Recent α decay half-lives and analytic expression predictions including superheavy nuclei

G. Royer^{1,*} and H. F. Zhang²

¹Laboratoire Subatech, UMR: IN2P3/CNRS-Université-Ecole des Mines, 4 rue A. Kastler, F-44307 Nantes Cedex 03, France ²School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China (Received 28 January 2008; published 12 March 2008)

New recent experimental α decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the α emitter and the Q_{α} value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the α decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Q_{α} of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].

DOI: 10.1103/PhysRevC.77.037602

PACS number(s): 23.60.+e, 21.10.Tg, 27.90.+b

The α decay process was described in 1928 [1,2] in terms of a quantum tunneling through the potential barrier separating the mother nucleus energy and the total energy of the separated α particle and daughter nucleus. To describe the α emission two different approaches have been developed. The cluster-like theories suppose that the α particle is preformed in the nucleus with a certain preformation factor while the fission-like approaches consider that the α particle is formed progressively during the very asymmetric fission of the parent nucleus. The experimental investigation cannot unambiguously distinguish these two formation modes. However, the possible one-body configurations play a minor role because in the quasi-molecular decay path investigated in the α decay process the potential barrier is governed by the balance between the repulsive Coulomb forces and the attractive proximity forces and the Q_{α} value; consequently the barrier top is more external and lower than the pure Coulomb barrier and corresponds to two separated fragments. The difference between the two approaches appears mainly in the way the decay constant is determined. In the unified fission models [3,4] the decay constant λ is the product of the constant assault frequency v_0 and the barrier penetrability P while in the preformed cluster models [5,6] a third factor is introduced: the cluster preformation probability P_0 .

Before the theoretical explanation and description of the α decay process, Geiger and Nuttall [7] observed a dependence of the α decay partial half-life $T_{1/2,\alpha}^{expt}$ on the mean α particle range for a fixed radioactive family and Geiger-Nuttall plots are now an expression of $\log_{10}T_{\alpha}$ as a function of $ZQ^{-1/2}$, because different new relations have been proposed [4,8–12] to calculate $\log_{10}T_{\alpha}$ from the measured kinetic energy of the α particle via $E_{\alpha} = Q_{\alpha}A_d/(A_{\alpha} + A_d)$ or from Q_{α} given or extrapolated from mass formulas or tables.

Recently, isotopes of the elements 112, 113, 114, 115, 116, and 118 have been synthetized in fusion-evaporation reactions using 209 Bi, 233,238 U, 242,244 Pu, 243 Am, 245,248 Cm, and 249 Cf targets with 48 Ca and 70 Zn beams and observed via their α decay cascades [13–19]. These recent experimental

results have led to new theoretical studies on α decay, for example, within the relativistic mean field theory [20], the Desity-Dependent M3Y (DDM3Y) interaction [21,22], the generalized liquid drop model (GLDM) [23,24], and the Skyrme-Hartree-Fock mean-field model [25]. The predicted half-lives against α decay of these transuranium nuclei obtained with a semiempirical formula taking into account the magic numbers have also been compared with the analytical superasymmetric fission model results and the universal curves and the experimental data [12].

In previous studies [4,26] both theoretical description and analytical formulas were presented for the α emission. Within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Q value, the α emission half-lives were deduced from the WKB barrier penetration probability as for a spontaneous asymmetric fission. The RMS deviation between the theoretical and experimental values of $\log_{10} T_{\alpha}$ was 0.63 for a data set of 373 emitters having an α branching ratio close to one and 0.35 for the subset of 131 even-even nuclides. A fitting procedure led to the following empirical formulas, respectively, for the 131 even(Z)-even(N), 106 even-odd, 86 odd-even, and 50 odd-odd nuclei. A and Z are the mass and charge numbers of the mother nucleus. The rms deviations are, respectively, 0.285, 0.39, 0.36, and 0.35.

$$\log_{10}[T_{1/2}(s)] = -25.31 - 1.1629A^{1/6}\sqrt{Z} + \frac{1.5864Z}{\sqrt{Q_{\alpha}}}, \quad (1)$$

$$\log_{10}[T_{1/2}(s)] = -26.65 - 1.0859A^{1/6}\sqrt{Z} + \frac{1.5848Z}{\sqrt{Q_{\alpha}}}, \quad (2)$$

$$\log_{10}[T_{1/2}(s)] = -25.68 - 1.1423A^{1/6}\sqrt{Z} + \frac{1.592Z}{\sqrt{Q_{\alpha}}}, \quad (3)$$

$$\log_{10}[T_{1/2}(s)] = -29.48 - 1.113A^{1/6}\sqrt{Z} + \frac{1.6971Z}{\sqrt{Q_{\alpha}}}.$$
 (4)

