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Neutron star inner crust: Nuclear physics input
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A fully self-consistent model of the neutron star inner crust based upon models of the nucleonic equation
of state at zero temperature is constructed. The results nearly match those of previous calculations of the inner
crust given the same input equation of state. The extent to which the uncertainties in the symmetry energy, the
compressibility, and the equation of state of low-density neutron matter affect the composition of the crust are
examined. The composition and pressure of the crust is sensitive to the description of low-density neutron matter
and the nuclear symmetry energy, and the latter dependence is nonmonotonic, giving larger nuclei for moderate
symmetry energies and smaller nuclei for more extreme symmetry energies. Future nuclear experiments may
help constrain the crust and future astrophysical observations may constrain the nuclear physics input.
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I. INTRODUCTION

The inner crust of a cold neutron star can be defined
as the region between the density where neutrons drip out
of nuclei (about 4 × 1011 g/cm3) and the density for the
transition to homogeneous nucleonic matter at about half
of the nuclear saturation density. This region is sensitive to
the nuclear physics input because the nature of the crust is
determined by the structure of neutron-rich nuclei and the
energetics of the surrounding dripped neutrons. In this work,
the dependence of the description of the neutron-rich nuclei
and the dripped neutrons on the equation of state (EOS) of
homogenous nucleonic matter is examined.

The inner crust is of broad interest because a large variety
of astrophysical observations are dependent on and sensitive to
the properties of the neutron star crust. One recent motivation
is the suggestion that the giant flares in soft Gamma-ray
repeaters trigger seismic events in the neutron star crust and
are sensitive to the shear modulus of the crust crust [1–3].
The shear modulus, in turn, is sensitive to the composition of
the neutron star crust and the relative magnitude of the proton
and neutron numbers of the nuclei in the inner crust. The
moment of inertia of rotating neutron stars is also sensitive to
the inner crust and depends on the transition density between
the crust and the core [4]. Neutrino and photon opacities
are also sensitive to the properties of the nuclei in the inner
crust. For example, neutrino-nucleus scattering, which scales
like A2, is the most important neutrino process during the
lepton-trapped phase of a Type II supernova (see Ref. [5] for
a recent review). Finally, the cooling and evolution of neutron
star crusts depends on the both the size of the crust [6] and
by its transport properties [7,8], which are both related to
the composition. These astrophysical connections motivate the
study of the magnitude of the uncertainty of the properties of
the inner crust which come from present uncertainties in the
nuclear physics inputs.

In this article, several models of the neutron star inner
crust are constructed systematically using inputs from with
the current experimental information while allowing the range
of uncertainty allowed due to the uncertainty in the EOS of

homogeneous matter. Of particular importance, is that the
symmetry energy is varied in both the description of the nuclei
and the description of the neutron matter at the same time.
The composition depends on the symmetry energy, but is
nearly independent of the compressibility. This means that
astrophysical observations which are connected to properties
in the crust can constrain the nuclear symmetry energy.

The inner crust is quite sensitive to the EOS of neutron
matter at subsaturation densities. At sufficiently low densities,
neutron matter is somewhat well understood because three-
body interactions are small, and the two-body neutron-neutron
interaction is strongly constrained by the experimentally
measured neutron-neutron scattering phase shifts [9] (see also
the review in Ref. [10]). Many of the currently available EOSs,
however, do not respect this understanding of low-density
neutron matter because they are fit to the properties of nuclei
which are more sensitive to matter near saturation densities.
The neutron matter EOSs used in this work are designed to
have a realistic behavior below the saturation density, within
the precision required for the description of the crust.

II. THE MASS MODELS

While microscopically-based models of the nuclei are of
great interest because they can disentagle important effects
which are not easily treated in a classical approach, a
microscopic approach can also make it more difficult to
understand the physical principles which guide the nature
of the inner neutron star crust. In addition, it is not clear
that a classical approach is significantly less effective at
estimating the magnitude of uncertainties originating in the
nuclear physics input (it may even be more effective). In any
case, since the purpose is only to estimate the uncertainties
from the nuclear physics input to the EOS, a liquid-drop model
quite similar to that described in Refs. [11,12] is used. More
microscopic models for the crust have been developed (see the
pioneering work of Ref. [13] and recent efforts in Refs. [14,15])
and it is expected that these results on the sensitivity to the EOS

0556-2813/2008/77(3)/035805(8) 035805-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.035805


ANDREW W. STEINER PHYSICAL REVIEW C 77, 035805 (2008)

of homogeneous nucleonic matter will apply to some extent in
these models as well.

