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New simple form for a phenomenological nuclear potential
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A simple form for phenomenological nuclear potential is introduced as an alternative to the popular Woods-
Saxon (WS) form. In contrast to the WS form the new form becomes exactly zero at a finite distance and all
derivatives of this form are continuous everywhere. The sequence of the single-particle levels of a WS potential
with realistic parameters can be reproduced reasonably well with the new potential in which even the positions
of the broad resonances are free from uncertainties.
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Considerable interest has been focused recently on the
resonant states because the radioactive nuclear beam facilities
produce slightly bound and unbound nuclei. A new theoretical
approach for an efficient description of these nuclei in terms of
unbound single-particle levels has been developed. The shell
model has been generalized for the description of the unbound
levels using complex energy resonant states (Gamow states)
in the shell model basis [1,2]. The single-particle potential
used in these calculations has a Woods-Saxon form because
self-consistent calculations show that the mean nuclear field
felt by a single nucleon can be approximated reasonably well
by a phenomenological Woods-Saxon form,
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complemented by a spin-orbit term having a derivative WS
shape,
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Because of the simplicity of the WS shape this form is used
almost exclusively not only in nuclear structure calculations
but also in the description of scattering.

The WS form, however, has an infinite range that is in
contradiction with the short range property of the nuclear
forces. To cure this false property a truncated version is used
in which the WS shape is cut to zero at a certain finite Rmax

distance, where the magnitude of the potential is reason-
ably small. In practical calculations only the truncated WS
form

V WS
tr (r) =

{
V WS(r), if r < Rmax

0, if r � Rmax
(3)

is used. (Because of the sharp truncation, dV WS
tr

dr
(r) does not

exists at r = Rmax.) The same truncation is introduced for
the spin-orbit term [V tr

so(r)]; therefore, the phenomenological
nuclear potential is zero beyond Rmax. If we chose a matching
radius Rm � Rmax we can match the solutions of the radial
Schrödinger equation with the truncated WS potential to the
asymptotic solution (spherical Bessel and Hankel functions)
and we can calculate a number of poles for the S matrix on
the complex energy (E) or wave number (k) planes. Physical

resonances belong to poles of the S matrix lying close to the
real axes. In a given partial wave we have at most one narrow
resonance and a number of broad ones. It is well known
that the position of the narrow resonances depends weakly
on the truncation radius Rmax [3]. However, the distribution
of the broad resonant poles depends strongly on the value
of Rmax, and this represent another inconvenient feature of
the truncated WS potential. In Fig. 1 we show examples
for this dependence. While the position of the physical
1h11/2 resonance at E = (10.49,−0.81) MeV, k = (0.705,

−0.027) fm−1 is practically independent of the value of Rmax

used, the positions of the other resonances strongly depend
on the Rmax value. These broad resonances proved to be
very useful in the pole expansion of the Green function and
the response function in an approximation of the continuum
RPA [4].

The origin of the Rmax dependence can be explained if
we calculate the energy shift of a pole perturbatively. Let
us denote the energy of the nth pole and the corresponding
normalized radial wave function by εn and ui(r, kn), respec-
tively, for the potential V WS

tr with truncation radius Rmax.
(For the normalization of the pole solutions we used the
generalized scalar product of Berggren [5] and the complex
rotation introduced in Ref. [6].) Let us increase the truncation
radius Rmax by �R. The corresponding change of the pole
energy is

�εn =
∫ Rmax+�R

Rmax

V WS(r)u2
i (r, kn)dr �= 0. (4)

Because the WS potential is not zero in the region of the
integration, the energy change �εn depends on the behavior
of the radial wave function ui(r, kn) in the integration region.
For well bound states and for narrow resonances ui(r, kn) is
small in that region and the energy shift is negligible. For broad
resonances, however, the radial wave functions could be large
in the integration region and this might result in large �εn

energy shifts (see Fig. 1).
Because in the majority of the publications the Rmax values

are not specified, the positions of the broad resonances might
be quite uncertain.

Our aim in this Brief Report is to find a potential that
becomes zero exactly at a finite ρ distance and has continuous
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FIG. 1. Positions of the h11/2 resonance poles on the complex k

plane calculated for a truncated Woods-Saxon potential with V0 =
50 MeV, R = 4.6 fm, and a = 0.65 fm with Rmax = 15 fm (plus) and
Rmax = 12 fm (star).

derivatives everywhere (even at r = ρ). For such a potential
the pole energy will evidently not depend on the matching
radius Rm if the matching radius Rm > ρ.