Because new α decays have been observed and their partial α decay half-lives $T_{1/2,\alpha}^{\text{expt}}$ have been measured [15–19,25,27–32], they are compared in Tables I and II with the calculated

^{*}royer@subatech.in2p3.fr

TABLE I. Comparison between recently known experimental α decay half-lives and results obtained with formulas (1)–(4).

	covet a s se	mexpt				mexpt	m Formulae ()
Nucleus	Q_{α}^{expt} (MeV)	$T_{1/2,\alpha}^{1,\mu}$ (s)	$T_{1/2,\alpha}^{\text{rollidias}}$ (s)	Nucleus	Q_{α}^{expr} (MeV)	$T_{1/2,\alpha}^{1,\mu}$ (s)	$T_{1/2,\alpha}^{\text{romanas}}$ (s)
¹⁰⁵ Te	4.900(0.050)	$0.70^{+0.25}_{-0.17} imes 10^{-6}$	$0.37^{+0.21}_{-0.13} imes 10^{-6}$	¹⁵⁶ Er	3.486	2.3×10^{10}	1.6×10^{10}
¹⁵⁸ Yb	4.172	4.3×10^6	2.7×10^{6}	$^{160}\mathrm{Hf}$	4.902	1.9×10^{3}	1.9×10^{3}
$^{174}\mathrm{Hf}$	2.497	6.3×10^{22}	4.55×10^{23}	^{158}W	$6.612\substack{+0.003\\-0.003}$	$1.5^{+2}_{-2} imes 10^{-3}$	$1.21^{+0.03}_{-0.03} \times 10^{-3}$
^{168}W	4.507	1.6×10^{6}	3.1×10^6	¹⁶² Os	$6.767\substack{+0.003\\-0.003}$	$1.9^{+2}_{-2} imes 10^{-3}$	$2.33^{+0.06}_{-0.05} imes 10^{-3}$
¹⁶⁴ Os	6.475	4.2×10^{-2}	2.2×10^{-2}	¹⁶⁶ Pt	7.286	3.0×10^{-4}	$2.85 imes 10^{-4}$
¹⁶⁸ Pt	6.997	2.0×10^{-3}	2.2×10^{-3}	¹⁷⁰ Pt	6.708	1.4×10^{-2}	$2.0 imes 10^{-2}$
¹⁷² Hg	7.525	$4.2 imes 10^{-4}$	2.7×10^{-4}	¹⁷⁴ Hg	7.233	2.1×10^{-3}	2.0×10^{-3}
¹⁸⁸ Hg	4.705	5.3×10^{8}	2.0×10^{8}	¹⁷⁸ Pb	7.790	$2.3 imes 10^{-4}$	2.1×10^{-4}
¹⁸⁰ Pb	7.415	5.0×10^{-3}	2.75×10^{-3}	¹⁸⁴ Pb	6.774	$6.1 imes 10^{-1}$	3.6×10^{-1}
¹⁸⁶ Pb	6.470	1.2×10^1	4.7×10^{0}	¹⁸⁸ Pb	6.109	2.7×10^2	1.3×10^2
¹⁹⁰ Pb	5.697	1.8×10^4	8.7×10^{3}	¹⁹² Pb	5.221	3.6×10^6	2.1×10^6
¹⁹⁴ Pb	4.738	9.8×10^9	1.3×10^{9}	¹⁸⁸ Po	$8.087^{+0.025}_{-0.025}$	$4.0^{+2.0}_{-1.5} imes 10^{-4}$	$1.1^{+0.19}_{-0.17} imes 10^{-4}$
¹⁸⁹ Po	$7.703\substack{+0.020\\-0.020}$	$5.0^{+1}_{-1} imes 10^{-3}$	$3.0^{+0.4}_{-0.4} imes 10^{-3}$	¹⁹⁰ Po	7.693	2.5×10^{-3}	1.5×10^{-3}
¹⁹² Po	$7.319\substack{+0.011\\-0.011}$	$2.9^{+1.5}_{-0.8} imes 10^{-2}$	$2.2^{+0.2}_{-0.2} imes 10^{-2}$	²¹⁰ Po	5.407	1.2×10^7	$1.0 imes 10^6$
¹⁹⁶ Rn	$7.616\substack{+0.009\\-0.009}$	$4.4^{+1.3}_{-0.9} imes 10^{-3}$	$1.36^{+0.09}_{-0.09} \times 10^{-2}$	¹⁹⁸ Rn	7.349	$6.5 imes 10^{-2}$	$9.56 imes 10^{-2}$
202 Ra	8.020	2.6×10^{-3}	3.63×10^{-3}	²⁰⁴ Ra	7.636	$5.9 imes 10^{-2}$	$5.5 imes 10^{-2}$
²¹⁰ Th	8.053	1.7×10^{-2}	1.3×10^{-2}	²¹² Th	7.952	$3.6 imes 10^{-2}$	2.4×10^{-2}
²¹⁸ U	$8.773^{+0.009}_{-0.009}$	$5.1^{+1.7}_{-1.0} imes 10^{-4}$	$4.0^{+0.2}_{-0.2} imes 10^{-4}$	²²⁰ U	10.30	$6.0 imes 10^{-8}$	$5.8 imes 10^{-8}$
²²⁴ U	8.620	$7.0 imes 10^{-4}$	$8.2 imes 10^{-4}$	²²⁶ U	7.701	$5.0 imes 10^{-1}$	$5.67 imes 10^{-1}$
²²⁸ Pu	7.950	2.0×10^{-1}	$5.13 imes 10^{-1}$	²³⁰ Pu	7.180	1.0×10^2	2.71×10^2
²³⁸ Cm	6.62	2.3×10^{5}	3.3×10^5	²⁵⁸ No	8.151	1.2×10^2	5.4×10^1
²⁵⁸ Rf	9.25	9.2×10^{-2}	1.03×10^{-1}	²⁶⁰ Rf	8.901	$1.0 imes 10^0$	$1.0 imes 10^0$
²⁶⁶ Hs	10.34	2.3×10^{-3}	2.1×10^{-3}	²⁷⁰ Hs	9.02	2.2×10^1	1.03×10^1
²⁷⁰ Ds	11.2	1.0×10^{-4}	$6.7 imes 10^{-4}$	²⁸² 113	$10.63\substack{+0.08\\-0.08}$	$7.3^{+13.4}_{-2.9}\times10^{-2}$	$4.27^{+2.8}_{-1.7}\times10^{-2}$