The liquid-drop model for this work consists of a bulk
energy contribution which is determined from the EOS of
homogenous nucleonic matter together with surface and
Coulomb contributions. This will be compared to the finite-
range droplet model described in Ref. [16] and used in
Ref. [17].

The binding energy per baryon of a nucleus with proton
number Z and atomic number A is given by

B(Z,A)/A = Bbulk(nn, np)/A + σB(nn, np)

(
36π

n2A

)1/3

+ C εCoulomb/n, (1)

where nn and np are the average neutron and proton densities
inside the nucleus with the given Z and A. The binding energy
of bulk matter, Bbulk (about −16 MeV in isospin symmetric
matter) is given by

Bbulk = A

n
[ε(nn, np) − nnmn − npmp], (2)

where mn and mp are the neutron and proton masses (which
is taken to be 939 MeV), n = nn + np is the average baryon
number density in the nucleus, and ε(nn, np) is the energy
density of homogeneous matter evaluated at the given neutron
and proton density. The expression for ε may be given by any
EOS of homogeneous matter and several different models are
employed. Note that the energy of the dripped neutrons which
is added later will always be determined with the same EOS
as is used to describe the bulk part of the nuclear energy.

The average baryon density will be determined from

n = nn + np = n0 + n1I
2, (3)

where I = 1 − 2Z/A. The parameter n0 is analogous to the
saturation density of nuclear matter and is expected to be near
0.16 fm−3. The parameter n1 subsumes (in a very schematic
way) two effects: the decrease in the saturation density with
the isospin asymmetry and the increase in the saturation
density due to the Coulomb interaction. These effects are
both explicitly present in the finite range droplet model (see
Eq. 49 of Ref. [17]). The decrease in the saturation density with
isospin asymmetry is typically larger and thus n1 is always
negative in these models.

The individual average neutron and proton number densities
are given by

nn = n(1 + δ)/2, np = n(1 − δ)/2, (4)

and the density asymmetry δ = 1 − 2np/(nn + np) is given by
δ = ζ I where ζ is a constant parameter of the model. Neutron
and proton radii (“squared-off” radii, not root-mean-square
radii) are given simply by 4πnnR

3
n = 3N , and 4πnpR3

p = 3Z.
The presence of a neutron skin is determined from ζ . If ζ is
unity, then all nuclei have no neutron skin (Rn = Rp), while
if ζ is less than unity, then all nuclei with N > Z will have a
neutron skin (Rn > Rp).

The surface energy contribution is proportional to the
surface tension σ,A2/3 [the surface energy scales as A2/3 so
that the surface energy per baryon scales like A−1/3 as in

Eq. (1)], and a unitless functionB. Typically this latter function
is quadratic in the isospin symmetry

B(nn, np) = 1 − σδδ
2, (5)

where σδ is a positive parameter representing the surface
symmetry energy. This is essentially the approach taken in
Ref. [16]. For a neutron star inner crust model, this can be
modified to ensure that the surface energy vanishes in the limit
δ → 1 as it must. One possible approach (and the one used
here) is that from Ref. [12]

B(nn, np) = 16 + b

[1/x3 + b + 1/(1 − x)3]
, (6)

where x = np/n and b is a simple function of the parameter
σδ and is related through σδ = 96σ/(b + 16). This is an
approximate scheme for taking into account the isospin
properties of the surface energy which may suffice for the
present purpose, but note the more the more detailed discussion
in Ref. [18]. In particular there is still an unresolved ambiguity
associated with how the surface energy is handled as discussed
in this reference. The slope of the correlation between the
surface symmetry energy, σδ and the symmetry energy at the
saturation density depends on the mass formula used. This
model, like all other present models for the neutron star crust,
effectively chooses a particular slope for this correlation.

