rms radius 1.676 ± 0.008 fm. The most
accurate radius measurement was claimed to be the one of
Carboni et al. [8]. From a Lamb shift experiment on muonic
4He they obtained 1.673 ± 0.001 fm [9]. However, serious
doubts have been expressed concerning this experiment. Two
independent groups [10,11] have excluded at the pressure of
40 bars the long lifetime of the µ−4He+ 2S-state, which would
have been required for the experiment of [8] to successfully
induce the 2S-2P transition; the very short lifetime found by
Refs. [10] and [11] is in agreement with theoretical predictions
for the rate of collisional quenching [12] and the observed
evolution of the lifetime with pressure [13]. The experiment
of Ref. [14] has shown that at very low pressure (0.04 bar)
the lifetime of the 2S state is long enough to allow for
an excitation of the 2S-2P transition with laser light. This
experiment has excluded with a significance of 3.5σ the
occurrence of the 2S-2P transition at the wave length claimed

by Ref. [8]; accordingly, the rms radius is not in the interval
1.673 ± 0.0016 fm. The muonic x-ray measurement of Ref. [8]
thus cannot be considered to provide a dependable 4He rms
radius.

In this Rapid Communication, we use the world data
on electron scattering from 4He, together with independent
information from proton-4He scattering, to determine a reliable
and accurate rms radius.

Electron scattering data. The data base for elastic electron
scattering from 4He is quite extensive [15–20], reaching a
maximum momentum transfer q of 8 fm−1. For completeness
we also mention two older experiments [21,22], which,
however, are not accurate enough to contribute significantly.

The experiment of greatest interest to a determination of
the rms radius is the one of Ottermann et al. [20] who,
using gas targets for helium and hydrogen, measured cross
section ratios in the range of q = 0.5–2.0 fm−1, with a
systematic error of order 0.7%. This experiment has the lowest
uncertainties and covers the q region 0.8–1.4 fm−1, which has
the greatest sensitivity to the rms radius. The data of von
Gunten [19], although also very precise, are measured at very
low momentum transfer where the finite-size effect in the form
factor is still very small.

For the present analysis, we have converted the helium
cross sections measured relative to the proton to absolute cross
sections employing a modern fit of the world data on e-p
scattering [23], established by taking into account also for the
proton the nonnegligible Coulomb distortion effects [24].

Constraint on density at large radii. The tail of the charge
density at large radii gives a large contribution to the rms
radius, as a consequence of the r4 weight in the 〈r2〉 integral.
The density at radii larger than 1.9 fm, where it has fallen to less
than 10% of the central value, contributes more than 55% to
〈r2〉. The uncertainty on the density in this region accordingly
is responsible for much of the final error bar on the rms radius.
If the density at large radii can be constrained using additional
knowledge, this can greatly benefit the accuracy of the rms
radius.

At large radii, outside the range of the nucleon-nucleus
potential, the proton 1S radial wave function falls like a
Whittaker function W−η,1/2(2κr ′)/r ′, with κ and η depending
on the proton removal energy and r ′ = r mA/mA−1. This shape
of the proton wave function can be used to constrain the fitted
charge density (for corrections see below).

For the special case of 4He, we know not only the shape
of the density but also the absolute value. The world data on
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elastic scattering of protons from 4He have been analyzed by
Plattner et al. [25] using Forward Dispersion Relations (FDR).
This analysis, which in addition to data uses as input only
the singularity structure of the p-4He scattering amplitude,
determined the residual of the nearest pole, due to the proton
exchange amplitude involving the p-3H configuration. This
residual, which is known with ∼ 5% accuracy, fixes the
absolute (point) density of protons in the large-radius tail of
4He, i.e., the constant multiplying W 2

−η,1/2(2κr ′)/r ′2.
To proceed from the point density to the charge density, we

use a point density calculated in a Woods-Saxon (WS) potential
well with parameters adjusted to fit the large-radius point
density from FDR and, at smaller radii, the GFMC (Greens
Function Monte Carlo) density of Pieper and Wiringa [26].
This density is folded with a modern proton charge distribution
to produce the large-radius charge density. For the neutron we
use the same WS potential, with depth slightly adjusted to get
the correct neutron removal energy. This is good enough an
approximation for the isoscalar nucleus 4He given the small
contribution of neutrons to the helium charge density. Various
test have shown that the resulting charge density at large radii
is not sensitive to the procedure employed.

Results of fit of data. The electron scattering data have been
fit using a “model-independent” SOG (Sum-of-Gaussians)
expansion for the charge density [27]. The cross section data
have been calculated using a phase-shift code that solves the
Dirac equation for the electrons in the electrostatic potential
of the charge density. The data given in terms of Born form
factors [17] (with Coulomb corrections already performed) are
compared to the corresponding PWIA (Plane Wave Impulse
Approximation) form factors.

In the fit, the values of the charge density from FDR for
radii r > 2.4 fm, where the density has fallen to less than 3%
of its central value, are included as data points, with the quoted
error bar of ±5%.

For the fit, the random error bars of the data are used,
and the uncertainty of derived quantities is calculated using
the error matrix. The systematic errors, mainly normalization
uncertainties of the cross sections, are taken into account by
changing the individual data sets by their systematic error,
refitting, and adding quadratically the resulting changes in the
quantities of interest. This yields a conservative estimate for
the systematic errors. Random and systematic errors are added
in quadrature.

FIG. 1. (Color online) Ratio of experimental and fit 4He(e, e)
cross sections.

The quality of the fit of the data is very satisfactory, with
a χ2 of 133 for 168 degrees of freedom. Figure 1 shows on a
very expanded scale the ratio data/fit in the q range of interest.
The agreement of the fit density with the FDR charge density
is also perfect.

The resulting rms radius amounts to 1.681 ± 0.004 fm,
where the uncertainty covers both statistical and systematic
errors. As compared to the radius previously extracted from
electron scattering [7], the uncertainty is reduced by a factor of
two. This is due to the more accurate data, in particular to the
ones of Ref. [20] that have become available in the meantime.
Relative to the previous value of 1.676 ± 0.008 fm the radius
has moved up by 1/2 the error bar. This is a consequence of
the additional data and the fact that the tail charge density has
increased somewhat due to the folding of the FDR tail with a
more modern proton charge distribution (corresponding to a
larger proton charge rms radius [23]).

Because of the FDR constraint on the density at large radii,
the uncertainty of the rms radius, ±0.004 fm, is very small;
the charge rms radius given above actually is the most precise
rms radius of any nucleus determined via elastic electron
scattering.

We thank M. Herrmann for providing details concerning
the Munich atomic spectroscopy experiment on 4He+.
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