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The effective K̄N interaction based on chiral SU(3) coupled-channel dynamics is derived and its extrapolation
below the K̄N threshold is studied in detail. Starting from the coupled-channel scattering equations, we eliminate
the channels other than K̄N and obtain an effective interaction in the single K̄N channel. An equivalent local
potential in coordinate space is constructed such as to reproduce the full scattering amplitude of the chiral SU(3)
coupled-channel framework. We discuss several realistic chiral SU(3)-based models in comparison to reach
conclusions about the uncertainties involved. It turns out that, in the region relevant to the discussion of deeply
bound K̄-nuclear few-body systems, the resulting energy-dependent, equivalent local potential is substantially
less attractive than the one suggested in previous purely phenomenological treatments.
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I. INTRODUCTION

The quest for quasibound antikaon-nuclear states has
become a persistently hot topic in nuclear physics. It is argued
that if the K̄N interaction is sufficiently strong and attractive
so that K̄-nuclear bound systems can be formed, with binding
energies so large that they fall below the K̄N → π� threshold,
such states could be narrow. An experiment performed at
KEK with stopped K− on 4He [1] seemed to indicate such
deeply bound narrow structures. However, the repetition of
this experiment with better statistics [2] did not confirm the
previously published results. The FINUDA measurements
with stopped K− on 6,7Li and 12C targets [3] suggested an
interpretation in terms of quasibound K−pp clusters with
binding energy B(K−pp) = (115 ± 9) MeV and width � =
(67 ± 16) MeV. However, this interpretation was subsequently
criticized in Refs. [4,5] with the argument that the observed
spectrum may be explained by final-state interactions of the
produced �p pairs. Although these issues are unsettled, the
experimental search for kaonic nuclei continues vigorously.

Calculations of strong binding of antikaons in a nuclear
medium based on chiral SU(3) dynamics have a long history
(see, e.g., Refs. [6–11]), starting from the early discussions of
kaon condensation in dense matter [12,13]. The recent revival
of this theme was prompted by Akaishi and Yamazaki [14–16],
who used a simple potential model [unconstrained by chiral
SU(3)] to calculate bound states of few-body systems such as
K−pp,K−ppn, and K−pnn. The possibility that such sys-
tems could be highly compressed was suggested in Ref. [15],
but this was considered [17] to be an artifact of an unrealistic
nucleon-nucleon interaction being used.

Faddeev calculations were performed for K̄NN with
phenomenological input [18,19], and with a leading-order
chiral interaction [20]. Both studies found a K−pp quasibound
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state above the π�N threshold with relatively large width.
The K̄NN system has also been studied in Ref. [21] by
using a variational approach with phenomenological local
potentials [14], leading to a bound state at about 50 MeV
below the K̄NN threshold.

One should note that the predictive power of all such
investigations is limited because the energy range of the K̄N

interaction relevant for deeply bound kaonic nuclei lies far
below the K̄N threshold. Constraints from K̄N scattering
and from kaonic hydrogen measurements are restricted to√

s � 1432 MeV. The only experimental information available
below the K̄N threshold is the invariant mass spectrum in
the π� channel where the �(1405) resonance is observed.
However, fitting the interaction to these data involves a subtlety
as we will discuss in this paper. It turns out, namely, that the
peak position in the π� mass spectrum is not to be identified
with the pole position of the �(1405) in the K̄N amplitude.
Thus, naively assigning a K−p binding energy of 27 MeV
to the �(1405), as is frequently done in phenomenological
potential approaches, is not justified in view of the strong
K̄N ↔ π� coupled-channel dynamics. In any event, we
need to extrapolate the interaction calibrated around the K̄N

threshold down to much lower energies to explore the possible
existence of deeply bound K̄-nuclear systems. Ambiguities in
performing such extrapolations certainly arise and require a
careful and detailed assessment.

A reliable and realistic starting point for a theory of
low-energy K̄N interactions is the coupled-channel approach
based on the chiral SU(3) meson-baryon effective Lagrangian,
developed and first applied in Ref. [22], and subsequently
expanded by several groups [23–25]. Unitarization of the
chiral interaction correctly reproduces the K̄N scattering
observables and provides a framework for generating the
�(1405) resonance dynamically as a K̄N quasibound state
embedded in the strongly interacting π� continuum. Given
that this approach is successful over a wide range of energies
and a variety of channels, we would like to investigate in detail
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what chiral SU(3) dynamics tells us about the K̄N interaction
below threshold.

For variational calculations of few-body systems involving
antikaons, one must use a realistic effective K̄N interaction,
preferentially in the form of a potential. This potential is gen-
erally complex and energy dependent. It must be constrained
to reproduce the scattering amplitudes in vacuum, and it must
encode the full coupled-channel dynamics. The first attempts
in this direction, which use a schematic effective interaction,
have been reported in Refs. [17,26]. Here we would like to
explicitly derive such an effective interaction in the single
K̄N channel and construct an equivalent, energy-dependent
local potential, starting from chiral SU(3) coupled-channel
scattering. This interaction can then be used in K̄-nuclear
few-body calculations [27].

This paper is organized as follows. In Sec. II we in-
troduce the chiral coupled-channel framework for S = −1
meson-baryon scattering. We present a general framework for
constructing an effective interaction with reduced number of
channels in a system of coupled-channel scattering equations,
with full incorporation of the dynamics in the eliminated
channels. In Sec. III this formalism will be applied to
the I = 0 K̄N channel, showing how the π� and other
channels affect the K̄N single-channel interaction. We study
the pole structure of the �(1405) in the complex energy
plane and discuss the physical origin of the singularities. We
also construct the I = 1 effective interaction and estimate
theoretical uncertainties for subthreshold extrapolations in
both the I = 0 and I = 1 K̄N channels. Finally we derive,
for practical use, an “equivalent” local potential in coordinate
space in Sec. IV. A comparison is performed with amplitudes
calculated from the phenomenological potential of Ref. [21],
and substantial differences are pointed out. The last section
presents a summary and conclusions.

II. FORMAL FRAMEWORK

A. Chiral SU(3) dynamics with coupled channels

Consider meson-baryon scattering in the strangeness S =
−1 channel. The amplitude of coupled-channel scattering,
Tij (

√
s), taken at a total center-of-mass energy

√
s, satisfies

the Bethe-Salpeter equation [22–25]

Tij (
√

s) = Vij (
√

s) + Vil(
√

s) Gl(
√

s) Tlj (
√

s), (1)

with the interaction kernel Vij and the meson-baryon loop
integral Gi , and channel indices i, j . This set of coupled
integral equations represents the nonperturbative resummation
of s-channel loop diagrams. The solution of Eq. (1) is given in
matrix form by

T = [V −1 − G]−1,

under the on-shell factorization [23].1 This form of the
amplitude is also obtained in the N/D method by neglecting

1One can equivalently use the same formulation for the standard
integral equation, regarding the channel indices as intermediate
momenta.

the contributions from the left-hand cut [24]. This guarantees
the unitarity of the scattering amplitude.