The Coulomb energy density of a three-dimensional droplet
of protons can be written [11,19] (modulo an overall factor of
χ , the volume fraction of matter present in nuclei, which is
included later),

εCoulomb = 2π

5
n2

pe2R2
p(2 − 3χ1/3 + χ ) (7)

where e2 is the usual Coulomb coupling ∼h̄c/137. In the final
term in parenthesis, the first term corresponds to the standard
Coulomb contribution, the second term corresponds to the
“lattice contribution” [20] in the Wigner-Seitz approximation,
and the last term to a further finite-size correction relevant
at higher densities when χ is comparable to unity. Note
that this last term is quite important near the crust-core
transition and tends to delay the transition to nuclear matter
to higher densities. The Coulomb contribution is multiplied
by a parameter C to take into account the fact that the proton
density does not fall off sharply at a finite radius and this
surface diffusiveness maybe dependent on the input symmetry
energy. This parameter will always be nearly unity. As noted in
Ref. [21], the Wigner-Seitz approximation fails when describ-
ing the low-temperature transport properties, but will suffice
for describing the composition and the equation of state as
done here.

In summary, there are six free parameters in this model
(outside of the input equation of state of bulk nuclear matter,
which is a kind of parameter in itself) are the surface tension in
MeV/fm2, σ , the surface symmetry energy σδ , the correction
factor to the Coulomb energy, C , the asymmetry parameter
ζ , and the central density parameters, n0 and n1 which are
expressed in units of fm−3. These six parameters will be fit to
experimental masses for each input EOS.

035805-2



NEUTRON STAR INNER CRUST: NUCLEAR PHYSICS INPUT PHYSICAL REVIEW C 77, 035805 (2008)

III. THE EQUATIONS OF STATE

The EOS from Ref. [22] (APR) is used, which was obtained
from variational chain summation calculations of the equation
of state using a realistic nucleon-nucleon interaction. Also, a
“typical” relativstic field-theoretical model is utilized (review
in Ref. [23]), NL4 [24] which was fit to nuclei. In order to
compare with the model of Ref. [25] the Skyrme [26] model
SLy4 [27] is used, and in order to compare with the model
from Ref. [28] the Skyrme model SkM∗ [29] is used.

APR is expected to be particularly good for neutron matter
at low densities, because it is directly computed from an
interaction which reproduces the two-body nucleon-nucleon
phase shifts. The model SLy4 also has a good neutron matter
EOS because it was fit to both nuclei and low-density neutron
matter. The NL4 and SkM∗ models were only fit to nuclei
and low-density neutron matter are less constrained. SkM∗
happens to have a neutron matter EOS which is somewhat
closer to APR than NL4. Like the SLy4 interaction, relativistic
models are also able to reproduce, at some level, the more
accurate low-density neutron matter EOS found in APR and
SLy4, as was demonstrated by the RAPR model in Ref. [18]
and the FSUGold model [30,31].

In order to examine the importance of having an accurate
EOS for low-density neutron matter, the low-density neutron
matter EOS of NL4 is modified and compared to the original.
Three new models are constructed. The first model, NL4Q,
is a modification of NL4 which treats the symmetry energy
at low densities to be exactly quadratic. This approximation
is quite good at lower densities, and the NL4 crust is
nearly indistinguishable from the NL4Q crust. The other
models, NL4QN and NL4QN2, are versions of NL4Q which
reproduces the neutron matter EOS of APR at densities below
a specified density,

E
NL4QN
neut = EAPR

neut + E
NL4Q
neut − EAPR

neut

1 + e(nt−n)/ν
, (8)

where nt is 0.08 (0.04) fm−3 and ν is 0.0105 (0.016) fm−3 for
model NL4QN (NL4QN2). Both NL4QN and NL4QN2 have
pressures and neutron chemical potentials which monotoni-
cally increase with density. The results below show that these
two models give significantly different results for the inner
crust.