A good candidate for the finite range form is the following:

fρ(r) =
{

−e
r2

r2−ρ2 , if r < ρ

0, if r � ρ,
(5)

because

lim
r→ρ

fρ(r) = 0. (6)

A nice feature of this form is that its derivatives of all orders
disappear at r = ρ.

dnfρ(r)

drn

∣∣∣∣
r=ρ

= 0 n = 1, 2, . . . . (7)

Therefore, the derivatives are continuous even at the r = ρ

point.
A simple potential form of this type,

V (r) = c0fρ(r), (8)

is considerably different from the WS shape. Because the
truncated WS potential in Eq. (3) has four parameters: V0, R, a,
and Rmax we try to approximate it by a new finite range
form that also has four free parameters. The shape of the new
potential has to be improved in the surface region; therefore,
we add a term that has its maximum at the surface. The first
derivative of the previous form,

f ′
ρ(r) = 2rρ2

(r2 − ρ2)2
e

r2

r2−ρ2 , (9)

has this behavior. Therefore, our new potential will be a
combination of these terms with adjustable strengths c0 and c1

and radii ρ0 and ρ1:

V (r) = c0fρ0 (r) + c1f
′
ρ1

(r) ≡ V (r, c0, c1, ρ0, ρ1). (10)
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FIG. 2. Comparison of the central part of the Woods-Saxon
potential with V0 = 50 MeV, R = 4.6 fm, and a = 0.65 fm with
the new potential with parameters ρ0 = 7.1 fm, ρ1 = 4.78 fm, c0 =
49.8 MeV, and c1 = −14.59 MeV.

To get the best fit of the new potential to the central WS term
we minimize the integral

�(ρ0, ρ1, c0, c1) =
∫ ρ>

0

[
V (r, c0, c1, ρ0, ρ1) − V WS

tr (r)
]2

dr

(11)

as function of the new parameters, where ρ> = max{ρ0, ρ1}.
The parameters of the WS potential are kept fixed during the
minimization procedure. We try to reproduce the WS potential
of the A = 50 nucleus with typical parameters: V0 = 50 MeV,
r0 = 1.25 fm, a = 0.65 fm, and Rmax = 15 fm. To find the
absolute minimum of the multivariable function � we used
first the downhill simplex method [7] with several starting
simplexes chosen randomly. Later we turned to the use of
Powell’s method [8] for finding the position of the minimum of
the integral in Eq. (11). The best fit value �min = 6.8 belongs
to the parameters ρ0 = 7.1 fm, ρ1 = 4.78 fm, c0 = 49.8 MeV,
and c1 = −14.59 MeV.

One can see in Fig. 2 that the new finite range potential
form in Eq. (10) with these parameters reproduces the general
features of the central WS shape reasonably well. The largest
difference occurs between the two potential forms in the
external region. Here the new potential becomes zero at
ρ0 = 7.1 fm, while the truncated WS term cut to zero only
at 15 fm. We try to find some relation between the parameters
of the new and the WS potentials. In this case c0 ≈ V0 and the
radius ρ1 = 4.78 fm is a little larger than the radius of the WS
well, 1.25A1/3 = 4.6 fm.

To check if these relations are typical we varied the mass
number A in the radius of the Woods-Saxon potential, R =
1.25A1/3, and calculated the best fit values of the parameters of
the new potential. We noticed that indeed c0 ≈ V0 and ρ1/A

1/3

was almost constant with a value that is a bit larger than r0.
Therefore, ρ1 resembles the R radius of the WS potential. The
difference of the radii plays the same role as the diffuseness of
the WS form, because

ρ0 − ρ1 ≈ 4a, (12)

with the exception of very light nuclei, A < 28.
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TABLE I. Energies of the single-particle states corresponding to
the WS and the new finite range potentials in Eqs. (10) and (13) for
neutrons outside the A = 50 core. Energies are in MeV.

State Energy (WS) Energy (New)

1s1/2 −39.14 −38.96
1p3/2 −30.15 −30.13
1p1/2 −28.93 −28.50
1d5/2 −20.26 −20.53
1d3/2 −17.67 −17.16
2s1/2 −17.15 −17.29
1f7/2 −9.81 −10.42
1f5/2 −5.72 −5.05
2p3/2 −6.78 −6.78
2p1/2 −5.50 −5.03
2d5/2 (1.05, −0.23) (1.29, −0.29)
2d3/2 (1.93, −0.92) (2.85, −1.61)
1g9/2 (0.72, −8.8 × 10−3) (−0.10,0.0)
1g7/2 (5.58, −0.30) (6.58, −0.40)

An important comparison of the two phenomenological
potentials can be done if we calculate the single-particle
spectra they produce.