values from the above-mentioned formulas using the measured Q_{α} values. Table II displays also the results obtained with the DDM3Y effective interaction [21,22], the GLDM [4,23], and the Viola-Seaborg formulas with Sobiczewski constants [8,9].

A quite good agreement appears in Table I in the whole mass range confirming the accuracy of the formulas (1)–(4) and their usefulness for new predictions. Table II focuses on the heaviest elements for which the uncertainties both on the experimental Q value and α decay half-lives are larger because only some α cascades have been observed. The results obtained with the DDM3Y effective interaction agree with the experimental data as the ones calculated from the GLDM and largely better than the VSS calculations which give systematically longer halflives. This shows that a GLDM taking account of the proximity effects, the mass asymmetry, and the quasi-molecular shapes is sufficient to reproduce the α decay potential barriers when the experimental Q_{α} value is known and proves that the double folding potential obtained using M3Y effective interaction supplemented by a zero-range potential for the single-nucleon exchange is also very appropriate to describe the α decay

process. The DDM3Y results are on an average slightly larger than the experimental data while the GLDM values are slightly lower than the measured values. The values obtained using formulas (1)–(4) and, then, only A, Z, and Q_{α} are close to the values derived from the DDM3Y interaction and in agreement with the still rough experimental data. The fact that the partial α decay half-lives of these superheavy elements follow these simple formulas seems to prove that the experimental data are consistent with the formation of a cold and relatively compact composite nuclear system. The shell effects are implicitly contained in the Q_{α} value but difficult to disentangle.