In the present work the interaction kernel Vij is identified
with the leading (Weinberg-Tomozawa) terms derived from
the chiral SU(3) effective Lagrangian,

Vij (
√

s) = − Cij

4f 2
(2

√
s − Mi − Mj )

√
Ei + Mi

2Mi

√
Ej + Mj

2Mj

,

(2)

where f is the pseudoscalar meson decay constant, and Mi and
Ei are the mass and the energy, respectively, of the baryon in
channel i. A detailed study of interaction terms beyond leading
order has been performed in Refs. [28,29]. It was found that
such higher order corrections are relevant for quantitative fine
tuning but that the essential features of K̄N coupled-channel
dynamics can already be reproduced at the leading-order level,
the strategy that we follow here. Effects of higher order terms
will be discussed in Sec. III C

The coupling strengths Cij in Eq. (2) are collected in the
matrix

CI=0
ij =




3 −
√

3
2

3√
2

0

4 0
√

3
2

0 − 3√
2

3


 ,

for the S = −1 and I = 0 channels: K̄N (channel 1), π�

(channel 2), η� (channel 3), and K� (channel 4). The coupling
strengths in I = 1 channels are given by

CI=1
ij =




1 −1 −
√

3
2 −

√
3
2 0

2 0 0 1

0 0 −
√

3
2

0 −
√

3
2

1




,

for the channels K̄N (channel 1), π� (channel 2), π�

(channel 3), η� (channel 4), and K� (channel 5).
The loop function Gi(

√
s) is given by

i

∫
d4q

(2π )4

2Mi[
(P − q)2 − M2

i + iε
](

q2 − m2
i + iε

) .

Using dimensional regularization the finite parts of Gi become

Gi(
√

s) = 2Mi

(4π )2

{
ai(µ) + ln

M2
i

µ2
+ m2

i − M2
i + s

2s
ln

m2
i

M2
i

+ q̄i√
s

ln
φ++(s) φ+−(s)

φ−+(s) φ−−(s)

}
, (3)

with

φ±±(s) = ±s ± (
M2

i − m2
i

) + 2q̄i

√
s,

where ai(µ) are subtraction constants in the channels i and µ is
the renormalization scale, mi is the mass of the meson in chan-
nel i, and q̄i =

√
[s − (Mi − mi)2][s − (Mi + mi)2]/(2

√
s) is
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FIG. 1. Diagrammatic representation of Eqs. (4), (5), and (7). The black blob stands for T eff = T11, shaded blobs stand for V eff , and white
blobs denote T

single
22 .

the relevant momentum variable, which corresponds to the
meson three-momentum in the center-of-mass system above
threshold.

It has been shown that the scattering amplitude constructed
in this way reproduces the scattering observables, such as
scattering cross sections and threshold branching ratios. The
unitarized amplitude has poles in the complex energy plane
at the positions of dynamically generated resonances, the
properties of which are also well described [22–25,28–35].

B. Single-channel effective interaction

In this section we construct an effective interaction in a
given single channel, the requirement being that the resulting
amplitude is identical to the solution of the full coupled-
channel equations. We start with the simplest case of two-
channel scattering. The aim is to incorporate the dynamics
of channel 2 in an effective interaction, V eff , operating in
channel 1. We would like to obtain the solution T11 of Eq. (1)
by solving a single-channel equation with kernel interaction
V eff , namely,

T eff = V eff + V eff G1 T eff

= [(V eff)−1 − G1]−1

= T11. (4)

Consistency with Eq. (1) requires that V eff be the sum of the
bare interaction, V11, in this channel and the contribution Ṽ11

from channel 2:

V eff = V11 + Ṽ11, (5)

Ṽ11 = V12 G2 V21 + V12 G2 T
single

22 G2V21

= V12 G2
[
1 + T

single
22 G2

]
V21, (6)

where T
single

22 is the single-channel resummation of interactions
in channel 2:

T
single

22 = V22 + V22 G2 T
single

22

= [
V −1

22 − G2
]−1

. (7)

Note that Ṽ11 includes iterations of one-loop terms in channel 2
to all orders. If the diagonal component V22 is absent,
the resummation in channel 2 disappears. Therefore, this

resummation term reflects the effect of the coupled-channel
dynamics. Equations (4), (5), and (7) are diagrammatically
illustrated in Fig. 1.

C. Multichannel effective interaction

It is straightforward to extend this framework to the case
with N channels. We can generalize Eqs. (6) and (7) to include
the effect of N − 1 channels (2, 3, . . . , N ) into channel 1 as

Ṽ11 =
N∑

m=2

V1m Gm Vm1 +
N∑

m,l=2

V1m GmT
(N−1)
ml GlVl1,

T
(N−1)
ml = V

(N−1)
ml +

N∑
k=2

V
(N−1)
mk G

(N−1)
k T

(N−1)
kl

= [(V (N−1))−1 − G(N−1)]−1, m, l = 2, 3, . . . , N.

(8)

The last equation is given as an (N − 1) × (N − 1) matrix
of the channels (2, 3, . . . , N). The amplitude of channel 1 is
obtained by solving the single-channel scattering equation (4)
with the effective interaction of Eqs. (5) and (8).

In general, we can reduce the N -channel problem into
effective n channels (1, 2, . . . , n) that include the dynamics
of N − n channels (n + 1, n + 2, . . . , N ). Starting from the
full coupled-channel equation

T
(N)
IJ = V

(N)
IJ +

N∑
K=1

V
(N)
IK G

(N)
K T

(N)
KJ (I, J ∈ N ),

we want to reproduce the solution of this equation in channels
(1, 2, . . . , n) by the effective interaction V

(n)
ij as

T
(n)
ij = V

(n)
ij +

n∑
k=1

V
(n)
ik G

(n)
k T

(n)
kj (i, j ∈ n)

= ([(V (n))−1 − G(n)]−1)ij

= T
(N)
IJ (I, J ∈ n).
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FIG. 2. (Color online) The single-channel π� scattering amplitude F
single
π� = −(4πM�/

√
s) T

single
22 (left panel) and the interaction term Ṽ11

(right panel). Real parts are shown as solid lines; imaginary parts are represented as dashed lines. The thin lines are the result of the two-channel
model and the thick lines are the result of the full (four-channel) model. The imaginary parts of Ṽ11 in the two-channel and full models are
indistinguishable in this figure.

