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Conservation properties in the time-dependent Hartree Fock theory
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We discuss the conservation of angular momentum in nuclear time-dependent Hartree-Fock calculations for a
numerical representation of wave functions and potentials on a three-dimensional Cartesian grid. Free rotation of
a deformed nucleus performs extremely well even for relatively coarse spatial grids. Heavy ion collisions produce
a highly excited compound system associated with substantial nucleon emission. These emitted nucleons reach
the bounds of the numerical box which leads to a decrease of angular momentum. We discuss strategies to
distinguish the physically justified loss from numerical artifacts.
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Time-dependent Hartree-Fock (TDHF), originally pro-
posed by Dirac [1], has found widespread applications in vari-
ous areas of physics due to the overwhelming development of
computational power. It is employed, e.g., as the variant time-
dependent density functional theory [2] in atomic, molecular,
and cluster physics, see, e.g., [3,4]. It has enjoyed application in
nuclear dynamics since more than 30 years [5] as a microscopic
approach to various dynamical scenarios in the regime of
large amplitude collective motion, such as fusion excitation
functions, fission, deep-inelastic scattering, and collective
excitations; for early reviews see, e.g., [6,7]. With the steady
upgrade of computational power, three-dimensional TDHF
calculations without any symmetry restriction became possible
and renewed the interest in nuclear TDHF as seen from an
impressive series of recent publications [8–17]. A crucial
aspect in nuclear TDHF is that nuclei are freely moving objects
such that all conservation laws (energy, momentum, angular
momentum) apply. Conservation of energy and momentum is
a basic feature which has been tested for all existing codes.
Conservation of angular momentum has not yet been studied
and that is the topic which we want to address in this paper.

The calculations employ grids in coordinate space. Their
finite spacing and box size destroy translational and rotational
symmetry which, in turn, can spoil conservation of momentum
and angular momentum. The major destructive mechanism
comes from matter which tries to leave the computational box
but is hindered by the boundary condition. In the course of time
development, higher energy components appear in the nucleon
wave functions, representing outgoing “particles” from the nu-
cleus. The further time development may therefore be affected
by their reflection from the boundary or, in the case of periodic
boundary conditions, reentry from the neighboring cells. That
can change the total angular momentum, as is illustrated in
Fig. 1. Clearly the boundary can even change the sign of a
particle’s contribution to the angular momentum around the
center of the cell. In this work we consider periodic boundary
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conditions. The case of reflecting boundaries behaves qualita-
tively similar.

The static and time-dependent Hartree-Fock equations are
solved on a Cartesian three-dimensional mesh without any
symmetry requirements. The grid spacing was 1 fm, and
the Skyrme energy functional [18] was employed with the
parametrization SLy6 [19] (for the purposes of this work, the
particular choice of Skyrme force is irrelevant). The minimum
set of time-odd terms to assure Galilei invariance [18,20,21]
was included. The spatial derivatives are calculated using
the fast Fourier transform and periodic boundary conditions
are employed, except for the Coulomb potential, which is
calculated with boundary conditions at infinity as described
in [22]. The time stepping employs a sixth-order Taylor
expansion of the time evolution operator U (t, t + �t) =
exp[−ih(t + �t/2) �t/h̄], with the mean fields at the half
step estimated by a third-order expansion using the mean field
at time t .

This method of time development is nonunitary, so that
the orthonormality of the single-particle wave functions is
not guaranteed. Nevertheless, we find that the calculation is
quite stable and accurate for several thousand time steps �t ≈
0.2 fm/c, in the sense that the particle number changes by less
than 0.1%. The total energy also is conserved to a fraction
of an MeV. When instability then sets in, there is a rapid
drift of particle number and energy, so that the conservation
properties are quite good checks for the accuracy and stability
of the calculation.

Test case will be a collision of two 16O nuclei which
involves truly large amplitudes and carries a large amount
of excitation energy. As argued above, the boundaries of the
numerical grid influence the conservation laws. In order to
disentangle its effects, we consider three different setups:

(i) A small grid with 24 × 32 × 32 fm3.
(ii) A doubled grid of 48 × 64 × 64 fm3, so that the

collision is surrounded more generously by empty
space. Observables are summed over only the smaller
grid of case (1), which allows to distinguish the exact
physical loss from the artifacts of the smaller grid.