Thus predictions of the partial α decay half-lives of still unknown superheavy nuclei within formulas (1)–(4) seem reliable and are displayed in Table III. The values obtained using the GLDM and the VSS expressions are also given for comparison. The assumed α decay energies are calculated from the atomic mass evaluation of Audi *et al.* [33] because the agreement with the experimental data on the mass of the known heaviest elements is very satisfactory. It may be useful for future experimental assignment and identification.

TABLE II. Comparison between recent experimental α decay half-lives and results obtained with the DDM3Y eff	fective interaction
[21,22], the GLDM [4,23], the formulas (1)–(4), and the VSS expressions [8,9].	

Nucleus	$Q^{\mathrm{expt}}_{\alpha}$ (MeV)	$T_{1/2,\alpha}^{\mathrm{expt}}$	$T_{1/2,lpha}^{ m DDM3Y}$	$T_{1/2,lpha}^{ m GLDM}$	$T_{1/2,lpha}^{ m Formulas}$	$T^{ m VSS}_{1/2,lpha}$
²⁹⁴ 118	11.81 ± 0.06	$1.8^{+75}_{-1.3}$ ms	$0.66^{+0.23}_{-0.18}$ ms	$0.15^{+0.05}_{-0.04}$ ms	$0.39^{+0.15}_{-0.11}$ ms	$0.64^{+0.24}_{-0.18}$ ms
²⁹³ 116	10.67 ± 0.06	53^{+62}_{-19} ms	$206^{+90}_{-61} \mathrm{ms}$	$22.81^{+10.22}_{-7.06}$ ms	308 ⁺¹³⁶ ₋₉₃ ms	1258 ⁺⁵⁵⁷ ₋₃₈₄ ms
²⁹² 116	10.80 ± 0.07	18^{+16}_{-6} ms	39^{+20}_{-13} ms	$10.45^{+5.65}_{-3.45} \mathrm{ms}$	$27^{+14}_{-9} \mathrm{ms}$	49^{+26}_{-16} ms
²⁹¹ 116	10.89 ± 0.07	$6.3^{+11.6}_{-2.5}$ ms	$60.4^{+30.2}_{-20.1}$ ms	$6.35^{+3.15}_{-2.08}$ ms	89^{+46}_{-30} ms	$336.4^{+173.1}_{-113.4}$ ms
²⁹⁰ 116	11.00 ± 0.08	15^{+26}_{-6} ms	$13.4^{+7.7}_{-5.2}$ ms	$3.47^{+1.99}_{-1.26}$ ms	$8.9^{+5.4}_{-3.3}$ ms	$15.2^{+9.0}_{-5.6} \mathrm{ms}$
²⁸⁸ 115	10.61 (6)	87^{+105}_{-30} ms	409 ms	$94.7^{+41.9}_{-28.9}$ ms	$582^{+278}_{-187} \mathrm{ms}$	997 ⁺⁴⁴² ₋₃₀₃ ms
²⁸⁷ 115	10.74 (9)	32^{+155}_{-14} ms	49 ms	$46.0^{+33.1}_{-19.1}$ ms	$53^{+38}_{-22} \mathrm{ms}$	$207^{+149}_{-85} \mathrm{ms}$
²⁸⁹ 114	9.96 ± 0.06	$2.7^{+1.4}_{-0.7}$ s	$3.8^{+1.8}_{-1.2}$ s	$0.52^{+0.25}_{-0.17}$ s	$6.1^{+3.0}_{-2.0}$ s	$26.7^{+13.1}_{-8.7}$ s
²⁸⁸ 114	10.09 ± 0.07	$0.8^{+0.32}_{-0.18}$ s	$0.67^{+0.37}_{-0.27} \mathrm{s}$	$0.22^{+0.12}_{-0.08}$ s	$0.52^{+0.30}_{-0.19} \mathrm{s}$	$0.98^{+0.56}_{-0.40}$ s
