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Phase diagram of nuclear “pasta” and its uncertainties in supernova cores
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We examine the model dependence of the phase diagram of inhomogeneous nulcear matter in supernova
cores using the quantum molecular dynamics (QMD). Inhomogeneous matter includes crystallized matter with
nonspherical nuclei—“pasta” phases—and the liquid-gas phase-separating nuclear matter. Major differences
between the phase diagrams of the QMD models can be explained by the energy of pure neutron matter at
low densities and the saturation density of asymmetric nuclear matter. We show the density dependence of the
symmetry energy is also useful to understand uncertainties of the phase diagram. We point out that, for typical
nuclear models, the mass fraction of the pasta phases in the later stage of the collapsing cores is higher than
10–20%.
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I. INTRODUCTION

Terrestrial matter basically consists of spherical nuclei.
However, such an ordinary picture, that is, “nuclei are
spherical,” might not be true in collapsing supernova cores
just before bounce and in the deepest region of inner crusts of
neutron stars. In dense matter close to the normal nuclear
density ρ0 � 0.16 fm−3, nuclei would adopt nonspherical
shapes, including rod and slab. Phases with these exotic nuclei
are called “pasta” phases [1,2].

The pasta phases attract the attention of many researchers in
the fields of nuclear physics [3] and astrophysics [4–6]. Pasta
phases have important astrophysical effects on, e.g., neutrino
opacity in supernova cores [7,8], neutrino emissivity in neutron
star cooling [9–12], etc. Moreover, it has been shown in our
previous work [8] that the pasta phases would occupy 10–20%
of the mass of collapsing stellar core. In such a case, the pasta
phases could have a remarkable impact on neutrino transport
in the core and hence success of supernova explosion.

Equilibrium states of the pasta phases have been in-
vestigated in many earlier works (e.g., Refs. [9,13–19]).
These works have confirmed that, with increasing density,
nuclear shape basically changes in the sequence sphere, rod,
slab, rodlike bubbles, spherical bubbles, and, finally, uniform
nuclear matter (in some nuclear models, however, all of the
above pasta phases do not appear [9,16–18,20,21]). Although
these earlier works have studied the phase diagram of the
pasta phases using various nuclear models, the following two
points are worth consideration. First, in these works (except
for Ref. [13]) authors consider the above-mentioned specific
nuclear structures and determine the equilibrium state by
comparing the free energy among them. It is hardly possible
to know in advance whether these assumed phases include the
true equilibrium state or there are other more stable states.
Thus, we have to examine how the phase diagram is changed

by relaxing this assumption. Second, in collapsing supernova
cores, where the pasta phases would appear, temperature
reaches typically a few MeV. Thermal fluctuations on the
nucleon distribution are not completely negligible considering
that the nucleon Fermi energy and the nuclear binding energy
are from several to tens MeV. However, thermal fluctuations
cannot be properly incorporated by the framework employed
in the earlier works such as a liquid-drop model and the
Thomas-Fermi approximation.

To overcome the above problems, we use quantum molec-
ular dynamics (QMD) [22–25]. In these works, we have
confirmed the pasta phases appear at zero and nonzero
temperatures and the sequence of nuclear structures with
increasing density is the same as that in the earlier works.
There we have also obtained spongelike “intermediate” phases.
However, we have studied the pasta phases using only one
specific nuclear force. We note that uncertainties of nuclear
force, especially those of the surface energy and the symmetry
energy, have large effects on the phase diagram at subnuclear
densities [16–18,26]. Thus, in the present work, we shall reveal
the influence on the phase diagram by uncertainties of nuclear
force in the framework of QMD.

In the followings, we set the Boltzmann constant kB = 1.

II. FRAMEWORK OF QUANTUM MOLECULAR
DYNAMICS

A. Models

In our previous studies [22–24,27], we used nuclear force
developed by Maruyama et al. (Model 1) [28] with medium
equation-of-state (EOS) parameter set. In the present work,
we also use another model by Chikazumi et al. (Model 2)
[29] to investigate the model dependence of phase diagram.
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The Hamiltonian of both the models is written as,

H = K + VPauli + VSkyrme + Vsym

+Vsurface + VMD + VCoulomb, (1)

where K is the kinetic energy; VPauli is the Pauli potential,
which is introduced to reproduce effects of the Pauli exclusion
principle; VSkyrme is the Skyrme-type interactions; Vsym is the
symmetry energy; Vsurface is the potential dependent on the
density gradient; VMD is the momentum-dependent potential
in the form of the exchange term of the Yukawa interaction;
and VCoulomb is the Coulomb potential. Each term is expressed
as follows [30]:

K =
∑

i

P2
i

2mi

, (2)

VPauli = 1

2
CP

(
h̄

q0p0

) ∑
i,j (�=i)

exp

[
− (Ri − Rj )2

2q2
0

− (Pi − Pj )2

2p2
0

]
δcicj

δσiσj
, (3)

VSkyrme = α

2ρ0

∑
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0
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×
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Vsym = Cs

2ρ0
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(1 − 2|ci − cj |)ρij , (5)
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dr∇ρi(r) · ∇ρj (r), (6)

VMD = C(1)
ex

2ρ0
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1 +
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]2 ρij + C(2)
ex
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×
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1 +
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h̄µ2
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VCoulomb = e2

2

∑
i,j (�=i)

cicj

∫ ∫
drdr′ 1

|r − r′|ρi(r)ρj (r′), (8)

where Ri and Pi are the centers of position and momentum of
the wave packet of ith nucleon and mi, σi , and ci (ci = 1 for
protons and ci = 0 for neutrons) denote the mass, the spin, and
the electric charge (in units of e) of ith nucleon. Here ρij means
the overlap between the densities of ith and j th nucleons,

ρij =
∫

drρi(r)ρj (r), (9)

and the single-nucleon densities ρi(r) and ρ̃i(r) are given by

ρi(r) = 1(
2πL2

w

)3/2 exp

[
− (r − Ri)2

2L2
w

]
, (10)

ρ̃i(r) = 1(
2πL̃2

w

)3/2 exp

[
− (r − Ri)2

2L̃2
w

]
, (11)

TABLE I. Parameter sets for model 1 [28]
and model 2 [29].

Model 1 Model 2

CP (MeV) 207 115
p0 (MeV/c) 120 120
q0 (fm) 1.644 2.5
α (MeV) −92.86 −121.9
β (MeV) 169.28 197.3
τ 1.33333 1.33333
Cs (MeV) 25.0 25.0
VSF (MeV) 0 20.68

C(1)
ex (MeV) −258.54 −258.54

C(2)
ex (MeV) 375.6 375.6

µ1 (fm−1) 2.35 2.35
µ2 (fm−1) 0.4 0.4

L2
w (fm2) 2.1 1.95

ρ0 (fm−3) 0.165 0.168

with the normal width Lw and the modified width L̃w of the
wave packet,

L̃2
w = (1 + τ )1/τ

2
L2

w. (12)

(The squared widths L2
w and L̃2

w correspond to L and L̃,
respectively, in the notation of Refs. [28,29].)

Parameters for the models are shown in Table I. Note
that VSF = 0 for model 1, i.e., model 1 does not include
Vsurface. Model parameters q0, p0, and CP in the Pauli potential
are determined by fitting the kinetic energy of free Fermi
gas at zero temperature. The other model parameters are
determined to reproduce the saturation properties of symmetric
nuclear matter [i.e., the saturation density (�0.16 fm−3), sat-
uration energy (−16 MeV per baryon), and incompressibility
(280 MeV)], and the binding energy and rms radius of the
ground state of stable nuclei. Especially these properties of
heavy nuclei are better reproduced by model 2 than by model 1
due to the term Vsurface [31]. Note that Vsurface is just a potential
depending on the density gradient and is different from the
surface energy. The surface energy comes from an energy loss
due to the deficiency of nucleons interacting with each other
in the region of the nuclear surface.

B. Equations of motion

We show equations of motion of QMD, which we employ
to simulate the equilibrium states at zero and nonzero tempera-
tures. The Hamiltonian form of the QMD equations of motion
is written as

Ṙi = ∂H
∂Pi

,

(13)

Ṗi = − ∂H
∂Ri

.

We cool down the system using the following equations of
motion in which we introduce extra friction terms to the above
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equations [28]:

Ṙi = ∂H
∂Pi

− ξR

∂H
∂Ri

,

(14)

Ṗi = − ∂H
∂Ri

− ξP

∂H
∂Pi

.

Here, the friction coefficients ξR and ξP are positive definite,
which determine the relaxation time scale and lead to a
monotonic decrease of the total energy.