Finally, several schematic models of the EOS are con-
structed so that the effect of the compressibility and the
symmetry energy can be examined. The schematic EOS for
neutron matter is

Eneut/A =
[

1 − 0.6 k0.4
F,n + η1

(
n

n0

)
+ η2

(
n

n0

)2
]

k5
F,n

10π2mn

,

(9)

where kF = (3π2n)1/3 is the neutron Fermi momentum and the
last term is just the free Fermi gas energy density. The first two
terms inside the square brackets are designed to reproduce the
expectation from equations of state at low densities obtained
from two-body potentials which reproduce the experimental
phase-shift data on neutron-neutron scattering [9,32]. It is
expected that the interacting neutron matter EOS is about

TABLE I. The values of η1 and η2 [c.f. Eq. (9)], parameters
controlling the neutron matter equation of state in the schematic
models and the corresponding values of the symmetry energy at
saturation density and the exponent γ . In the schematic models, η0

is fixed at 0.5.

Model η1 (MeV) η2 (MeV) Esym (MeV) γ

Sch −0.307 0.481 31 0.9
SchS28 −0.487 0.578 28 0.9
SchS34 −0.127 0.385 34 0.9
Schγ 1 −0.0308 0.198 31 0.6
Schγ 2 −0.793 0.979 31 1.1

half the free Fermi gas energy at kF,n = 0.5 fm−1. The term
proportional to k0.4

F,n, qualitatively reproduces this low-density
behavior and the other parameters η1 and η2 can be adjusted
for densities near the saturation density where the EOS is more
uncertain.

It is useful to connect this description with the more
traditional description neutron matter in terms of a symmetry
energy with the form Esym = A(n/n0)2/3 + B(n/n0)γ . For
an effective mass of about 0.7 M,A is about 17 MeV, and
then B and γ dictate the magnitude of the symmetry energy
at the saturation density and the density dependence of the
symmetry energy, respectively. The base model schematic
model, “Sch”, has values of η1 and η2 appropriate for B =
14 MeV (a symmetry energy of 31 MeV) and γ = 0.9. These
values are given in Table I, as well as the values of η1

and η2 for the schematic models whose symmetry energy
is different from the baseline model. The variation of the
value of the symmetry energy at saturation density between
28 and 34 MeV is consistent with the observation that most
modern equations of state fall within this range. When the
symmetry energy is taken to be a pure power law (the A =
0 limit), the limit of the variation of γ (0.6 < γ < 1.1) is
inferred from the experimental information from intermediate-
energy heavy-ion collisions [33,34]. The models Schγ 1 and
Schγ 2 are constructed by fitting a symmetry energy with the
given exponent with A = 0 to express the expected range.
The extraction of values of γ from heavy-ion collisions is
nontrivial, and there may be systematic uncertainties that are
not yet understood. These uncertainties would mean that the
range of variation presented here is overly conservative, and
that the true range might be larger.

The schematic equation of state for nuclear matter is

Enuc/A = M + B + K

18n2
0

(n − n0)2 + K ′

162n3
0

(n − n0)3,

(10)

where M is the nucleon mass, B is the binding energy, n0 is
the saturation density, K is the compressibility, and K ′ is the
“skewness”. Isospin asymmetric matter is computed assuming
that the symmetry energy is exactly quadratic in the isospin
asymmetry δ (this approximation may fail at high density,
see Ref. [35]). Note that varying the compressibility in this
model is not precisely equal to varying the quantity which
might be obtained from giant resonances, as the latter are
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FIG. 1. (Color online) A survey of the equations of state used in
this work. Plotted in each panel are the energy per baryon of nuclear
matter (lower set of curves) and neutron matter (upper set of curves)
as a function of baryon density, nB . The upper left panel shows the
models APR, SLy4, and SkM∗, the upper right panel shows the model
NL4Q (based on NL4) and shows how neutron matter was modified
to match APR at low densities, and the lower panels show how the
symmetry energy was modified in the schematic equation of state.

only sensitive to the equation of state in the neighborhood of
saturation density whereas the compressibility is applied to
nuclear matter at all densities below the saturation density,
thus the variation in the compressibility is a bit larger than that
recently suggested in Refs. [36–38]. The baseline schmatic
model “Sch”, has a binding energy of −16 MeV, a saturation
density of 0.16 fm−3, a symmetry energy of 31 MeV, a
compressibility of 230 MeV. In all of the models, the skewness
parameter is fixed by ensuring that the energy per baryon of
nuclear matter vanishes at zero density, as it ought. In addition
to variations of the symmetry energy as discussed above, two
models “SchK210” and “SchK250”, are constructed to be the
same as the baseline model, except that they have different
compressibilities.