To have a reasonable shell structure we have to fix the
strength and the shape of the spin-orbit potential. We calculated
the bound and resonant single-particle energies using the spin-
orbit strength Vso = 10 MeV in Eq. (2). The single-particle
energy values were calculated by using the computer code
GAMOW [9]. The values we received for the WS potential are
shown in the second column of Table I.

For the new finite range potential we used a spin-orbit
form that is 1/r times the derivative of the central potential of
Eq. (10):

V new
so (r) = − cso

rc0
2(�l · �s)

dV (r)

dr

= −cso

r
2(�l · �s)

[
f ′

ρ0
(r) + c1

c0
fρ1 (r)

2ρ2
1

(
3r4 − ρ4

1

)
(
r2 − ρ2

1

)4

]
.

(13)

In the third column of Table I we present the bound and
resonant state energies calculated by using the new central
potential in Eq. (10) and the new spin-orbit term in Eq. (13)
with cso = 0.267c0. This strength of the new spin-orbit term
belongs to the minimum of the sum of squared differences
between the bound state energies listed in the second and the
third columns in Table I.

One can see that the overall shell structure of the spectrum
produced by the WS potential is reproduced reasonably well
by the new potential. The largest differences are for the 1f5/2

(0.67 MeV) and 1f7/2 (0.61 MeV) bound orbits. For the
resonant orbits the differences do not exceed 1 MeV.

We have to check if the spectrum of the WS potential
can be reproduced well by the new potential form for heavy
nuclei. Therefore, we calculated single-particle neutron states
outside the 208Pb core. The parameters of the truncated WS
potential have been taken from Ref. [10] (V0 = 44.4 MeV, r0 =
1.27 fm, a = 0.7 fm, Rmax = 15 fm, Vso = 16.5 MeV). This

TABLE II. Energies of the single-particle states lying above
the Fermi level corresponding to the WS and the new finite range
potentials in Eqs. (10) and (13) for neutrons outside the A = 208
core. Energies are in MeV.

State Energy (WS) Energy (New)

2g9/2 −3.93 −3.92
1i11/2 −2.80 −2.81
3d5/2 −2.07 −2.00
1j15/2 −1.88 −1.97
4s1/2 −1.44 −1.31
3d3/2 −0.78 −0.63
2g7/2 −0.77 −0.50
3f7/2 (2.10, −0.87) (2.33, −0.95)
2h11/2 (2.25, −0.026) (2.41, −3.1 × 10−2)
3f5/2 (2.70, −2.32) (3.45, −2.59)
1k17/2 (5.03, −1.26 × 10−3) (4.87, −9 × 10−4)
1j13/2 (5.41, −9.4 × 10−3) (5.36, −8 × 10−3)

WS potential was fitted with the new finite range form in
Eq. (10). The central potential was reproduced reasonably well
and the strength of the new spin-orbit term cso = 0.38c0 gave
the best fit to all bound state energies with the WS case.

The single-particle energies (lying above the Fermi level)
calculated with the WS potential and the new potentials are
compared in Table II. The particle numbers,

n(E) =
∑

i:εi<E

(2ji + 1), (14)

with the bound state energies calculated for the new and for
the WS potentials are displayed in Fig. 3. One can see that the
single-particle energies calculated by using the WS potential
and the finite range potentials agree well.

In summary in this Brief Report we introduced a new
phenomenological form for the nuclear potential that has
continuous derivatives everywhere and has a finite range.
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FIG. 3. Comparison of the particle numbers in Eq. (14) calculated
for neutrons outside the A = 208 core for the new potential in
Eq. (10) with parameters ρ0 = 10.96 fm, ρ1 = 8.33 fm, c0 =
43.66 MeV, and c1 = −44.27 MeV and spin-orbit strengths cso =
0.38c0 to the particle number of the Woods-Saxon potential with
parameters in Ref. [10].
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We showed that a typical WS form can be approximated
reasonably well with the new form in Eq. (10). From the new
parameters c0 resembles V0 and ρ1 resembles R. The range
ρ0 of the new potential takes over the role of the cutoff radius
of the WS potential, although its value is much smaller than
Rmax. The difference ρ0 − ρ1 correlates with the a diffuseness
of the WS form. If we complement the new potential with a
spin-orbit term in Eq. (13) the single-particle spectra of the
WS and the new forms are very similar even in the resonant
region. For a matching distance Rm � ρ0 the pole position is
independent of Rm. If we use the new form the range of the

nuclear interaction is defined unambiguously in contrast to the
WS form.

Therefore, we strongly suggest using the form in Eq. (10)
as a new finite range potential instead of the truncated Woods-
Saxon form. A systematic study for determining the finite
range potential parameters equivalent to the most frequently
used potential families with the WS form is in progress.
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