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Coupling between α-condensed states and normal cluster states
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We have studied the α-condensed states of 16O and 20Ne based on a microscopic α-cluster model. This was
performed by introducing a Monte Carlo technique for the description of the THSR (Tohsaki Horiuchi Schuck
Röpke) wave function, which is called the “virtual THSR” wave function. Earlier microscopic calculations
pointed out the possibility of the existence of four-α-cluster condensed states. Here, in addition to studying the
four-α case, we also studied the case of five-α particles, for which the states are shown to be stable around the
threshold energy even after taking into account the coupling effect between normal cluster states with 16O+α

configurations.
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In the last couple of years, α condensation in atomic nuclei
has attracted increased interest [1–6]. Although the effect of
antisymmetrization changes the intrinsic wave functions, it is
basically considered that all the α clusters in an α-condensed
state occupy the same 0s orbital, which has a spatially extended
distribution [2]. This situation is well expressed by introducing
the so-called THSR (Tohsaki Horiuchi Schuck Röpke) wave
function, in which the oscillator parameter is large, which
is completely different from the normal 0s orbital for each
nucleon. The most plausible candidates for α-condensed states
are the ground state of 8Be (2α) and the second 0+ state
of 12C∗(3α) at Ex = 7.65 MeV around the Nα threshold
energies. The squared overlap between the wave function of a
microscopic cluster model and the THSR wave function has
been found to be more than 90% for 12C [3,4], which suggests
that the single THSR wave function is a good approximation
for the description of the condensed state. Furthermore, a
candidate for the 4α-condensed state around the threshold
energy in 16O has been studied from both theoretical and
experimental sides [1,3,7].

Recently, the research into α-condensed states moved onto
the second stage. For instance, the possibility of α-condensed
states around a core in heavier nuclei has been suggested [8–
11]. The coherent emission of α-condensed states from the
compound nucleus in heavier nuclei has been reported [8],
which leads us to the hypothesis that α-condensed states can be
formed not only in 8Be and 12C but also in heavier nuclei with
some core. Using the 28Si+24Mg reaction, the compound states
of 52Fe have been populated, and the 8Be(0+

1 ) and 12C(0+
2 )

emissions from these states have been observed, which are
much enhanced compared to the sequential α emission. From
a statistical model point of view, it is natural to consider that
the emitted second 0+ state of 12C (or the ground state of
8Be) is formed inside the Coulomb barrier of the compound
nucleus. The enhancement of the emission of the condensed
states could be due to the lowering of the effective Coulomb
barrier for the condensed states [9], since the kinetic energy
of the emitted 12C in coincidence with γ emission has been

observed to be much smaller than the energy sum of three α’s
in the sequential 3α emission.

To study the possibility of the α-condensed states of heavier
nuclei from the theoretical side, we have introduced a Monte
Carlo technique for the description of the THSR wave function,
which is called the “virtual THSR” wave function [12]. The
calculations have been performed for 24Mg and 28Si, and it
has been found that α-condensed states are predicted around
the 16O core at the 16O+Nα threshold energy. In this brief
report, as the next step using the virtual THSR wave function,
we show the possibility of the 4α- and 5α-condensed states
around the Nα threshold energies. Also, we have calculated the
coupling between the normal cluster states and the condensed
states for 20Ne and shown the stability of the condensed state.
Until now, the low-lying states of 20Ne have been known to be
well described by models with the 16O+α configurations [13],
and the coupling effect between the α-condensed states and
normal cluster states are taken into account by diagonalizing
the Hamiltonian matrix.

The original THSR wave function for the α-condensed state
has the form

� =
∫

d �R1d �R2 · · · d �Rn

AG1( �R1)G2( �R2)G3( �R3) · · ·Gn( �Rn)

× exp
[ − ( �R2

1 + �R2
2 + �R2

3 · · · �R2
n

)/
σ 2]

= A
n∏

i=1

∫
d �RiGi( �Ri) exp

[− �R2
i

/
σ 2

]
, (1)

where A,Gi( �Ri), and σ are the antisymmetrizer, the wave
function for the ith α cluster centered at �Ri , and the oscillator
parameter of the α condensation, respectively. The four
nucleons (proton spin-up, proton spin-down, neutron spin-up,
and neutron spin-down) in the ith α cluster share the common
spatial part of the wave function (exp[−ν(�r − �Ri)2]) with a
Gaussian form.
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To simplify this wave function, we introduce the virtual
THSR wave function in the following way [12]:

� =
m∑

k=1

P πP J
MK�k, (2)

�k = [AG1( �R1)G2( �R2)G3( �R3) · · · Gn( �Rn)]k. (3)

Here, the integral over the Gaussian center parameters { �Ri}
in the original THSR wave function [in Eq. (1)] is replaced
by the sum of many Slater determinants. The Gaussian center
parameters { �Ri} are randomly generated by the weight function
W with a Gaussian shape:

W ( �Ri) ∝ exp
[− �R2

i

/
σ 2

]
. (4)

With increasing ensemble number, the distribution of { �Ri}
approaches a Gaussian with σ width parameter. Thus, it
can be considered that the integration in the original THSR
wave function [see Eq. (1)] is performed by using a Monte
Carlo technique for the virtual THSR wave function, and the
wave function agrees with the original THSR wave function
when the number of Slater determinants [m in Eq. (2)]
increases.

The projection onto good parity (P π ) and angular momen-
tum (P J

MK ) is performed numerically. Here, π is positive parity
and J = M = K = 0. If we have a sufficiently large number
of basis states, the wave function approaches the eigenstate
of angular momentum and parity (0+), and these projections
are not necessary. Therefore, the mentioned projections are
needed only for the purpose of reducing the number of basis
states. The number of mesh points for the Euler angle integral
is 163 = 4096.

In addition to the α-condensed states, the normal cluster
states in 20Ne, which are known to describe well the properties
of the low-lying states, have been taken into account. We
introduce an 16O+α model for 20Ne where 16O is described as
a tetrahedron configuration of four α clusters with a relative
distance of 1 fm, and the relative distance between the last α

cluster and 16O is taken from 1 to 5 fm with a 1 fm step (five
basis states).

In this case the Hamiltonian operator Ĥ has the form

Ĥ =
A∑

i=1

t̂i − T̂c.m. +
A∑

i>j

v̂ij , (5)

where t̂i is the kinetic energy of ith nucleon, and the center-
of-mass kinetic energy T̂c.m. is exactly removed. Here, the
two-body interaction v̂ij includes the central part and the
Coulomb part. We use the following Volkov No. 2 effective
N -N potential [14]:

V (r) = (W − MP σP τ )
∑
k=1,2

Vk exp
(− r2/c2

k

)
, (6)

where W = 1 − M (M is the Majorana exchange parameter).
It is known that although M ∼ 0.6 reproduces the α-α
scattering phase shift, larger M values are needed for the
structure calculation beyond 12C, and here M is chosen to
be 0.63.
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FIG. 1. Energy convergence of 16O (4α) as a function of the
number of basis states [m in Eq. (2)] measured from the 4α threshold.
The solid, dotted, and dashed lines correspond to the α-condensation
parameter [σ in Eq. (4)] equal to 2, 3, and 4 fm, respectively. The
dotted line at 0 MeV parallel to the horizontal axis shows the threshold
energy of 4α.

The application of the virtual THSR wave function for
two-α(8Be) and three-α (12C) cases was shown in our previous
article [12], and the virtual THSR wave function with σ = 3 ∼
4 fm is found to give a reasonable root-mean-square radius
for the second 0+ of 12C compared with that obtained by
other approaches. Here, the results for the four- and five-α
cases are presented. The energy convergence of 16O (4α) as
a function of the number of basis states measured from the
4α threshold is shown in Fig. 1. Here, the size parameter of
the Gaussian wave function for each nucleon is set to ν =
0.23 fm−2. All lines converge at the 4α threshold energy
and the α-condensed nature is well expressed by the present
method. The possibility of the 4α-condensed state was
originally pointed out by the α-condensation models [1,3].
Recent experimental results suggest a candidate for the 4α-
condensed state at Ex = 13.6 ± 0.2 MeV with a width of 0.6 ±
0.2 MeV [7] just below the 4α threshold (Ex = 14.44 MeV).

Next the study is further extended to the 5α case. The
energy convergence of 20Ne (5α) as a function of the number
of basis states measured from the 5α threshold is shown in
Fig. 2. Here, the size parameter of the Gaussian wave function
for each nucleon is set to ν = 0.18 fm−2. The solid and
dotted lines converge at the 5α threshold energy; however,
a large number of basis states are needed in the case of
σ = 4 fm.