Instead of the normal kinetic temperature, which loses its
physical meaning for the system with momentum-dependent
potentials, we use effective temperature Teff proposed by
Ref. [29]:

3

2
Teff = 1

N
∑

i

1

2
Pi · dRi

dt
, (15)

where N is the total number of particles. If we perform
Metropolis Monte Carlo simulations with the setting temper-
ature Tset, the long-time average of the effective temperature
coincides with Tset quite well [24]. This shows Teff is consistent
with the temperature in the Boltzmann statistics.

To obtain the equilibrium state at finite temperatures, we use
the Nosé-Hoover thermostat [32–34] modified for momentum-
dependent potentials [24,35]. The Hamiltonian of the system
with this thermostat is

HNose =
∑

i

P2
i

2mi

+ U({Ri , Pi}) + sp2
s

2Q
+ g

ln s

β
. (16)

Here U is the momentum-dependent potential, s is the
additional dynamical variable for time scaling, ps is the
momentum conjugate to s,Q is the thermal inertial parameter
corresponding to a coupling constant between the system and
the thermostat, g is a parameter to be determined as 3N by the
condition for generating the canonical ensemble in the classical
molecular dynamic simulations, and β is the reciprocal of Tset

of the thermostat. Then equations of motion are

dRi

dt
= Pi

mi

+ ∂U
∂Pi

,

dPi

dt
= − ∂U

∂Ri

− ξPi ,

(17)
1

s

ds

dt
= ξ,

dξ

dt
= 1

Q

[∑
i

(
P2

i

mi

+ Pi · ∂U
∂Pi

)
− g

β

]
,

with

ξ ≡ sps

Q
, (18)

where ξ means the thermodynamic friction coefficient. During
the time evolution described by the above equations, HNose is
conserved and Teff fluctuates around Tset.

III. PURE NEUTRON MATTER AND STABLE NUCLEI

To understand the properties of our QMD models, we first
calculate the energy and the proton chemical potential of pure
neutron matter at zero temperature. In addition, we investigate
the surface diffuseness and the surface tension of stable nuclei.
These are one of the key uncertainties that affects the phase
diagram at subnuclear densities [16–18,26]. To obtain pure
neutron matter at zero temperature, we use the frictional
relaxation method [Eq. (14)] with the cooling time scale of
O(103) fm/c. We calculate the proton chemical potential at
zero temperature from the change of the energy by inserting a
proton into the pure neutron matter. Here we relax the position
and momentum of the proton with fixing those of neutrons (for
more details about the procedures, see Ref. [23]). To obtain
the ground state of finite nuclei, we use the conjugate gradient
method [36].

Energy En per baryon of pure neutron matter is shown in
the left panel of Fig. 1. At subnuclear densities, En of both the
QMD models exhibits reasonable values compared with those
of other nuclear models. At lower densities of ρn <∼ 0.1 fm−3,
model 1 gives relatively small energy but close to SkM, which
gives the lowest energy among the other models. At densities
below 0.12 fm−3, the energy of pure neutron matter for model 2
is larger than that for model 1. This tends to prevent neutrons
from dripping out of nuclei. As we will see later, the number
density of dripped neutrons for model 2 is indeed smaller than
that for model 1.

According to Ref. [26], parameter L of the density-
dependent symmetry energy coefficient also plays an impor-
tant role in determining the density region of the pasta phases.
This parameter is directly related to the derivative of the energy
of pure neutron matter with respect to ρn at the normal nuclear
density [see Eq. (4) in Ref. [26]]:

L = 3ρ0
∂

∂ρn

(
εn

ρn

)
ρ0

, (19)

where εn is the energy density of pure neutron matter. The
left panel of Fig. 1 shows a larger slope of the energy for
model 1 than model 2, which leads to a larger value of L for
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FIG. 1. (Color online) Energy per baryon (left panel) and proton
chemical potential µ(0)

p (right panel) in pure neutron matter calculated
by the QMD models and several other nuclear forces. The line denoted
by SLy4 is from Ref. [21]. The other lines (FPS, 1′, FPS21, and SkM)
are from Ref. [37].
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TABLE II. Several quantities of typical heavy nuclei calculated by each QMD model. EB/A is the empirical
binding energy from Ref. [39]. E/A is the binding energy calculated by QMD. ρin is the central nucleon density
of the nucleus. bp and bn are the surface diffuseness parameter for protons and neutrons, respectively, defined as
Eq. (20). W is the binding energy defined as Eq. (22) evaluated for the central density and a proton fraction of
the nucleus. σ is the surface tension defined as Eq. (21).