A survey of some of the equations of state is given in
Fig. 1. The upper right panel shows how neutron matter in the
NL4QN and NL4QN2 models interpolates between APR at
low densities and the normal NL4Q model at higher densities,
while leaving the nuclear matter EOS unmodified.

IV. THE MASS FITS

The liquid drop model is fit to the experimental nuclear
masses from Ref. [39] using the fitting formula


rms =
[

1

N

N∑
i=1

(
M

exp
i − M th

i

)2

]1/2

, (11)

where N is the number of nuclei, and Mexp and M th are
the experimental and theoretical values of the mass excess.
Reference [17] points out that this fitting formula can be
improved and that it overestimates the actual model error, but
these considerations will not be important at the level of the
results presented here. The fitting results are given in Table II.
The fitting results for NL4QN and NL4QN2 are not given
because they were found to be nearly equal to those from
NL4Q.

The mass fit is performed by minimizing 
rms for all the
experimentally measured mass excesses from Ref. [39]. For
each nucleus, this involves computing the neutron and proton
densities using Eqs. (3) and (4), computing the bulk energy
from the EOS of homogenous matter at these densities, then
inserting this bulk energy into the nuclear mass formula to
compute the mass excess using Eq. (1).

As expected, there is a correlation between the surface
symmetry energy and the symmetry energy as shown by the
increase in σδ when going from model SchS28 to model
SchS34. This is also the reason why NL4 gives a larger value of
σδ than the other models. The value of σδ is nearly unchanged
by modifying γ , which changes the density dependence of the
symmetry. The values of n0 in Table II are not quite equal to the
saturation density for homogeneous nuclear matter, and this
can be attributed to finite-size effects not captured in Eq. (3).
The other parameters are nearly unchanged between models

TABLE II. The nuclear mass fits corresponding to the models described in the text. The values of
σ are given in MeV/fm2 and n0 and n1 are given in fm−3.

Model ζ σ σδ C n1 n0 
rms

APR 0.886 1.19 1.72 0.885 −0.128 0.181 2.61
SkM∗ 0.888 1.14 1.16 0.899 −0.0612 0.17 2.61
SLy4 0.885 1.19 1.57 0.882 −0.11 0.181 2.6
NL4Q 0.89 1.15 2.67 0.915 −0.234 0.169 2.66
Sch 0.897 1.19 1.67 0.903 −0.12 0.176 2.7
SchK210 0.897 1.19 1.69 0.907 −0.117 0.174 2.72
SchK250 0.897 1.19 1.64 0.9 −0.12 0.176 2.69
SchS28 0.891 1.2 1.18 0.892 −0.0488 0.179 2.66
SchS34 0.9 1.19 2.44 0.909 −0.206 0.175 2.68
Schγ 1 0.891 1.2 1.49 0.884 −0.103 0.182 2.63
Schγ 2 0.911 1.11 0.978 0.954 −0.028 0.154 2.75
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except for n1 which is also sensitive to the symmetry energy,
as well as the Coulomb interaction.

V. THE CRUSTS

In order to determine the composition and properties of the
crust, the energy at a fixed density as a function of the proton
number and atomic number of nuclei, and the number density
of dripped neutrons, nn,drip, is minimized. The energy of matter
in the neutron star crust is given by

ε(Z,A, nn,drip) = (nn + np)χB(Z,A)/A

+ (1 − χ )εdrip(nn,drip) + εel(ne). (12)

This energy is minimized over the three parameters Z,A, and
nn,drip at each density. The volume fraction of matter inside
nuclei, χ , is determined from the relation

nB = χ (nn + np) + nn,drip(1 − χ ). (13)