²⁸⁷ 114	10.16 ± 0.06	$0.51^{+0.18}_{-0.10} { m s}$	$1.13^{+0.52}_{-0.40}$ s	$0.16^{+0.08}_{-0.05}$ s	$1.79^{+0.85}_{-0.57}$ s	$7.24^{+3.43}_{-2.61}$ s
²⁸⁶ 114	10.35 ± 0.06	$0.16^{+0.07}_{-0.03} \mathrm{s}$	$0.14^{+0.06}_{-0.04} \mathrm{s}$	$0.05^{+0.02}_{-0.02} { m s}$	$0.11^{+0.05}_{-0.03} \mathrm{s}$	$0.19^{+0.08}_{-0.06}$ s
²⁸⁴ 113	10.15 (6)	$0.48^{+0.58}_{-0.17}$ s	$1.55^{+0.72}_{-0.48}$ s	$0.43^{+0.21}_{-0.13}$ s	$2.4^{+1.2}_{-0.80}$ s	$4.13^{+1.94}_{-1.31}$ s
²⁸³ 113	10.26 (9)	$100^{+490}_{-45} \mathrm{ms}$	$201.6^{+164.9}_{-84.7}$ ms	222^{+172}_{-96} ms	$234^{+180}_{-100} \mathrm{ms}$	937 ⁺⁷¹⁹ ₋₄₀₂ ms
²⁸⁵ 112	9.29 ± 0.06	34^{+17}_{-9} s	75^{+41}_{-26} s	$13.22^{+7.25}_{-4.64}$ s	127^{+69}_{-44} s	592^{+323}_{-207} s
²⁸³ 112	9.67 ± 0.06	$4.0^{+1.3}_{-0.7}$ s	$5.9^{+2.9}_{-2.0}$ s	$0.95^{+0.48}_{-0.32}$ s	9.6 ^{+4.9} _{-3.2} s	$41.3^{+20.9}_{-13.8}$ s
²⁸⁰ 111	9.87 (6)	3.6 ^{+4.3} _{-1.3} s	$1.9^{+0.9}_{-0.6}$ s	$0.69^{+0.33}_{-0.23}$ s	$3.1^{+1.6}_{-1.05}$ s	$5.70^{+2.74}_{-1.84}$ s
²⁷⁹ 111	10.52(16)	$170^{+810}_{-80} \mathrm{~ms}$	$9.6^{+14.8}_{-5.7}$ ms	$12.4^{+19.9}_{-7.6}$ ms	$10.9^{+17.8}_{-6.7}$ ms	$45.3^{+73.1}_{-27.6}$ ms
²⁷⁹ 110	9.84 ± 0.06	$0.18^{+0.05}_{-0.03} \ { m s}$	$0.40^{+0.18}_{-0.13} \mathrm{s}$	$0.08^{+0.04}_{-0.02} { m s}$	$0.65^{+0.31}_{-0.21} \mathrm{s}$	$2.92^{+1.4}_{-0.94}$ s
²⁷⁶ 109	9.85 (6)	$0.72^{+0.87}_{-0.25}$ s	$0.45^{+0.23}_{-0.14}$ s	$0.19^{+0.08}_{-0.06}$ s	$0.65^{+0.33}_{-0.22}$ s	$1.44^{+0.68}_{-0.46}$ s
²⁷⁵ 109	10.48 (9)	$9.7^{+46}_{-4.4}$ ms	$2.75^{+1.85}_{-1.09}$ ms	$4.0^{+2.8}_{-1.6}$ ms	$3.2^{+2.3}_{-1.3}$ ms	$13.7^{+9.6}_{-5.6}$ ms
²⁷⁵ 108	9.44 ± 0.07	$0.15^{+0.27}_{-0.06} \mathrm{s}$	$1.09^{+0.73}_{-0.40}$ s	$0.27^{+0.16}_{-0.10} \mathrm{s}$	$1.9^{+1.2}_{-0.72}$ s	$8.98^{+5.49}_{-3.38}$ s
²⁷² 107	9.15 (6)	$9.8^{+11.7}_{-3.5}$ s	$10.1^{+5.4}_{-3.4}$ s	$5.12^{+3.19}_{-1.58}$ s	$17.6^{+10.2}_{-6.4}$ s	$33.8^{+17.9}_{-11.6}$ s
²⁷¹ 106	8.65 ± 0.08	$2.4^{+4.3}_{-1.0}$ min	$1.0^{+0.8}_{-0.5} \mathrm{min}$	$0.33^{+0.28}_{-0.16}$ min	$1.8^{+1.5}_{-0.8} \min$	$8.6^{+7.3}_{-3.9}$ min

TABLE III. Predicted α decay half-lives using the GLDM, the formulas (1)–(4), and the VSS formulas. The α decay energies are taken from the extrapolated data of Audi *et al.* [33].