56Fe 90Zr 208
82 Pb 238

92 U
EB/A (MeV) −8.79 −8.71 −7.87 −7.57

Model 1 2 1 2 1 2 1 2

E/A (MeV) −9.09 −8.77 −9.25 −8.68 −8.66 −7.65 −8.31 −7.38
ρin (fm−3) 0.226 0.215 0.213 0.211 0.193 0.163 0.173 0.160
bp (fm) 4.0 3.2 4.2 3.2 3.4 3.1 3.3 3.0
bn (fm) 4.1 3.3 4.0 3.5 3.8 3.4 3.8 3.4
W (ρin, xp) (MeV) −14.11 −14.80 −14.47 −14.72 −14.05 −14.51 −14.18 −14.26
σ (MeV fm−2) 0.66 1.13 1.03 1.09 0.62 1.07 0.73 1.03

model 1. From Eq. (19), we obtain L = 93 MeV for model 1
and L = 80 MeV for model 2. This difference affects the
density at which matter becomes uniform, as we will discuss
in the next section.

In the right panel of Fig. 1, we show the proton chemical
potential µ(0)

p in pure neutron matter at zero temperature
calculated by the QMD models together with those by other
nuclear models. This result shows QMD model 1 gives
slightly lower values of µ(0)

p at high densities compared with
other nuclear models, whereas model 2 gives lower values
at low densities. As discussed in Refs. [17,18], uncertainty
of µ(0)

p little affects the phase diagram of supernova matter
because the number density of dripped neutrons is very
small [38].

In Table II we show several quantities related to the
surface diffuseness and the surface energy of typical heavy
nuclei, 56Fe,90Zr,208Pb, and 238U, calculated for each QMD
model. We calculate the surface diffuseness parameter, which,
following the spirit of Ref. [40], we define as

bi ≡ ρi,in

|dρi/dr|max
(i = p, n). (20)

Here we have replaced ρ0 in the definition of Ref. [40], which
is employed for the semi-infinite system, by the central density
ρi,in of the finite nucleus.

We estimate the surface energy σ within the framework
of QMD by subtracting the contributions of the bulk and the
Coulomb energies from the total binding energy E:

σ = E − Ecoul − AW (ρin, xp)

4πR2
. (21)

Here A and xp are the mass number and the proton fraction of
the nucleus, Ecoul is the Coulomb energy of the nucleus, and
W (ρin, xp) is the bulk energy evaluated for the central density
ρin of the nucleus. For W (ρin, xp), we assume the following
form,

W (ρin, xp) ≡ WV + 1

2
K0

(
1 − kin

k0

)2

+ 4SV

(
xp − 1

2

)2

,

(22)

where WV is the binding energy of symmetric nuclear matter
at ρ0,K0 is the incompressibility, and kin ≡ (3π2ρin/2)1/3 and
k0 ≡ (3π2ρ0/2)1/3 are the wave numbers of nucleon at ρ = ρin

and ρ0, respectively. We set WV = −16 MeV, K0 = 280 MeV,
SV = 34.6 MeV, and ρ0 = 0.165 fm−3 for model 1 [28]
and WV = −16 MeV, K0 = 280 MeV, SV = 33 MeV, and
ρ0 = 0.168 fm−3 for model 2 [29,31]. The nuclear radius R in
Eq. (21) is defined as

R ≡
(

3

4π

A

ρin

)1/3

. (23)

Table II shows that the surface energy σ estimated for model 2
is systematically higher than that for model 1. We also see
that the surface diffuseness parameters bi of both neutrons
and protons are smaller for model 2 than model 1, which
means model 2 yields steeper density profile of the nuclear
surface. Both of these two facts consistently indicate that the
nuclear surface energy for model 2 is greater than that for
model 1.