The inner crust implied by the models NL4Q, NL4QN,
and NL4QN2 are compared in Fig. 2. While the actual
number density of dripped neutrons is not strongly modified by
modifying the neutron matter EOS, the nuclear size is modified
by 50% or more. The larger energy cost of creating neutron
matter in with a more realistic neutron matter EOS is reflected
in moving neutrons into nuclei so as not to pay the energy
cost. Because the largest difference is between the models
NL4Q and NL4QN2, it is clear that most of the dependence
on the low-density neutron matter EOS lies at densities below
0.04 fm−3.
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FIG. 2. (Color online) A comparison of the composition of the
neutron star crusts in models NL4Q, NL4QN, and NL4QN2, designed
to demonstrate the sensitivity of the composition to the equation of
state of low-density neutron matter. The proton nuber, Z, the atomic
number A (left axis) and the number density of the dripped neutrons
nn,drip are displayed (right axis). A comparison the composition given
the two different mass models. The curve labeled LDM (solid lines)
is obtained from Eq. (1), and the curve labeled FRDM (dashed lines)
is obtained from Ref. [17]. The left axis is for A and Z and the right
axis is for nn,drip.

In order to show the effect due to changing the mass model,
Fig. 2 shows the results for the APR EOS with the two different
models, the liquid drop model and the FRDM. The results are
qualitatively the same but quantitatively different. The form
of the mass model remains a significant uncertainty in the
nature of the neutron star crust, and is comparable to the other
uncertainty obtained from the symmetry energy as described
below.

Comparisons of the present model to those of Refs. [25,28]
are given in Fig. 3. The same input EOS for homogeneous
matter as the original reference is used in both cases. The
results agree qualitatively with the aforementioned works. The
remaining differences lie within the nuclear mass formula
used, and they are within the range of variation which is
suggested by Fig. 2. This model (like all other models of
the neutron star crust presently available) cannot precisely
predict the composition of the inner crust. Nevertheless, it
is qualitatively correct and is thus useful for estimating the
uncertainties due to the input EOS of homogeneous matter.

To compare the effect of the uncertainty in the symmetry
energy, Fig. 4 shows the composition for the neutron star crust
as a function of density for the schematic equations of state
with different symmetry energies. The naive expectation is
that a stronger symmetry energy tends to encourage nuclei to
become more isospin-symmetric. This is coupled, however,
with the fact that an increased symmetry energy will also raise
the energy cost for the dripped neutrons. These two effects
together could force larger, more symmetric nuclei, but this
also affects the Coulomb and surface energy contributions. The
variation of the composition with the value of the symmetry
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FIG. 3. (Color online) A comparison of the present work (solid
lines) with the results of Ref. [25] (dashed lines) using the same input
equation of state, SLy4. The left axis is for A and Z and the right axis
is for nn,drip. A comparison of the present work (solid lines) with the
results from Ref. [28] (labeled “JML” and plotted with dashed lines)
using the same input equation of state, SkM∗. The sharp dropoff
in JML at high-densities is due to the transition to homogeneous
nucleonic matter. The slightly jagged nature of the JML results is due
to the naive interpolation employed in this work and is not necessarily
present in the original table. The left axis is for A and Z and the right
axis is for nn,drip.
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FIG. 4. (Color online) A comparison of the composition of the
crust given different symmetry energies. The bold solid line is the
baseline model, the dashed and dotted lines show the variation in γ ,
and the dashed-dotted and thin solid line give the variation in the
magnitude of the symmetry energy at the saturation density.

energy is not so clear, as the baseline model predicts larger
nuclei than either models with smaller or larger values of the
symmetry energy.

In order to disentangle this result, more detailed results
for schematic models with different symmetry energies are
given in Fig. 5 at a fixed density of nB = 0.01 fm−3.
Beginning with the larger symmetry energy (with a value
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FIG. 5. A comparison of the composition of the crust given
different values of the symmetry energy at the saturation density at a
fixed density of nB = 0.01 fm−3. The top panel gives the total binding
energy per baryon, and the separate contributions from dripped
neutrons (“n”), electrons (“e”), and nuclei (“Nuc”). The bottom panel
shows the neutron and proton number of nuclei as well as the volume
fraction, χ .

at saturation of 34 MeV) and proceeding downward, the
expected result is obtained: lower symmetry energies allow
the system to create more isospin-asymmetric nuclei. At low
enough symmetry energies, however, this becomes too costly
as the electron contribution to the energy increases (the proton
number decreases, but the volume fraction occupied by nuclei
increases, thus the electron density must increase). Instead, the
system responds by moving neutrons out of the nuclei, which
lowers the electron contribution, even though it increases the
contributions from nuclei and the dripped neutrons. This is
allowed, in part, because the nuclei are able to maintain a
relatively constant energy. They can do this because the surface
and Coulomb energy cost is canceled by the bulk energy gain
which results from making nuclei with a larger (in absolute
magnitude) bulk binding energy.