A Z	Q	$T_{1/2}^{ m GLDM}$	$T_{1/2}^{\text{form.}}$	$T_{1/2}^{ m VSS}$	A Z	Q	$T_{1/2}^{ m GLDM}$	$T_{1/2}^{\text{form.}}$	$T_{1/2}^{\rm VSS}$	A Z	Q	$T_{1/2}^{ m GLDM}$	$T_{1/2}^{\text{form.}}$	$T_{1/2}^{\rm VSS}$
293 118	12.30	77 µs	$187\mu s$	592 µs	292 117	11.60	1.30 ms	6.47 ms	13.33 ms	291 117	11.90	0.29 ms	0.32 ms	1.23 ms
291 115	10.00	4.33 s	4.8 s	21.9 s	290 115	10.30	0.62 s	4.2 s	6.86 s	289 116	11.70	0.43 ms	1.05 ms	3.63 ms
289 115	10.60	97.4 ms	113 ms	482 ms	287 113	9.34	102 s	99.4 s	461 s	286 113	9.68	9.44 s	61.5 s	92.5 s
285 114	11.00	5.1 ms	12 ms	44.6 ms	285 113	10.02	0.99 s	1.0 s	4.35 s	284 112	9.30	64.7 s	25.1 s	47.3 s
283 111	8.96	6.01 min	5.5 min	25.73 min	282 112	9.96	0.772 s	0.297 s	0.516 s	282 111	9.38	18.6 s	99.8 s	158.4 s
281 112	10.28	0.102 s	0.2 s	0.786 s	281 111	9.64	3.12 s	2.72 s	11.96 s	281 110	8.96	3.05 min	4.6 min	22.47 min
280 112	10.62	13.3 ms	25.4 ms	8.62 ms	280 111	9.98	0.335 s	1.43 s	2.79 s	279 112	10.96	2.06 ms	3.88 ms	14.1 ms
279 109	8.70	10.35 min	7.72 min	36.32 min	278 112	11.38	0.223 ms	0.083 ms	0.121 ms	278 111	10.72	3.89 ms	12.5 ms	30.9 ms
$\begin{array}{c} 278 \\ 110 \end{array}$	10.00	148.5 ms	51.8 ms	89.8 ms	278 109	9.10	31 s	143 s	240 s	277 112	11.62	0.069 ms	0.12 ms	0.402 ms
277 111	11.18	0.323 ms	0.28 ms	1.073 ms	277 110	10.30	23.1 ms	39 ms	162 ms	277 109	9.50	1.89 s	1.48 s	6.61 s
277 108	8.40	49.7 min	65.25 min	330.3 min	276 111	11.32	0.157 ms	0.39 ms	1.11 ms	276 110	10.60	4.03 ms	1.47 ms	2.35 ms
276 108	8.80	131 s	40.6 s	75 s	275 111	11.55	51.5 μ s	$42.3 \ \mu s$	152 μ s	275 110	11.10	0.26 ms	0.43 ms	1.65 ms
274 111	11.60	41.4 μ s	88.1 μ s	$258 \ \mu s$	274 110	11.40	55.5 μ s	19.5 μ s	$28.7 \ \mu s$	274 109	10.50	3.67 ms	9.84 ms	26.8 ms
274 108	9.50	0.92 s	0.3 s	0.51 s	274 107	8.50	9.94 min	48.45 min	70.98 min	273 111	11.20	0.33 ms	0.29 ms	0.96 ms
273 110	11.37	0.067 ms	0.11 ms	0.39 ms	273 109	10.82	0.61 ms	0.5 ms	1.96 ms	273 108	9.90	69.4 ms	101 ms	441.6 ms
273 107	8.90	28.8 s	21.1 s	92.8 s	272 110	10.76	1.97 ms	0.697 ms	0.94 ms	272 109	10.60	2.34 ms	5.74 ms	15.02 ms
272 108	10.10	21.7 ms	6.9 ms	10.9 ms	272 106	8.30	24.9 min	6.38 min	11.4 min	$\begin{array}{c} 271 \\ 110 \end{array}$	10.87	1.12 ms	1.79 ms	5.86 ms
271 109	10.14	37.5 ms	29.9 ms	105.6 ms	271 108	9.90	79.2 ms	109.7 ms	441.7 ms	271 107	9.50	0.499 s	0.338 s	1.40 s

TABLE III. (Continued).