The 0+ energy levels of 20Ne are shown in Fig. 3. The
levels in (a) are the results of the 16O+α model space (five
basis states) and those in (b) are after adding the virtual THSR
wave functions with three different condensation parameters
(σ = 2, 3, 4 fm). It is clearly seen that one new state (the
fourth state) appears around the 5α threshold after adding the
α-condensed basis states. The gaslike nature can be confirmed
by calculating the large rms radius of the fourth 0+ state
(3.5 fm). Since the state is below the 5α threshold (dotted
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FIG. 2. Energy convergence of 20Ne (5α) as a function of m in
Eq. (2) measured from the 5α threshold. The solid, dotted, and dashed
lines correspond to the α-condensation parameter [σ in Eq. (4)] equal
to 2, 3, and 4 fm, respectively. The dotted line at 0 MeV shows the
threshold energy of 5α.

line in Fig. 3), the solution is not the continuum state of five α

clusters. Also, although the state is above the 16O+α threshold,
the state is missing in Fig. 3(a) within the 16O+α model
space, and it appears only after adding the virtual THSR wave
function in Fig. 3(b). The virtual THSR wave function does not
contain the asymptotic wave function of 16O+α, since all the
α clusters are treated democratically, thus the solution is not
the continuum wave function of 16O+α. The discussion above
suggests the possibility that the state might have been observed
as a resonance state. Of course, it would be further necessary to
incorporate the 12C+α+α model space when making a precise
comparison with experiments. However, from the present
analysis, we can conclude that the α-condensed state survives
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FIG. 3. 0+ energy levels of 20Ne measured from the 5α threshold.
(a) 16O+α model space. (b) Results after adding the α-condensed
states with σ = 2, 3, 4 fm.

TABLE I. Squared overlap between the wave
function for each 0+ state of 20Ne [Fig. 2(b)] and
the virtual THSR wave function with σ = 2, 3,

4 fm.

State σ = 2 fm σ = 3 fm σ = 4 fm

0+
1 0.19 0.03 0.00

0+
2 0.02 0.01 0.00

0+
3 0.09 0.04 0.01

0+
4 0.68 0.51 0.13

0+
5 0.00 0.04 0.03

after imposing the coupling condition with the most important
cluster configuration of 16O+α.

The squared overlap between the wave function for each
0+ state of 20Ne [Fig. 3(b)] and the virtual THSR wave
function with σ = 2, 3, 4 fm is shown in Table I. We can
confirm that the fourth 0+ state has a large component of
the condensed state with a relatively large σ value (0.51 with
σ = 3 fm). Also, the ground state has a squared overlap with
the virtual THSR wave function when the σ value gets small
(0.19 with σ = 2 fm). This is because the limit of σ = 0
corresponds to the SU(3) limit of the wave function, where all
the Gaussian center parameters of the five α clusters approach
the origin and the wave function corresponds to the lowest
configuration of the shell model due to the antisymmetrization
effect.

It is basically possible to study the coupling effect between
the virtual THSR wave function and normal cluster states
of 16O as well. However, using the traditional effective
interactions for the cluster models, it has been known to be
difficult to reproduce simultaneously the binding energies of
12C and 16O [15]. Because of this problem, the threshold
energies of 12C+α (experimentally Ex = 7.16 MeV) and four
α’s (experimentally Ex = 14.44 MeV) are much closer than
experimental ones, thus a mixing of these two components
occurs.

We have studied the coupling effect between the α-
condensed states and normal cluster states of 16O+α in 20Ne
based on a microscopic α-cluster model. This is performed by
introducing a Monte Carlo technique for the description of the
THSR wave function, which is called the virtual THSR wave
function. It is shown that the α-condensed states appear around
the 5α threshold energy. The possibility of a 4α-condensed
state has been already pointed out by the α-condensation
models; however, now the study has been extended to the 5α

case, and the state is shown to be stable even after imposing
the coupling condition with the normal cluster states. As a next
step, coupling with the shell model states will be taken into
account, since the cluster-shell competition has been known
to be important, especially in the ground state of 20Ne [16].
Furthermore, the analysis of the 6α and 7α cases based on the
same approach is ongoing.
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Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 60
(1980).

[14] A. B. Volkov, Nucl. Phys. 74, 33 (1965).
[15] N. Itagaki, A. Ohnishi, and K. Katō, Prog. Theor. Phys. 94, 1019
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