IV. NUCLEAR MATTER AT SUBNUCLEAR DENSITIES

A. Simulations and snapshots

We studied the (n, p, e) system of the proton fraction
xp = 0.3 at zero and nonzero temperatures. The value of
xp = 0.3 is typical for matter in collapsing supernova cores.
For this purpose, we use 2048 nucleons (614 protons and
1434 neutrons) in a cubic simulation box with periodic
boundary condition [41]. We assume that the system is not
magnetically polarized, i.e., it contains equal numbers of
protons (and neutrons) with spin up and spin down. The
relativistic degenerate electrons can be well approximated as a
uniform background in our situations [42–44]. The Coulomb
interaction is calculated by the Ewald sum (expressions used in
our simulations are given in Ref. [23]). To obtain equilibrium
states both at zero and nonzero temperatures, we perform
simulations in the following procedure. We first prepare
nuclear matter at T = 10 MeV by equilibrating the system
for about 3000 fm/c using the Nosé-Hoover thermostat. To
reproduce the ground state, we cool down the system with the
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FIG. 2. (Color online) Nucleon distribution of the pasta phases at zero temperature for QMD model 2. Simulations are performed with
2048 nucleons at a proton fraction xp = 0.3. Each red (blue) particle corresponds to a proton (neutron). Each picture shows the pasta phase
with (a) spherical nuclei (0.1ρ0 = 0.0168 fm−3), (b) cylindrical nuclei (0.2ρ0 = 0.0336 fm−3), (c) slablike nuclei (0.393ρ0 = 0.0660 fm−3),
(d) cylindrical holes (0.49ρ0 = 0.0823 fm−3), and (e) spherical holes (0.575ρ0 = 0.0966 fm−3). Box sizes are (a) 49.58 fm, (b) 39.35 fm,
(c) 31.42 fm, (d) 29.19 fm, and (e) 27.67 fm.

frictional relaxation (14) for the time scale of O(103−4) fm/c.
This time scale is sufficiently larger than the relaxation time
scale of the system O(102) fm/c, which is determined by the
typical length scale of the structure O(10) fm and the sound
velocity O(10−1) c. To obtain nuclear matter at some fixed
nonzero temperature of Tset, we start from a snapshot with
the effective temperature Teff � Tset obtained in the above
cooling process. We then equilibrate it with the Nosé-Hoover
thermostat for at least 5000 fm/c.

In Fig. 2, we show nucleon distributions of the pasta
phases at zero temperature obtained by the simulations for
model 2. Compared with those for model 1 (see, e.g., Fig. 2
in Ref. [22]), less dripped neutrons are observed. Especially,
dripped neutrons almost disappear when nuclei become planar.
This would be due to the higher energy En of pure neutron
matter at low densities as shown in Fig. 1. As stated later
in Sec. IV C, this relative lack of dripped neutrons decreases
the density at which the fission instability of spherical nuclei
occurs.

In Fig. 3 we show how slablike nuclei melt to be uniform
nuclear matter with increasing temperature. We can see a basic
picture of phase transitions at nonzero temperatures for fixed
densities from this figure. Suppose we increase the temperature
from zero. At T � 1 MeV, neutrons start to evaporate from
nuclei. At T = 2–3 MeV, increase of the volume fraction of
nuclear matter region due to its thermal expansion triggers
a transition of the nuclear structure: slablike nuclei start
to connect with each other to form cylindrical bubbles. At
T � 4 MeV, protons cannot be completely confined in nuclei
and start to evaporate. In this situation, nuclear surface can
no longer be identified, but in many cases there remains
clustering of protons and neutrons, i.e., nuclear matter does
not completely become uniform. Finally, the clustering inside
nuclear matter completely disappears and matter becomes

uniform. We observe this transition at T = 6–7 MeV in the
case of Fig. 3.

B. Identification of phases

As can be seen from the snapshots of the nucleon
distribution in the previous section, especially at nonzero
temperatures, nuclei have complicated shapes and moreover
nuclear surface becomes diffuse. We thus need to quantita-
tively identify the nuclear shape from nucleon distributions
obtained by the simulations. For this purpose, we use the
two-point correlation function and the Minkowski functionals,
especially the area-averaged integral mean curvature 〈H 〉 and
the Euler characteristic density χ/V . The Euler characteristic
χ is a purely topological quantity and is expressed as

χ = (number of isolated regions) − (number of tunnels)

+ (number of cavities). (24)

For detailed procedures of calculating the Minkowski func-
tionals, see Ref. [23] (see also Refs. [45–47] for the algorithm
of the calculation).

With these quantities, we can completely classify the
following typical pasta phases:


〈H 〉 > 0 and χ/V > 0 for spherical nuclei (SP)
〈H 〉 > 0 and χ/V = 0 for cylindrical nuclei (C)
〈H 〉 = 0 and χ/V = 0 for slablike nuclei (S)
〈H 〉 < 0 and χ/V = 0 for cylindrical holes (CH)
〈H 〉 < 0 and χ/V > 0 for spherical holes (SH).