The effective interaction takes the form

V
(n)
ij = Vij + Ṽij ,

Ṽij =
N∑

α=n+1

Viα Gα Vαj +
N∑

α,β=n+1

Viα GαT
(N−n)
αβ GβVβj ,

α, β ∈ n + 1, n + 2, . . . , N,

with N − n channel resummation

T
(N−n)
αβ = V

(N−n)
αβ +

N∑
γ=n+1

V (N−n)
αγ G(N−n)

γ T
(N−n)
γβ

= ([(V (N−n))−1 − G(N−n)]−1)αβ,

α, β ∈ n + 1, n + 2, . . . , N.

III. EFFECTIVE INTERACTION

A. Analysis of the I = 0 K̄ N amplitude

We now turn to our central theme, the construction of the
single-channel effective K̄N interaction in the isospin basis.
There is a strong attractive interaction in the I = 0 channel
where the �(1405) is dynamically generated. One expects
that a large contribution to the K̄N interaction comes from the
π� channel. It is therefore useful and instructive to compare
the effective interaction in the K̄N -π� coupled-channel case
(two-channel model) with that including four coupled channels
(full model).

The parameters in Eqs. (2) and (3) are fixed as f =
106.95 MeV, µ = 630 MeV, and ai = −1.96 for all channels.
We use the physical hadron masses averaged over isospin
multiplets. As shown in Refs. [30,34], the model with these
parameters reproduces the experimental observables such as
total cross sections for elastic and inelastic K−p scattering,
threshold branching ratios, and the π� mass spectrum in the
region of the �(1405).

In what follows we present forward scattering amplitudes
in units of femtometers, related to the amplitudes T in Eq. (1)
by

FK̄N = − MN

4π
√

s
T11, Fπ� = − M�

4π
√

s
T22,

etc. With this commonly used convention, scattering lengths
are directly given by the values of Fi at threshold.

Let us examine separately the contributions to the effective
interaction V eff . The left panel of Fig. 2 shows the real and
imaginary parts of the amplitude with π� single-channel
resummation [T single

22 in Eq. (7)]. At first sight there appears to
be no prominent resonance structure in this amplitude, but it
nevertheless develops a pole in the complex energy plane at

z2(π� only) = 1388 − 96i MeV. (9)

The large imaginary part, in spite of the relatively small phase
space (∼50 MeV above the threshold) is a special feature of
this s-wave π� single-channel resonance.

In the right panel of Fig. 2, the K̄N interaction Ṽ11 from
coupled-channel dynamics [Eqs. (6) and (8)] are plotted. Thin
lines represent the results with the two-channel model; the
results of the full model are also shown as thick lines.

One also observes that the imaginary part of Ṽ11 is almost
identical in the two-channel and full models. The reason is
as follows. First, the imaginary part of Ṽ11 comes only from
the loop of the π� channel G2 in this energy region, when
we expand the amplitude. Taking into account the zeros in
the coupling strengths C23 = C32 = C14 = C41 = 0, one can
show that the difference between ImṼ

(2)
11 and ImṼ

(4)
11 is of

the order of O[V (GV )3]. However, the magnitude of GV is
roughly estimated as O(10−1). Numerically, the magnitudes
of the real and imaginary parts are smaller than 0.7 for the
relevant energy region. Therefore, terms with O[V (GV )3] are
much smaller in magnitude than the imaginary part of Ṽ11,

which is of order O[V (GV )]. Hence the difference between
ImṼ

(4)
11 and ImṼ

(2)
11 is indeed small.

The effective K̄N interaction V eff is plotted in Fig. 3,
together with the tree-level Weinberg-Tomozawa term for
the K̄N channel. By construction of the effective interaction
[Eq. (5)], the difference from the tree-level one is attributed
to the coupled-channel dynamics. As seen in the figure, the
π� and other coupled channels enhance the strength of the
interaction at low energy, although not by a large amount.
The primary difference is seen in the energy dependence of the
interaction kernel. The imaginary part is smaller in magnitude
than the real part. This permits treating the imaginary part
perturbatively in the effective K̄N interaction.
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FIG. 3. (Color online) The K̄N (I = 0) interaction at tree level given by the Weinberg-Tomozawa term (dotted lines), the effective
interaction in the two-channel model (thin lines), and the effective interaction in the full model (thick lines). The real parts are shown by the
solid lines, and the imaginary parts are depicted by the dashed lines. The right panel details the upper part of the left panel. The imaginary parts
of V eff in the two-channel and full models are indistinguishable in this figure.

In the left panel of Fig. 4, we show the result of K̄N

scattering amplitude T eff , obtained by solving the single-
channel scattering equation with V eff . The full amplitude in
the π� channel is plotted in the right panel for comparison.
We numerically checked that T eff coincides with T11 resulting
from the coupled-channel equations.

In the K̄N scattering amplitude, the resonance structure
is observed at around 1420 MeV, significantly higher than
the nominal position of the �(1405). However, the peak in
the π� amplitude (shown in the right panel of Fig. 4) is in
fact located close to 1405 MeV. This is a consequence of the
two-pole structure [36–38], which we will discuss in detail in
the following sections. Results with the full model (thick lines)
are not very much different from those with the two-channel
model (thin lines). This indicates that the scattering amplitude
around the K̄N threshold is well described by the K̄N -π�

coupled-channel system, and we confirm that the η� and K�

channels are unimportant for the physics of the K̄N interaction
in the energy region of interest.

B. Structure of �(1405)

We now discuss the pole structure of the �(1405) resonance
in greater detail. The K̄N scattering amplitude T eff(

√
s),

obtained by using the two-channel model, develops two poles
at

z
(2)
1 = 1432 − 17i MeV, z

(2)
2 = 1398 − 73i MeV.

These pole positions move slightly, to

z
(4)
1 = 1428 − 17i MeV, z

(4)
2 = 1400 − 76i MeV,

in the full model with four channels. Again, the deviation from
the two-channel model is only marginal. We thus confirm the
dominance of the K̄N -π� coupled-channel dynamics in the
K̄N amplitude. As discussed in Ref. [36], the poles z1 and z2

have different coupling strengths to the π� and K̄N channels,
leading to the different shapes in the K̄N and π� amplitudes,
as seen in Fig. 4.

Next we study the origin of these poles. As previously
mentioned, there is a pole [Eq. (9)] in the amplitude T22 repre-
senting π� single-channel resummation. We can also perform
the resummation of the tree-level Weinberg-Tomozawa term
in the single K̄N channel, which generates a bound state
pole at

z1(K̄N only) = 1427 MeV.