A Z	Q	$T_{1/2}^{\rm GLDM}$	$T_{1/2}^{\text{form.}}$	$T_{1/2}^{\rm VSS}$	A Z	Q	$T_{1/2}^{ m GLDM}$	$T_{1/2}^{\text{form.}}$	$T_{1/2}^{\rm VSS}$	A Z	Q	$T_{1/2}^{ m GLDM}$	$T_{1/2}^{\text{form.}}$	$T_{1/2}^{ m VSS}$
270 110	11.20	0.199 ms	0.067 ms	0.083 ms	270 109	10.35	10.7 ms	30 ms	65 ms	270 108	9.30	4.48 s	1.4 s	2.02 s
270 107	9.30	2.0 s	6.25 s	11.9 s	270 106	9.10	3.59 s	0.99 s	1.66 s	270 105	8.20	24.38 min	94.58 min	140.53 min
269 109	10.53	3.75 ms	3.12 ms	10.25 ms	269 108	9.63	0.48 s	0.68 s	2.52 s	269 107	8.84	55.9 s	39 s	144.5 s
269 106	8.80	32.5 s	37.5 s	167.9 s	269 105	8.40	4.96 min	3.01 min	12.93 min	268 110	11.92	6.3 µs	$1.84 \ \mu s$	2.1 µs
268 109	10.73	1.28 ms	3.07 ms	7.15 ms	268 108	9.90	85.7 ms	28.6 ms	37.7 ms	268 107	9.08	9.86 s	35.4 s	55.5 s
268 106	8.40	12.1 min	3.4 min	5.1 min	268 105	8.20	25.4 min	102.7 min	140.5 min	268 104	8.10	23.8 min	5.88 min	10.2 min
267 110	12.28	1.3 µs	$1.57 \ \mu s$	$4.4 \ \mu s$	267 109	10.87	0.61 ms	0.49 ms	1.49 ms	267 108	10.12	22.1 ms	32.9 ms	112.5 ms
267 107	9.37	1.33 s	0.97s	3.36s	267 106	8.64	1.9 min	2.25 min	9.3 min	267 105	7.90	330 min	205 min	787 min
267 104	7.80	315 min	306 min	1494 min	266 109	10.996	0.32 ms	0.69 ms	1.63 ms	266 108	10.336	6.26 ms	2.16 ms	2.64 ms
266 107	9.55	0.41 s	1.21 s	2.21 s	266 105	8.19	29.0 min	121.8 min	152.5 min	266 104	7.50	81.47 h	20.09 h	31.30 h
265 109	11.07	0.223 ms	0.178 ms	0.498 ms	265 107	9.77	99.7 ms	74.4 ms	241 ms	265 105	8.49	2.70 min	1.76 min	6.43 min
265 104	7.78	6.58 h	6.58 h	29.65 h	264 107	9.97	29.9 ms	74.1 ms	151 ms	264 106	9.21	1.99 s	0.60 s	0.77 s
264 105	8.66	46.1s	154 s	232 s	264 104	8.14	19.2 min	5.03 min	7.36 min	263 108	10.67	1.03 ms	1.52 ms	4.45 ms
263 107	10.08	15.5 ms	11.6 ms	34.9 ms	263 105	9.01	3.65 s	2.4 s	8.27 s	263 104	8.49	72.7 s	76.8 s	324.7 s
262 107	10.30	4.42 ms	9.51 ms	20.5 ms	262 106	9.60	160.4 ms	47.5 ms	56.7 ms	262 105	9.01	4.06 s	10.9 s	18.2 s
262 104	8.49	82.6 s	20.6 s	27.9 s	261 107	10.56	1.04 ms	0.74 ms	2.07 ms	261 106	9.80	44.8 ms	56.1 ms	183.9 ms
261 105	9.22	0.96 s	0.60 s	1.92 s	260 107	10.47	1.77 ms	3.58 ms	7.62 ms	260 104	8.90	4.09 s	1.08 s	1.35 s
259 106	9.83	39.4 ms	50.5 ms	152.3 ms	259 105	9.62	69.0 ms	45.9 ms	136.7 ms	259 104	9.12	0.89 s	0.93 s	3.38 s
258 106	9.67	114 ms	36.1 ms	36 ms	258 105	9.48	0.18 s	0.42 s	0.74 ms	258 104	9.25	380 ms	103 ms	120 ms
257 105	9.23	1.0 s	0.67 s	1.8 s	257 104	9.04	1.66 s	1.76 s	5.88 s	256 105	9.46	230 ms	522 ms	848 ms
256 104	8.93	3.78 s	1.04 s	1.09 s	255 105	9.72	42.9 ms	28.9 ms	72.4 ms	255 104	9.058	1.57 s	1.69 s	5.19 s
254 104	9.38	181 ms	51.9 ms	50.5 ms	253 104	9.55	63.1 ms	68.3 ms	195.0 ms					