(25)

As shown above, χ/V is always positive or zero for these
phases. However, in our previous studies [23,24], and also
in the present study, we obtain “spongelike” phases with
multiply connected structures characterized by χ/V < 0. We
call the phases with χ/V < 0 intermediate phases, which

FIG. 3. (Color online) Nucleon distribution at T = 1–7 MeV and a fixed density for model 2. Simulations are performed with 2048 nucleons
at xp = 0.3 and ρ = 0.393 ρ0 = 0.0660 fm−3 (the box size is 31.42 fm), where the phase with slablike nuclei is obtained at zero temperature.
Each red (blue) particle corresponds to a proton (neutron).

035806-5



SONODA, WATANABE, SATO, YASUOKA, AND EBISUZAKI PHYSICAL REVIEW C 77, 035806 (2008)

appear in the density region between those of the phases with
rodlike nuclei and slablike nuclei [here we denote as (C,S)]
and between slablike nuclei and rodlike bubbles [denote as
(S,CH)]. The former phase (C,S) gives 〈H 〉 > 0 and χ/V < 0
and the latter one, (S,CH), gives 〈H 〉 < 0 and χ/V < 0.
Considering similarity of exotic structures observed in nuclear
matter and diblock copolymers, several authors pointed out
a possibility of more complex structures than ordinary pasta
structures, i.e., rods or slabs [25,43,48]. In diblock copolymer
melts, one experimentally finds complicated structures, e.g.,
so-called gyroid (G) structure and the ordered bicontinuous
double diamond (OBDD) structure. Although the intermediate
phases obtained in our studies are different from G and OBDD
phases, it is possible that some complicated structure other
than one-dimensional lattice of slablike nuclei, hexagonal
lattice of rodlike ones, and BCC lattice of spherical ones
appears [25,43].

The quantities 〈H 〉 and χ/V can be calculated only
if nuclear surface can be identified. Suppose we increase
the temperature, nuclei start to melt and nuclear surface
cannot be necessarily identified. In this situation, the density
inhomogeneity of long wavelength starts to be smoothed out
but still remains. Further increasing temperature and exceeding
some critical point, matter becomes uniform. To determine
the boundary where inhomogeneity disappears, we use the
two-point correlation function defined as

ξii(r) = 1

4π

∫
d�r

1

V

∫
dxδi(x)δi(x + r) (26)

≡ 〈δi(x)δi(x + r)〉x,�r . (27)

Here i specifies the species of particles (proton or neutron,
or both collectively), 〈· · ·〉x,�r denotes an average over the
position x and the direction of r, and δi(x) is the fluctuation of
the density field ρ(i)(x) given by

δi(x) ≡ ρ(i)(x) − ρ(i)

ρ(i)
, (28)

with the average density of protons or neutrons or both
collectively:

ρ(i) ≡ Ni

V
. (29)

If the system of nuclear matter is separated into liquid and gas
phases, the two-point correlation function ξNN (r) of nucleons
oscillates around zero even at long distances. Otherwise,
ξNN (r) is almost zero (for r >∼ 7 fm in our cases) without
osillating. In this case we judge the system is uniform (see
Ref. [24] for more details).

C. Phase diagrams

In Fig. 4 we show the phase diagram of the pasta phases
at zero temperature calculated by QMD. The upper and the
lower panels of Fig. 4 are the phase diagram for model 1 and
2, respectively. The sequence of nuclear shapes with increasing
density is the same as that predicted by all the previous works
including those by QMD. The density region of the phases
with nonspherical nuclei for model 2 is larger than that for
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FIG. 4. Phase diagram of the pasta phases at zero temperature for
model 1 (upper panel) and model 2 (lower panel). Proton fraction is
xp = 0.3. Horizontal axis is normalized in units of the normal nuclear
density ρ0 for each model. Abbreviations SP, C, S, CH, and SH
mean phases with spherical nuclei, cylindrical nuclei, slablike nuclei,
cylindrical holes, and spherical holes, respectively. The parentheses
(A,B) show an intermediate phase between A and B phases.

model 1: spherical nuclei begin to elongate at a lower density
and spherical bubbles remain until a higher density for model 2.