The pole positions for single-channel, two-channel, and full
models are plotted in Fig. 5. These positions obviously suggest
that the pole z1(K̄N only) is the origin of the poles z

(2)
1 and

z
(4)
1 , whereas z2(π� only) is the origin of the poles z

(2)
2 and

z
(4)
2 . This observation agrees once again with the qualitative

behavior discussed in Refs. [36,39] that the pole z1 strongly
couples to the K̄N channel and the pole z2 to the π� channel.

The principal features from chiral SU(3) dynamics underly-
ing this behavior are as follows. The driving (attractive) s-wave
interactions in the K̄N and π� channels are determined
by the Goldstone boson nature of the pseudoscalar octet
mesons. In the chiral limit (i.e., with all quark masses mu,d

and ms strictly equal to zero) these interactions would all
vanish at threshold, with massless kaon and pion. Chiral

4
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FIG. 4. (Color online) Scattering am-
plitudes FK̄N channel (left) and Fπ�

(right) in the (I = 0) two-channel model
(thin lines) and in the full model (thick
lines). Real parts are shown as solid lines
and imaginary parts as dashed lines.
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FIG. 5. (Color online) Pole positions of the K̄N (I = 0) scattering
amplitude resulting from the single-channel, two-channel, and full
(four-channel) models.

symmetry dictates that their interaction strength grows linearly
(in leading order) with their energy. Explicit chiral symmetry
breaking gives those mesons their masses and moves the
meson-baryon threshold energies to their physical values.
At the kaon-nucleon threshold, the leading K̄N interaction,
V11 ∼ − 3mK

2f 2 , becomes sufficiently attractive to produce a
weakly bound state. At the π� threshold the corresponding
leading π� interaction, V22 ∼ − 2mπ

f 2 , is too weak to support
a π� bound state, but it still generates a resonance above
threshold.

At a more quantitative level, the driving attractive
(Weinberg-Tomozawa) interaction terms in the S = −1
meson-baryon channels, with their characteristic energy de-
pendence,

V11 ≡ VK̄N � − 3

2f 2

(√
s − MN

)
and

V22 ≡ Vπ� � − 2

f 2

(√
s − M�

)
,

generate a K̄N bound state and a π� resonance already in
the absence of channel couplings (i.e., for V12 = V21 = 0). In
the typical energy range of

√
s ∼ 1410–1420 MeV of interest

here, the ratio of these driving interactions,

VK̄N

Vπ�

∼ −3

4

(√
s − MN√
s − M�

)
,

is about 1.6. The K̄N interaction is effectively stronger, but the
π� interaction is sizable and cannot be ignored even though
the π� resonance pole is located at a considerable distance
from the real axis in the complex energy plane. The isolated
K̄N bound state, in contrast, has a binding energy of only
5 MeV at this stage. By turning on the nondiagonal K̄N ↔ π�

couplings, V12 = V21, both the π� resonance and K̄N bound
state poles move to their final positions as shown in Fig. 5.
The K̄N bound state turns into a quasibound state embedded
in the π� continuum, with a decay width of about 35 MeV. At

the same time, by its coupling to the (virtual) K̄N channel, the
previously isolated π� resonance shifts and reduces its width
by about 20%, from �π� � 190 MeV to �π� � 150 MeV.

These considerations imply a subtlety in assigning a mass
(or a K̄N binding energy) to the �(1405). Empirically, the
only information at hand is the π� mass spectrum given
by the imaginary part of T22 ≡ Tπ� [see Fig. 4 (right)]. This
mass spectrum has its maximum indeed at

√
s � 1405 MeV.

Although its spectral shape is far from that of a Breit-Wigner
resonance form, one may nevertheless read off a width of
about 50 MeV. This is the mass and width assignment given
to the �(1405) in the Particle Data Group table. However,
the amplitude T eff = T11 ≡ TK̄N in the K̄N channel shown in
Fig. 4 (left) in the form of FK̄N has evidently quite different
features. This is the amplitude relevant for subthreshold
extrapolations of the K̄N interaction. The K̄N quasibound
state, signaled by the zero of Re FK̄N , is seen to be located
at

√
s � 1420 MeV, not at 1405 MeV, and almost coincides

with the maximum of Im FK̄N . The actual K̄N → π� decay
width is about 20% smaller than the one naively identified
with the breadth of the π� mass spectrum. One must therefore
conclude that the K̄N quasibound state, commonly associated
with the �(1405), has a binding energy of only about 12 MeV
(and not the 27 MeV often used to tune phenomenological
K̄N potentials).2

Given the obvious relevance of this discussion to the
existence (or nonexistence) of deeply bound K̄-nuclear states,
it is now important to estimate theoretical uncertainties and
examine possible ambiguities.

C. Theoretical uncertainties and I = 1 amplitude

Detailed investigations have been performed concerning
the position of the second pole z2, especially its sensitivity
to higher order terms in the chiral effective Lagrangian [28,
29,31–33]. This section presents a conservative assessment of
such uncertainties, examining different chiral coupled-channel
calculations in comparison.

Several variants of the chiral unitary approach will be
used in this test, all of which start from a leading Weinberg-
Tomozawa (WT) term in the interaction kernel but differ
in their detailed treatment of subtraction constants. The
differences among these models have their origin in the fitting
procedures to experimental data, primarily through ambigui-
ties of the π� mass spectrum with its limited data quality.

Oset-Ramos-Bennhold (ORB) [35] determine the subtrac-
tion constants by matching the loop function with that obtained
in the three-momentum cutoff, with which they successfully
reproduce the observables [23]. Hyodo-Nam-Jido-Hosaka
(HNJH) [34] used one single subtraction constant in all
channels to fit the data. A systematic χ2 fit was performed by
Borasoy-Nißler-Weise (BNW) [29] and by Borasoy-Meißner-
Nißler [33], where all the subtraction constants were used to

2In our present calculations, the isospin-averaged K̄ mass has been
used in practice, so that the K̄N threshold actually appears at

√
s =

1435 MeV, shifted by 3 MeV from the K−p threshold. The value of
the binding energies just mentioned are thus understood to be shifted
by the same amount.
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TABLE I. Subtraction constants ai at µ = 630 MeV and meson decay constant f in
different models.

Reference f (MeV) aK̄N aπ� aη� aK� aπ� aη�

ORB [35] 103.7652 −1.84 −2.00 −2.25 −2.67 −1.83 −2.38
HNJH [34] 106.95 −1.96 −1.96 −1.96 −1.96 −1.96 −1.96
BNW [29] 111.2 −1.86 −2.35 −2.67 −2.62 −1.23 −2.80
BMN [33] 120.9 −2.21 −2.38 −2.19 9.59 −3.88 −2.15

fit the experimental data and the influence of higher order
terms in the chiral effective Lagrangian has been studied.
The fitted observables in these investigations are total cross
sections of K−p scattering in elastic and inelastic channels,
threshold branching ratios, invariant mass distribution in the
π� channel, and the K−p scattering length deduced from
kaonic hydrogen data. The analysis in the preceding sections
is based on the simpler HNJH model.