In conclusion, formulas already presented to determine the partial α decay half-lives have been checked on new experimental data in the whole mass range and the correct agreement allows us to make predictions for the partial α decay half-lives of still unknown superheavy nuclei.

- [1] G. Gamow, Z. Phys. 51, 204 (1928).
- [2] E. U. Condon and R. W. Gurney, Nature **122**, 439 (1928).
- [3] D. N. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner, Phys. Rev. C 32, 572 (1985).
- [4] G. Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).
- [5] S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989).
- [6] A. Ludu, A. Sandulescu, and W. Greiner, Int. J. Mod. Phys. E 1, 169 (1992).
- [7] H. Geiger and J. M. Nuttall, Philos. Mag. 22, 613 (1911).
- [8] V. E. Viola and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).
- [9] A. Sobiczewski, Z. Patyk, and S. Cwiok, Phys. Lett. B224, 1 (1989).
- [10] B. A. Brown, Phys. Rev. C 46, 811 (1992).
- [11] D. N. Poenaru and W. Greiner, in *Nuclear Decay Modes* (Institute Of Physics, Bristol, 1996), p. 275.
- [12] D. N. Poenaru, I. H. Plonski, and W. Greiner, Phys. Rev. C 74, 014312 (2006).
- [13] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. **72**, 733 (2000).
- [14] Yu. Ts. Oganessian *et al.*, Phys. Rev. Lett. **83**, 3154 (1999); Eur. Phys. J. A **5**, 63 (1999); Nature **400**, 242 (1999).
- [15] Yu. Ts. Oganessian *et al.*, Phys. Rev. C 69, 021601(R) (2004);
 69, 054607 (2004); 70, 064609 (2004).

- [16] Yu. Ts. Oganessian *et al.*, Phys. Rev. C **71**, 029902(E) (2005);
 72, 034611 (2005); **74**, 044602 (2006).
- [17] S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007).
- [18] Yu. Ts. Oganessian et al., Phys. Rev. C 76, 011601(R) (2007).
- [19] K. Morita et al., J. Phys. Soc. Jpn. 76, 045001 (2007).
- [20] M. M. Sharma, A. R. Farhan, and G. Münzenberg, Phys. Rev. C 71, 054310 (2005).
- [21] D. N. Basu, J. Phys. G: Nucl. Part. Phys. 30, B35 (2004).
- [22] P. R. Chowdhury, D. N. Basu, and C. Samanta, Phys. Rev. C 75, 047306 (2007).
- [23] H. F. Zhang, W. Zuo, J. Q. Li, and G. Royer, Phys. Rev. C 74, 017304 (2006).
- [24] H. F. Zhang and G. Royer, Phys. Rev. C 76, 047304 (2007).
- [25] J. C. Pei, F. R. Xu, Z. J. Lin, and E. G. Zhao, Phys. Rev. C 76, 044326 (2007).
- [26] R. Moustabchir and G. Royer, Nucl. Phys. A683, 266 (2001).
- [27] A. N. Andreyev et al., Eur. Phys. J. A 6, 381 (1999).
- [28] F. Garcia, O. Rodriguez, M. Gonçalves, S. B. Duarte, O. A. P. Tavares, and F. Guzman, J. Phys. G: Nucl. Part. Phys. 26, 755 (2000).
- [29] H. Mahmud et al., Phys. Rev. C 62, 057303 (2000).
- [30] H. Kettunen et al., Phys. Rev. C 63, 044315 (2001).
- [31] D. Seweryniak et al., Phys. Rev. C 73, 061301(R) (2006).
- [32] A. P. Leppänen et al., Phys. Rev. C 75, 054307 (2007).
- [33] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A729, 337 (2003).