Finally, Fig. 6 summarizes the pressure as a function of
the baryon density. The upper left panel shows the variation
from the different mass formulas, which is larger at lower
densities. The upper right panel shows the results for SkM∗
and SLy4. The lower-left panel shows the variation allowed
by the symmetry energy, and variations of up to a factor
of two in the pressure are implied by the uncertainty in
the symmetry energy. The pressure appears sensitive to the
magnitude of the symmetry energy and its dependence on
density. Finally, the lower-right panel shows the pressure
for the NL4Q-related models. Note that for model NL4Q,
the anomalously small EOS of low-density neutron matter
underestimates the pressure in the inner crust. All of the
models are connected (sometimes discontinuously) to the EOS
from Ref. [20] at low densities thus giving the scatter in the
pressure at the lowest densities given in this figure. Particularly
interesting is that the pressure at the crust at the higher densities
is nearly independent of the mass model (as shown in the upper
left panel), which may indicate that astrophysical observables
which are sensitive to the pressure of the crust rather than the
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FIG. 6. (Color online) A survey of the pressure of the crust as a
function of density, scaled by the baryon density, n
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are nearly flat where the adiabatic index is expected to be nearly 4/3
since the baryon density nearly scales with the energy density.
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TABLE III. The transition density from nuclei sur-
rounded by neutrons to homogeneous nuclear matter for
the models described in this work. The second column
is computed in this work, and the third column gives the
values obtained in the corresponding references.

Model nt fm−3 nt fm−3

APR 0.0522
SkM∗ 0.0434 0.045 [28]
SLy4 0.0669 0.076 [25]
NL4Q 0.0344
NL4QN 0.0409
NL4QN2 0.0333
Sch 0.0584
SchK210 0.0585
SchK250 0.0591
SchS28 0.0368
SchS34 0.0416
Schγ 1 0.0676
Schγ 2 0.0641

composition are good probes of the nuclear symmetry energy,
assuming that the description of low-density neutron matter is
correct.

The transition density to homogeneous nuclear matter is
computed by noting the density at which the energy per
baryon of nuclear matter becomes smaller than that of the
heterogeneous phase. The results for the transition density are
given in Table III. The transition densities from this work
are given in the second column and third column contains
the transition densities for previous works with similar input
EOSs for comparison. These transition densities may be
underestimates, as the ability of nuclei to deform slightly
will decrease the energy of the heterogeneous phase and
thus increase the transition density. This will be addressed in
further work. Note that, as in the composition discussed above,

the transition densities depend nontrivially on the symmetry
energy.

VI. CONCLUSIONS

The composition of the neutron star crust is still partially
unknown, due to uncertainties in the nuclear mass formula
and the equation of state. The composition (and to a lesser
extent, the overall pressure) is quite sensitive to the equation of
state of low-density neutron matter, and the nuclear symmetry
energy, both its magnitude and its density dependence. The
dependence of the composition on the symmetry energy is not
monotonic, as models with moderate symmetry energies can
have larger nuclei than models with lower or higher symmetry
energies. To the extent to which neutron stars depend on the
composition, this means that it is important to explore the
full range of variation in the crust allowed by the present
knowledge of the input nuclear physics, while ensuring that the
EOS is constrained by what is already known about the EOS of
low-density neutron matter. Nuclear experiments will continue
to provide better constraints on the symmetry energy, including
from the PREX experiment [40,41] to measure the neutron
skin thickness of lead at Jefferson Lab and from intermediate-
energy heavy-ion collisions as has been done in Ref. [33].

It remains to be seen if these results persist in the more
microscopic models which include pairing, corrections beyond
the Wigner-Seitz approximation, long-range correlations, and
better treatments of the nuclear structure.
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