To estimate systematic theoretical uncertainties, we adopt
all these models and derive the corresponding effective
interactions. The definition of the subtraction constant aBorasoy

in Refs. [29,33] is related to the present convention (and those
in Refs. [34,35]) by

a(µ) = 16π2aBorasoy(µ) − 1.

Changes of the renormalization scale in different models are
related by

a(µ′) = a(µ) + 2 ln(µ′/µ),

where µ = 630 MeV. The subtraction constants determined
in the models under consideration are shown in Table I
together with the corresponding values for the meson decay
constant f .3 We use isospin-averaged hadron masses as input.
One should note that the results presented here are not exactly
identical to those in the original papers because of differences
in the input masses, isospin breaking effects, and so on. The
accuracy of the analysis is nonetheless sufficient for the present
purpose of estimating theoretical uncertainties.

The effective interactions calculated with these models
are shown in Fig. 6 together with the tree-level WT term

3For the ORB model, it was stated that f = 1.15 × fπ in Ref. [35],
but in the actual calculation f = 1.123 × fπ was used, as noted in
Ref. [36]. For the BNW model, there is a misprint in the column “WT
term” in Table 1 of Ref. [29]: The signs of all subtraction constants
should be inverted.

result (with f � 107 MeV, a value intermediate between the
empirical pion and kaon decay constants). The strengths of
the effective interactions are roughly comparable with the WT
term for the K̄N (I = 0) channel, whereas the coupled-channel
dynamics in the K̄N (I = 1) channel enhances the interaction
strengths by about 50% from that of the WT term.

With these effective interactions we find the scattering
amplitudes shown in Fig. 7. The model dependence of
these amplitudes is not large despite the differences among
the underlying effective interactions. This is understandable
because these interactions are all fitted to similar data sets. The
differences in the interaction strengths among different models
are in large part compensated by corresponding differences
in the subtraction constants. Note that the peak position of
the imaginary part of the K̄N (I = 0) amplitude is around
1420 MeV in all models. This observation is also consis-
tent with the solution of the Lippmann-Schwinger equation
obtained by using a chiral interaction approximated by a
separable potential [20,22].

Calculated K−p scattering lengths aK−p = (aK̄N(I=0) +
aK̄N(I=1))/2 and pole positions of the scattering amplitudes
are summarized in Table II. The pole positions are also plotted
in Fig. 8. The pole z2 in BMN [33] is found above the
K̄N threshold. It is located on the Riemann sheet, which is
unphysical for π� and physical for K̄N . For Imz < 0 this
sort of pole does not directly influence the physical scattering
amplitudes.

The pole positions of z2 are scattered over a wide range
of the complex energy plane depending on the model used.
Moreover, the detailed behavior of this pole is sensitive to
physics beyond leading (WT) order in the chiral effective
Lagrangian, studied systematically in Ref. [29]. However,
such higher order corrections can partially be absorbed by
readjusting the pseudoscalar decay constant f .

In contrast to the strong model dependence of z2 the location
of the pole z1 is quite stable, with Re z1 positioned in a narrow
window around 1420–1430 MeV. In spite of the differences
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FIG. 6. (Color online) The effective
interaction V eff of the K̄N (I = 0) chan-
nel (left) and that of the K̄N (I = 1)
channel (right) in different models. The
real parts are shown as solid lines and
imaginary parts as dashed lines. The lines
correspond to the models as indicated in
the figure. The dotted line is the tree-level
WT interaction.
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TABLE II. K−p scattering lengths and pole positions in different
models.

Reference aK−p (fm) z1 (MeV) z2 (MeV)

ORB [35] −0.617 + 0.861i 1427 − 17i 1389 − 64i

HNJH [34] −0.608 + 0.835i 1428 − 17i 1400 − 76i

BNW [29] −0.532 + 0.833i 1434 − 18i 1388 − 49i

BMN [33] −0.410 + 0.824i 1421 − 20i 1440 − 76i

in the position of the pole z2, the K̄N (I = 0) amplitudes in
Fig. 7 do not change very much. This is because the behavior
of the K̄N amplitude is largely determined by the contribution
from the pole z1.

The spread in the z2 pole positions can be observed in the
π� amplitude. In Fig. 9 we plot the imaginary part of the
π�(I = 0) amplitude, where the maximum of the spectrum is
commonly identified with the �(1405) resonance. The model
dependence of the π� amplitudes is stronger than that of the
K̄N amplitude, reflecting the contribution from the pole z2.
For comparison, we plot the invariant mass spectrum of π−�+
in Ref. [40] and the sum of π±�∓ in Ref. [41].

One should be careful when comparing the calculated
I = 0 π� mass spectrum with experimental data. In principle
we need all three π� states (π±�∓, π0�0) simultaneously
to construct the pure I = 0 spectrum, since there are three
isospin states: I = 0, 1, and 2.4 The available experimental
π� spectra were generated in one or two final states for
each experiment (sum of charged states [41], π−�+ [40],
and charged states [42], π0�0 [43], π0�0 [44]). This means
in fact that the π� mass spectrum representing the I = 0
channel has not been extracted so far. The value quoted by the
Particle Data Group (PDG) [45] is based only on the analysis
of Ref. [46] in which the π−�+ spectrum of Ref. [40] was
fitted by the I = 0 amplitudes of theoretical models. Even if
the I = 1 and I = 2 components are smaller than the I = 0
spectrum, cross terms such as ReT 0T 1∗ may distort the shape
of the spectrum [47,48].

Additional theoretical uncertainties concern the chiral
coupled-channel approach itself. The present investigation is
focused on chiral SU(3) models with leading-order interaction.
Effects of higher order K̄N couplings have been studied

4In practice, π 0�0 has no I = 1 component and the contribution
from I = 2 is considered to be small.

TABLE III. The real parts of the amplitude FK̄N (I = 0) at
√

s =
1360 MeV in comparison with the next-to-leading-order results.

Model Re FK̄N (I = 0) (fm) Order

this work 1.6 ± 0.2 leading
Ref. [29] WT ∼1.6 leading
Ref. [29] c ∼1.9 p2

Ref. [29] s ∼2.0 p2

systematically in Ref. [29]. Representative examples are listed
in Table III, which shows the values of Re FK̄N (I = 0) at a
given subthreshold energy,

√
s = 1360 MeV. The case WT is

equivalent to the leading-order results discussed in this paper.
Cases c and s include next-to-leading-order terms in the chiral
SU(3) interaction kernel. In all cases the input parameters
are adjusted to reproduce the available experimental data.
The results with inclusion of higher order terms tend to
increase slightly the strength of the K̄N amplitude in the
far-subthreshold region, within a limited uncertainty bound
of about 20%.