The decrease of the density at which nuclei start to be
deformed would be due to the smaller number density of
dripped neutrons for model 2 compared with model 1, which
is originated from the larger energy of pure neutron matter at
low densities shown in Fig. 1. Nuclei are more neutron rich
due to the smaller number density of dripped neutrons. The
nucleon number density inside the nuclei is relatively small
because of the smaller saturation density of nuclear matter at
the lower proton fraction. Thus the volume fraction of the
nuclei increases, which decreases the fission instability of
spherical nuclei [43]. Furthermore, the decrease of the number
density of dripped neutrons increases the mass number of
nuclei, which also increases their volume fraction. As a result,
although the saturation density of asymmetric nuclear matter
of xp = 0.3 for model 2 is higher (see below), the volume
fraction of nuclei for model 2 is about 10% higher than that
for model 1 at ρ = 0.1ρ0. Thus the density at which the fission
instability occurs for model 2 should be ∼0.01ρ0 lower than
that for model 1. This value is consistent with our present
results, which indicate the difference between the two models
is smaller than 0.05ρ0.

As to the boundary between the regions of the phase with
spherical holes and of the uniform phase, however, the increase
of the density ρm at which matter becomes uniform would be
due to higher saturation density at a proton fraction xp = 0.3
for model 2. The saturation density and the saturation energy
per baryon at xp = 0.3 are 0.136 fm−3 and −12.01 MeV for
model 1 and 0.147 fm−3 and −9.86 MeV for model 2 [49].
The saturation density directly affects ρm and, consequently,
the ρm of model 2 is higher than that of model 1. Here
one should keep in mind an effect of the surface energy. In
Sec. III, we show that model 2 gives a larger surface tension
compared with model 1. The larger surface tension of model 2
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FIG. 5. (Color online) Phase diagram of nu-
clear matter of xp = 0.3 at subnucear densities
by QMD model 2 plotted in the ρ-T plane. The
horizontal axis is normalized in unit of the nuclear
saturation density. The dashed lines correspond to
phase separation lines. The dotted lines show the
boundary above which nuclear surface cannot be
identified. The dash-dotted lines show boundaries
between different phases. Abbreviations are the
same as described in the caption to Fig. 4. The
meanings of regions (a)–(g), (B), and (C) are
explained in the text. Simulations have been carried
out at the points denoted by circles.

favors the uniform phase without bubbles and acts to decrease
ρm. However, this effect should be small compared to the
contribution of the saturation density, which can be understood
by taking account of the incompressible property of nuclear
matter; in the incompressible limit, ρm = ρs and the surface
tension does not affect ρm at all.

The result that the model 2 yields a wider density region
of the pasta phases compared with model 1 can be also
understood in terms of the density-dependence parameter L of
the symmetry energy. Within a macroscopic model employed
in Ref. [26] see Eq. (1) and Eq. (4) of that reference], the
saturation density at a fixed value of xp is given by [26]

ρs(xp) = ρ0[1 − 3L(1 − 2xp)2/K0], (30)

where K0 is the incompressibility. This equation means smaller
L yields higher ρs(xp) of asymmetric nuclear matter. The
above higher ρs(xp = 0.3) of model 2 than that of model 1
shows a smaller L of model 2, which is consistent with the
results of L obtained from the energy of pure neutron matter
in Sec. III. According to a result of a comprehensive analysis
of Ref. [26], there is a systematic trend that nuclear models
with smaller L yields a wider density region of the pasta
phases.

Phase diagram of model 2 for xp = 0.3 at nonzero temper-
atures is shown in Fig. 5. Each region of this phase diagram is
defined as follows: (a) SP, (b) C, (c) (C,S), (d) S, (e) (S,CH),
(f) CH, (g) SH, (B) phase-separating region, and (C) uniform
matter. Abbreviations SP, C, S, CH, SH, and (A,B) are the same
as in Fig. 4. Compared with the phase diagram of model 1 (see
Fig. 19 in Ref. [24]), both the pasta phases and the liquid-gas
phase-separating region survive until higher temperatures: in
the case of model 1, the nuclear surface cannot be identified
above 2–3 MeV and the critical temperature Tc of the phase
separation is at T >∼ 6 MeV, whereas for model 2, the surface
melting temperature is at 3–4 MeV and Tc is at T >∼ 9 MeV. The
increase of the surface melting temperature can be explained
by higher energy of pure neutron matter, which prevents
neutrons from dripping out of nuclei. In addition, as described

in Sec. III, the surface diffuseness for model 2 is smaller
than that for model 1. These properties keep the high density
contrast between the inside and the outside of nuclei, and
hence the nuclear surface remains to be identified at higher
temperatures. However, the increase of the critical temperature
of the phase separation for model 2 may be explained by the
smaller value of L, which increases the density where the
proton clustering instability takes place [26]. Phase separation
at high temperatures would be also induced by the proton
clustering. Thus the same expectation may be possible for this
situation, i.e., higher symmetry energy due to the smaller value
of L destabilizes uniform matter against the phase separation.
As a result, the phase separation occurs at relatively higher
temperatures for model 2.