(iii) Finally, the small grid plus an absorbing boundary con-
ditions which are arranged within an absorbing layer
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FIG. 1. Simple illustration of the effect of boundary conditions
on total angular momentum. The boxes indicate the computational
boundaries and the central dot the reference point for the angular
momentum. For periodic boundary conditions (left) it is easy to even
revert the sign of the particle’s angular momentum. For approximately
reflecting boundary conditions (right) the situation is not quite as
pronounced: for the case �v1 there is no change by reflection, while
for �v2 the sign also changes.

Nabs = 6 cells wide in each direction. In this layer, a
mask function M(nx, ny, nz) = Mx(nx)My(ny)Mz(nz)
is applied to the wave functions after each time step
where Mi(ni) = cos ((Nabs+1−ni)π/2Nabs)0.25 , ni =
1 . . . Nabs. See [23] for details.

Before analyzing rotational motion, we have checked, of
course, the conservation of energy and total momentum. Both
quantities are conserved very well with relative fluctuations
staying at the order of 10−4. A detailed analysis of translational
motion and of the physical interpretation of the TDHF single-
particle energies can be found in [17]. Let us just mention here
that for a nucleus moving freely in any direction on the grid the
momentum is conserved to an accuracy of better than 10−4.

For the case of angular momentum, the situation turned out
to depend strongly on the excitation of the system. We therefore
discuss two types of calculations: single cranked nucleus and
heavy-ion collisions.

Single cranked nucleus. We produce a rotating nucleus by
solving the cranked static Hartree-Fock equations

(ĥ − ωĴx) φk(�r) = εkφk(�r), k = 1 . . . A (1)

with ω the prescribed angular frequency of rotation about the
x-axis (for simplicity we omit spin dependence, though spin
is included in the calculations). The rotating states

φ̄k(�r, t) = exp

[
− iωtĴx

h̄

]
exp

[
− iεkt

h̄

]
φk(�r) (2)

then are exact solutions of the TDHF equations, so that the
numerical solution should show simply a rotating nucleus with
no extraneous motion added.

It is clear that this is a much more demanding test for the
numerical solution, since the cartesian grid is incompatible
with rotational motion and effectively the grid spacing expands
and shrinks by a factor of

√
2 as the nucleus rotates through

45 and then 90 degrees.
As an example, we show here the deformed nucleus 24Mg

cranked with ω = 2 MeV/h̄. In this case, rotation turns out to
be almost completely of rigid-body type; the observed angular
momentum of 7.54 h̄ corresponds to a moment of inertia of
about 98% of the rigid-body value. To judge the accuracy of the
rotation in the numerical solution, we examine the expectation
value of the angular momentum Ĵx , which should be strictly
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FIG. 2. Relative deviations of the angular momentum expectation
value (full curve) and the three principal moments of inertia (smallest:
dotted, intermediate: dashed, and largest: dot-dashed curve) from the
temporal average during rotation of a 24Mg nucleus. The abscissa
denotes the rotation angle calculated from the instantaneous tensor
of inertia.

conserved, and the principal moments of inertia, which in
the absence of any internal excitation should also be constant.
Figure 2 shows the fluctuations of these quantities as functions
of simulation time.

The most striking result is the excellent quantitative
description of rotation in spite of the coarse Cartesian grid, the
variations being of the order of 10−4. The angular-momentum
expectation value clearly is correlated with the angle and shows
regular variations with a 45 structure. The variations in the
moments of inertia show a less regular pattern and appear to
be influenced by the periods of the internal vibrations of the
nucleus from which seemingly a tiny amount is exited during
the rough sliding over the grid.

Heavy-ion reactions. The situation is quite different in the
more violent case of heavy-ion collisions. The substantial
excitation leads to emission of nucleons which, in turn, causes
problems. As was shown in the introduction, particles crossing
the boundaries can generate large spurious changes in the total
angular momentum and it becomes quite difficult to separate
the correct physical loss of angular momentum carried away
by the emitted particles from the spurious numerical effect.
The results presented in Fig. 3 illustrate the problems which
are of quite general nature. Note that the angular momentum
Jx is perpendicular to the reaction plane.