Early coupled-channel calculations [22,49] suggested
larger subthreshold values of Re FK̄N (e.g., ∼3.8 fm [22]
and ∼3.0 fm [49] at

√
s = 1360 MeV). These differences

in comparison with the more recent chiral coupled-channel
results can presumably be traced to the use of the (nonrela-
tivistic) Lippmann-Schwinger equation in combination with
separable approximations and corresponding cutoffs for the
interaction kernels in the early approaches, as opposed to
the Bethe-Salpeter equation and dispersion relation techniques
applied in the more recent computations. A common feature of
all approaches is the location of the zero of Re FK̄N above the
canonical 1405 MeV, irrespective of the detailed extrapolation
of the amplitude to the far-subthreshold region.

Further improvements should incorporate rigorous theoret-
ical constraints on the subthreshold K̄N amplitude, such as
crossing symmetry [50], as discussed within the framework of
a chiral coupled-channel approach in Ref. [25]. In addition, a
detailed consistency analysis of subtraction constants in view
of constraints from order p3 counter terms, as elaborated in
Ref. [25], is certainly desirable along the same line as the
present investigation.

Although the primary uncertainty of any detailed K̄N

subthreshold extrapolation is evidently rooted in the lack of
sufficiently accurate data for the π� spectral functions, it is
nevertheless remarkable that most chiral models consistently
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FIG. 7. (Color online) Scattering am-

plitude FK̄N = −(4πMN/
√

s)T eff of the
K̄N (I = 0) channel (left) and of the
K̄N (I = 1) channel (right) in different
models. The real parts are shown as solid
lines and imaginary parts as dashed lines.
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FIG. 8. (Color online) Pole positions of the K̄N (I = 0) scattering
amplitude in different models. The dotted line denotes the threshold
of the K̄N channel.

agree within limited errors on the shapes and magnitudes of
real and imaginary parts of the K̄N amplitudes, in both I = 0
and I = 1 channels. The following intermediate conclusions
can therefore be drawn:

(i) The position of the �(1405) as an I = 0 quasibound K̄N

state embedded in the π� continuum, when identified
with the zero of Re T eff(K̄N ), is located at

√
s �

1420 MeV, not at 1405 MeV. The corresponding K−p

“binding energy” is thus 12 MeV instead of 27 MeV.
(ii) The π� mass spectrum (with so far very limited

accuracy of the existing data base) reflects primarily
coupled-channel dynamics around the z2 pole in the
π� amplitude. The maximum of the π� mass spectrum
around

√
s ∼ 1400–1410 MeV is therefore not to be

directly interpreted as the position of the �(1405).
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FIG. 9. (Color online) Imaginary part of the π�(I = 0) ampli-
tude in different models. The dashed histogram indicates data from
Ref. [41] (π−�+ spectrum) and the dotted histogram indicates data
from Ref. [40] (sum of π±�∓ spectra).

IV. “EQUIVALENT” LOCAL POTENTIAL

A. Local pseudopotential from the effective K̄ N interaction

Next we construct an equivalent local K̄N pseudopotential
in coordinate space. Such a potential is, for example, a
useful input to computations of K̄-nuclear few-body systems.
Equivalence means that the solution of the Schrödinger
or Lippmann-Schwinger equation with this pseudopotential
should approximate the scattering amplitude derived from the
full chiral coupled-channel calculation as closely as possible.

Consider an s-wave antikaon-nucleon system in nonrela-
tivistic quantum mechanics. The Schrödinger equation for the
radial wave function u(r) is (with h̄ set to 1)

− 1

2µ

d2u(r)

dr2
+ U (r, E)u(r) = Eu(r). (10)

The potential U (r, E) is complex and energy dependent.
The reduced mass is given by µ = MNmK/(MN + mK ). By
starting from the effective interaction V eff(

√
s) of Eq. (5), the

ansatz for an equivalent local pseudopotential is

U (r, E) = g(r)

2 ω̃

MN√
s

V eff(
√

s), (11)

with a form factor g(r) representing the finite range of the
interaction. The reduced energy ω̃ is given by

ω̃(
√

s) = ωK EN

ωK + EN

,

with

EN = s − m2
K + M2

N

2
√

s
, ωK = s − M2

N + m2
K

2
√

s
.

The energy E appearing in the Schrödinger equation (10) is
related to the total c.m. energy of the two-body system by

E = √
s − MN − mK.

For orientation, consider the zero-range I = 0 K̄N pseu-
dopotential generated by the leading Weinberg-Tomozawa
term in the heavy-baryon limit (MN → ∞); inserting V eff =
V11 in Eq. (11) one has

UI=0
WT (r) = − 3

4 f 2
δ3(�r).

With f � 0.1 GeV, the volume integral of this potential is∫
d3rUWT � −0.58 GeV.
The coupled-channel dynamics encoded in Ṽ11 of Eq. (5)

involves finite range effects through the π� loops, which are
given a minimal parametrization in terms of the form factor
g(r). We choose a Gaussian ansatz

g(r) = 1

π3/2b3
e−r2/b2

,

with the range parameter b. This range parameter should
reflect the subtraction constant aK̄N used in the chiral coupled-
channel approach.

B. Comparison of scattering amplitudes

The K̄N scattering amplitude FK̄N derived from the
potential U (r, E) is now calculated in the usual way. The
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FIG. 10. (Color online) Scattering

amplitudes FK̄N from the local potential
U (r, E) (thick lines) and from the ampli-
tude T eff in the original chiral coupled-
channel approach (thin lines) obtained
by using the HNJH model for the I =
0 channel (left) and the I = 1 channel
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s-wave scattering amplitude is

FK̄N = 1

k(cot δ0 − i)
,

where the phase shift δ0 is determined by the asymptotic wave
function,

u(r)

r
→ A0[cos δ0j0(kr) − sin δ0n0(kr)] for r → ∞,

with spherical Bessel and Neumann functions j0 and n0.
The wave number k = √

2µE becomes imaginary below
threshold, E < 0.

Given V eff(
√

s) as input, the range parameter b is then
fixed by requiring that the real part of the K̄N amplitude
develops its zero at

√
s � 1420 MeV to satisfy the condition

for the quasibound K̄N state at this point. For the HNJH
model, this condition determines b = 0.47 fm. Note that this
scale is somewhat smaller than the typical range associated
with vector meson exchange, the picture that one has in mind
as underlying the vector current interaction generating the
Weinberg-Tomozawa term.