V. DISCUSSION AND CONCLUSION

We investigated the phase diagram of the pasta phases both
at zero and nonzero temperatures by QMD with two different
models. Properties of these two models are compared by
calculating the energy and the proton chemical potential of
pure neutron matter, the surface diffuseness, and the surface
energy of several typical heavy nuclei. Differences in the
phase diagram, especially the expansion of the density and
temperature region of the nonuniform phases, can be explained
by these properties of pure neutron matter. The sequence of
the nuclear shape with increasing density and the qualitative
feature of thermal fluctuation on the nucleon distribution
with increasing temperature are the same as observed in our
previous study [24]. The general picture of the change of
the nucleon distribution at a fixed density with increasing
temperature is as follows.

At low temperatures, T = 1–1.5 MeV for model 1 and
T = 1–2 MeV for model 2; the number density of evaporated
neutrons increases with temperature. However, the structure
of nuclei does not largely change from that at T = 0. The
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nuclear surface becomes diffuse and the volume fraction of
nuclei increases by thermal expansion.

At intermediate temperatures, T = 1.5–2.5 MeV for
model 1 and T = 2–3 MeV for model 2; the nuclear shape
is significantly deformed and in some cases phase transition
between different nuclear structures is triggered by the increase
of the volume fraction of nuclei. Thus the density of the phase
boundary between the different nuclear shapes decreases with
increasing temperature.

At high temperatures, T � 2.5–3 MeV for model 1 and
T � 3–4 MeV for model 2; evaporated nucleons are dominant
and the nuclear surface can no longer be identified. However,
the long-range correlations between nucleons due to the liquid-
gas phase separation remain until a higher temperature T �
6 MeV for model 1 and T � 9 MeV for model 2. Above these
temperatures, inhomogeneity disappears at any density.

The density-dependence parameter L of the symmetry
energy is the key to understand the uncertainties of the density
region of the pasta phases in cold neutron stars [26]. This
parameter is also helpful to understand the present results
and to predict the general tendency of phase diagram of the
pasta phases in supernova cores. From the energy of cold
neutron matter, we obtain L = 93 MeV for QMD model 1
and L = 80 MeV for model 2. The larger critical temperature
Tc for the phase separation of model 2 would be due to the
smaller value of L. In addition, the smaller L also yields a
higher saturation density of asymmetric nuclear matter [see
Eq. (30)], which in turn increases the density at which the
system becomes uniform nuclear matter. If one uses a nuclear
force with a smaller value of L, the density and temperature
region of nonuniform nuclear matter would broaden.

Let us now discuss the abundance of nonuniform phases
of nuclear matter in supernova cores. Here we take an EOS
by Shen et al. [50] as an example, which is one of the widely
used EOSs in supernova simulations. For the nuclear model
employed in this EOS, we estimate L � 120 MeV, which is

rather high in the range of uncertainty of nuclear forces (see,
e.g., Fig. 1 of Ref. [26]). In our previous work [8], using EOS
by Shen et al., we have estimated the mass fraction of the
pasta phases just before bounce and have obtained ∼10–20%.
Because we can expect values of L for other typical EOSs
are smaller than L = 120 MeV for EOS by Shen et al., our
previous estimate of the mass fraction using Shen’s EOS would
be very conservative. It is reasonable to conclude that the mass
fraction of the pasta phases would be larger than 10–20% in
the later stage of the collapse.

As we have shown in Ref. [8], neutrino opacity via weak
neutral current in the pasta phases can be significantly different
from that without taking account of the pasta phases. Further-
more, even if nuclear surface melts, the neutrino opacity of the
vector current contribution in the liquid-gas phase-separating
system is still larger than that of the completely uniform
gas phase. Our present result also indicates expansion of the
phase-separating region for smaller values of L. Although the
influence of the phase-separating region on the mechanism of
the supernova explosion has yet to be revealed completely,
it could exist not only during collapsing phase but also after
bounce. Depending on the location of the neutrino photosphere
and the temperature profile in the late stage, these region can
affect the success of supernova explosions [51].
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