The initial condition consists of two ground-state 16O nuclei
with a c.m. energy of either 25 or 125 MeV. All the initial
angular momentum thus comes from the relative motion.
For the higher energy the impact parameter was b = 4.8 fm,
corresponding to Jx ≈ 33h̄, while for the lower energy b =
2.8 fm corresponding to Jx ≈ 8.6h̄. These values were chosen
to have the same distance of closest approach in the pure
Coulomb trajectory.

For both energies, the two nuclei stay fused at the end of
the calculation. The boundary problems are more serious for
the higher energy because of the higher excitation leading
to stronger emission of particles. It is apparent that in the
larger grid the reduction in angular momentum starts about
100 fm/c later as compared to the small grid. The curve labeled
“restricted” is computed in the large grid while the angular
momentum is collected in the small grid. This should indicate
the true loss of angular momentum from the small grid for
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FIG. 3. Angular momentum as a function of time for collisions of 16O+16O at Ec.m. = 25 MeV (left) and 125 MeV (right). The different
cases are: “small”: calculation in a grid of 24 × 32 × 32 fm3, “large”: calculation in a grid doubled in total size in every direction, “restricted”:
same as large, but angular momentum is summed up only over the small grid; “absorb”: small grid with a 6 fm absorbing layer around the
boundary.

the time span before emitted particles come back from the
larger boundary. Clearly the “small” calculation has the largest
loss and it becomes even unreasonable at about 250 fm/c. It is
reassuring that the curve for the absorbing boundary stays quite
close to the “restricted” calculation and shows a reasonable
monotonic decrease throughout.

The total reduction of about 30% at a collision energy
of 125 MeV is surprisingly large in view of the fact that
only 1.7 nucleons are absorbed. These nucleons thus carry a
comparatively large share of angular momentum. At the lower
energy of 25 MeV, the total change in angular momentum is
not as dramatic but by no means negligible, still exceeding
10% while 0.4 nucleons are emitted. Besides the quantitative
difference, the general pattern are very similar. Again, the loss
sets in later for the larger grid and the calculation with the
absorbing layer appears to be a reasonable approximation to
the “true” loss.

In this Rapid Communication, we have analyzed the conser-
vation of total angular momentum in nuclear TDHF calcula-
tions. The calculations used a coordinate-space representation
of wave functions and potential fields on a three-dimensional
cartesian grid without any symmetry restriction. The full
Skyrme interaction was taken into account. Conservation of
energy and momentum was tested (but not detailed here)
and found to be well matched within a relative error of
only 10−4.

The results for angular momentum depend on the dynamical
scenario. Free rotation of a deformed nucleus is surprisingly
well described. Although the cartesian grid spoils rotational
symmetry, we find that the deformed nucleus rotates steadily
over the grid of 1 fm spacing with variations of angular
momentum and moments of inertia of the order of 10−4. This is

the same quality as found already for translational momentum
and energy.

The case of nucleus-nucleus collisions is less well-behaved.
The compound system is heavily excited. This leads to
substantial emission of nucleons which in the sequel reach
the bounds of the numerical box where reflection or periodic
copy (depending in the grid model) lead to a substantial
reduction of angular momentum. Comparing calculations on
different grids (small box, large box, absorbing bounds), we
have worked out that the loss is to a large extent physical
because the emitted nucleons are very energetic and carry away
a comparatively large amount of angular momentum. Artifacts
from the boundary come into play as soon as nucleons travel
back into the reaction zone. This happens the later the larger the
grid and it can be effectively avoided when using absorbing
boundary conditions. Both “solutions”, larger or absorbing
grid are somewhat expensive. One may live with a small grid
if one confines the analysis to the early time evolution of the
compound system (to evaluate the doorway effects). In any
case, the conserved quantities should be checked carefully for
each new dynamical scenario.

The results discussed here are, of course, only indicative
and may vary quantitatively for other TDHF codes. The
specific discretization of the equations of motion will affect
the accuracy of describing an isolated rotating nucleus,
while the treatment of the boundary conditions will strongly
influence the boundary problems addressed above.
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