With b = 0.47 fm fixed, the I = 0 and I = 1 amplitudes
generated by the equivalent local pseudopotential U (r, E)
reproduce the full K̄N coupled-channel amplitudes perfectly
well in the threshold and subthreshold region above

√
s �

1420 MeV. However, at energies below the quasibound state,
the local ansatz [Eq. (11)] does not extrapolate correctly
into the far-subthreshold region. One has to keep in mind
that the complex, off-shell effective K̄N interaction is in
general nonlocal and energy dependent to start with. Its
detailed behavior over a broader energy range cannot be
approximated by a simple local potential without paying the
price of extra energy dependence. This is demonstrated in
Fig. 10. In the subthreshold region below

√
s < 1400 MeV,

the amplitudes calculated with the local potential overesti-
mate the ones resulting from the coupled-channel approach
significantly, in both I = 0 and I = 1 channels. One observes
that subthreshold extrapolations using a naive local potential
tend to give much stronger K̄N attraction than what chiral
coupled-channel dynamics actually predicts. Corrections to
the energy dependence of the local potential need to be applied
to repair this deficiency.

C. Improved local potentials and uncertainty analysis

The necessary corrections just mentioned can easily be
implemented by introducing a third-order polynomial in

√
s,

U (r = 0, E) = K0 + K1
√

s + K2(
√

s)2 + K3(
√

s)3,

1300 �
√

s � 1450 MeV,

4

2

0

-2

F K
N

 [
fm

]

1440140013601320

s1/2 [MeV]

 Re (corrected)
 Re (original)

I=0

-1000

-800

-600

-400

-200

0

U
(0

) 
[M

eV
]

1440140013601320

s1/2 [MeV]

I=0

0.8

0.6

0.4

0.2

0.0

F K
N

 [
fm

]

1440140013601320

s1/2 [MeV]

 Im (corrected)
 Im (original)

I=1

-500

-400

-300

-200

-100

0

U
(0

) 
[M

eV
]

1440140013601320

s1/2 [MeV]

I=1

FIG. 11. (Color online) Upper
panels: Strength of the fitted potential
at r = 0 (thick lines) and the strength
without correction [Eq. (11); dotted
lines] with the HNJH model. Lower
panels: Scattering amplitude f from
the local potential (thick lines) and the
amplitude Teff. in the original chiral
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TABLE IV. Range parameters b of
the local potential and the subtraction
constants aK̄N used in the chiral unitary
approach.

Reference b (fm) aK̄N

ORB [35] 0.52 −1.84
HNJH [34] 0.47 −1.96
BNW [29] 0.51 −1.86
BMN [33] 0.41 −2.21

to reproduce the full coupled-channel result for FK̄N at
√

s <

1400 MeV. The coefficients Ki are summarized in Tables V
and VI (rows of the HNJH model). The strength of the fitted
potential at r = 0 is shown in the upper panel of Fig. 11 by
thick lines. The strength of the potential in its original form
[Eq. (11)] is also shown by the dotted lines.

The resulting scattering amplitudes are presented in the
lower panel of Fig. 11 together with the amplitudes resulting
from the chiral unitary approach. As seen in the figure, a
20% reduction of the local potential is required to match
the amplitudes in the energy region

√
s < 1400 MeV. As a

consequence the energy dependence of the local potential
becomes stronger. The matching of the amplitude in the
energy range around the quasibound state and close to
threshold remains unchanged, keeping the range parameter
b at its previously determined value. With its improved energy
dependence, the overall matching of the “equivalent” local
K̄N potential is now quite satisfactory, but the attraction in
the far-subthreshold region is substantially weaker than naively
anticipated.

To estimate again possible uncertainties, we apply the
corrections to the energy dependence of the potentials obtained
with all four variants of the chiral models studied in Sec. III C.
The range parameters are determined so as to reproduce the
position of the quasibound K̄N state at the same energy

√
s �

1420 MeV as found with the coupled-channel amplitudes.
The resulting values of the range parameter b are summarized
in Table IV. The expected reciprocal relationship between
subtraction constants aK̄N and Gaussian range parameters is
evident.

In all cases studied, the local potential produces scattering
amplitudes that are systematically too large (i.e., too strongly
attractive) at the lower energy side, when compared with the
amplitudes of the chiral coupled-channel approach. Repeating
the procedures as before, we improve the potentials, correcting

the far-subthreshold energy dependence by matching the
scattering amplitudes to the chiral coupled-channel results.
These corrections are again performed by adjusting the third-
order polynomial [Eq. (IV C)] in each case. The coefficients
of the polynomial fit are collected in Tables V and VI.
The comparison between uncorrected and corrected potential
strengths at the origin, U (r = 0, E), is shown in Figs. 12
and 13. The resulting scattering amplitudes are presented in
Fig. 14. Note that all the potentials pictured in the right-hand
panels of Figs. 12 and 13 are “equivalent” in that they
reproduce the same scattering amplitudes both on- and off-
shell (below threshold) to good approximation. The differences
in the potential strengths at r = 0 are largely balanced by
differences in the range parameters b, such that the volume
integrals

∫
d3r U are in a reduced band (illustrated by the

smaller spread of V eff in Fig. 6) for all different versions of
the chiral effective K̄N interactions.

D. Comparison with the phenomenological AY potential

Finally, let us compare our results with the phenomenolog-
ical Akaishi-Yamazaki (AY) potential [14,21]. This potential
was introduced on purely phenomenological grounds by fitting
the K̄N scattering data and the PDG value of the �(1405)
resonance. In K̄N -π� coupled channels with I = 0, the AY
potential reads

vij (r) =
(−436 −412

−412 0

)
exp[−(r/b)2] (MeV),

with b ∼ 0.66 fm. Apart from the missing energy dependence,
there are further qualitative differences between this potential
and the interaction based on chiral SU(3) dynamics. The
most drastic difference is the absence of a direct π� → π�

coupling in the phenomenological potential. This is in sharp
contrast with chiral dynamics, since the attractive interaction
in the diagonal π� channel is sufficiently strong to generate a
resonance, as we have discussed in the previous sections. The
coupled-channel dynamics leads to the quasibound structure
in the K̄N system at around 1420 MeV.

The phenomenological AY model [21] starts from the
“ansatz” that the �(1405) resonance is a K−p bound state. It
shares this principal feature with chiral dynamics. However,
the absence of the π� → π� coupling in the AY model has
as its consequence that the �(1405) is represented by only
a single pole and the mass spectrum in the π� channel is
identical to that in the K̄N channel. This incorrectly implies a
K̄N single-channel interaction that is too strongly attractive.

TABLE V. Coefficients of the polynomial of the effective interaction for I = 0.

Reference K0 (105 MeV) K1 (102 MeV0) K2 (10−1 MeV−1) K3 (10−4 MeV−2)

Re Im Re Im Re Im Re Im

ORB [35] −3.9321 −4.5613 8.9088 10.097 −6.709 −7.4364 1.6771 1.8219
HNJH [34] −5.1020 −4.3660 11.453 9.6378 −8.5527 −7.0773 2.1218 1.7285
BNW [29] −4.3330 −6.6603 9.8635 14.710 −7.4619 −10.812 1.8738 2.6443
BMN [33] −6.6455 −4.0390 14.873 8.8408 −11.075 −6.4345 2.7401 1.5568
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TABLE VI. Coefficients of the polynomial of the effective interaction for I = 1.

Reference K0 (105 MeV) K1 (102 MeV0) K2 (10−1 MeV−1) K3 (10−4 MeV−2)

Re Im Re Im Re Im Re Im

ORB [35] −6.2984 −0.63191 13.939 1.3709 −10.272 −0.98412 2.5195 0.23337
HNJH [34] −4.4348 −0.67630 9.8340 1.4675 −7.2582 −1.0532 1.7818 0.24953
BNW [29] −2.6295 −0.48818 5.8297 1.0484 −4.2999 −0.74387 1.0542 0.17396
BMN [33] −7.5894 −0.52306 16.797 1.1074 −12.375 −0.77213 3.0330 0.17669
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FIG. 12. (Color online) Strength of the local I = 0 K̄N potential U (r, E) at r = 0 obtained by using different models as explained in
the text. Left: Uncorrected potentials, with real parts shown as dotted lines. Right: Corrected potentials, with real parts shown as solid lines.
Imaginary parts are depicted as dashed lines. The ordering of model assignments is the same in both panels.
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FIG. 13. (Color online) Strength of the local I = 1 K̄N potential U (r, E) at r = 0 obtained by using different models as explained in
the text. Left: Uncorrected potentials, with real parts shown as dotted lines. Right: Corrected potentials, with real parts shown as solid lines.
Imaginary parts are depicted as dashed lines. The ordering of model assignments is the same in both panels.
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FIG. 15. (Color online) Comparison of the scattering amplitudes with phenomenological potential. Thick lines denote the results of the
potentials derived in this work and thin lines denote the results of the phenomenological potential [21]. The real parts are shown by solid lines
and the imaginary parts are depicted by dotted lines. Left: I = 0 channel. Right: I = 1 channel.

In Ref. [21], the equivalent single-channel potentials are
given (in MeV) as

vI=0
K̄N

(r) = (−595 − i83) exp[−(r/0.66 fm)2],
(12)

vI=1
K̄N

(r) = (−175 − i105) exp[−(r/0.66 fm)2].

The amplitudes resulting from these potentials are shown in
Fig. 15 by thin lines, to be compared with our present results
(thick lines). The behavior of the amplitudes derived from the
phenomenological potentials is seen to be drastically different
from the chiral dynamics prediction, especially in the lower
subthreshold energy region. The difference is certainly beyond
the theoretical uncertainties estimated in Sec. III C. As we
discussed, chiral dynamics locates the �(1405) in the K̄N

amplitude around 1420 MeV, whereas the phenomenological
AY potential uses the PDG value of around 1405 MeV. The
difference is not only in the position of the �(1405) but also in
the magnitude of the amplitude. Note also that the imaginary
parts remain finite even below the π� threshold, since there
is no energy dependence in the potentials (12).

However, above the K̄N threshold, both chiral and
phenomenological amplitudes behave similarly as both ap-
proaches are adjusted to describe existing data. These and
the previous observations clearly point out the considerable
ambiguities involved in the extrapolation of the amplitudes
below the K̄N threshold. Existing data sets are not sufficient
to constrain the K̄N interaction in the energy region relevant
for subthreshold antikaon-nucleon physics. At this point the
minimal theoretical constraints from chiral SU(3) dynamics
turn out to be of crucial importance.

V. SUMMARY

We have constructed an effective K̄N potential in coordi-
nate space based on chiral SU(3) dynamics. This procedure
involves two steps:

1. transforming the coupled-channel dynamics into a single
channel K̄N interaction and

2. translating this effective interaction to an “equivalent” local
potential.

Step 1 is exact within the chiral coupled-channels approach,
whereas step 2 involves approximations.

In performing step 1 we have systematically investigated
how the dynamics of the π� channel (and of other channels,
which turn out not to be important) influence the effective
K̄N interaction. It is found that the π� interaction generates
a broad resonance whereas the K̄N interaction produces a
weakly bound state. The attractive forces in the K̄N and π�

coupled channels cooperate to form the �(1405) as a K̄N

quasibound state embedded in the π� continuum.
As a consequence of the two-pole structure of the coupled

K̄N -π� system, the K̄N quasibound state is located at√
s � 1420 MeV, at a mass shifted upward from the PDG

value of �(1405) deduced from the maximum of the π� mass
spectrum.

We have examined several versions of chiral SU(3) dy-
namical models to estimate theoretical uncertainties. The
occurrence of the quasibound state at

√
s � 1420 MeV

turns out to be model independent, irrespective of the wide
spread in the locations of the second pole. This implies
that the K̄N binding energy associated with the �(1405)
is actually not 27 MeV but only 12 MeV, indicating sig-
nificantly less attraction in the effective K̄N interaction
than previously anticipated on purely phenomenological
grounds.

In step 2, we have constructed an equivalent local potential,
with a Gaussian r-space form factor reflecting finite range
effects. The range parameter is adjusted so as to reproduce
the position of the K̄N quasibound state and is found
to be somewhat smaller than that expected from a vector
meson exchange picture. In any case, a local parametriza-
tion of the K̄N effective interaction works only with an
adjustment of its energy dependence. This extra energy
dependence considerably reduces the attractive strength of
the potential in the subthreshold region as compared to naive
expectations.

Uncertainties concerning subthreshold extrapolations of the
effective K̄N interaction still remain as long as the constraints
from threshold K̄N data and from the π� mass spectrum in
the I = 0 channel are relatively weak and partly ambiguous.
There is a strong demand for further improvements in this
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empirical data base. Nonetheless, the theoretical constraints
on the strengths of the K̄N and π� interactions from chiral
SU(3) dynamics are certainly mandatory to reduce the freedom
of extrapolation.

The potential so obtained suggests itself for applications in
antikaon-nuclear few-body calculations. Results for the K−pp

prototype system are reported in Ref. [27]. The overall picture
presented here, constrained by chiral SU(3) dynamics, differs
strongly from previous purely phenomenological approaches,
in that the resulting effective potential is significantly less
attractive in the energy range relevant to the discussion of
deeply bound antikaon-nuclear clusters.
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