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Skyrme forces versus relativistic models: Reexamining instabilities
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Experimental constraints are useful tools in helping to decide, among a number of candidates, which is the
more suitable equation of state for nuclear matter. In this work we compare nonrelativistic Skyrme-type and
relativistic Walecka-type models when they are used to describe processes related to binary system instabilities
and phases coexistence. In general, nonrelativistic and relativistic models predict somewhat different behaviors,
but we found that one of the parametrizations of the density-dependent hadronic model shows some similarities
with nonrelativistic models in many of the features addressed in our investigation. We have checked that, once
experimental data obtained in heavy-ion collisions are extrapolated to account for symmetric and neutron matter,
some of the models discussed in the present work, both relativistic and nonrelativistic, should be ruled out.
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I. INTRODUCTION

Finite nuclei properties and nuclear matter have been rea-
sonably well described by different versions of nonrelativistic
and relativistic models.

In principle, there are at least two competing conceptions
underlying theoretical approaches to this problem. One can
start from a microscopic point of view, by describing the
physics of nucleon-nucleon interactions through two-nucleon
potentials that fit as well as possible the few-nucleon ob-
servables, such as the deuteron binding energy and scatter-
ing data [1]. Microscopic models are very important and
aim at a full description of nuclear physics. Nevertheless,
the many-nucleon properties then derived, usually through
(non)relativistic Brueckner-Hartree-Fock (BHF) calculations,
present discrepancies even for well-known observables, such
as nuclear matter binding energy and its density at saturation,
which are in fact correlated [2]. Alternatively, a second
approach arises by fitting directly some of the many-nucleon
observables based on a mean-field approach, allowing the
construction of thermodynamic equations of state to study
nuclear matter properties. Next we restrict ourselves to the
latter strategy, although it is fair to mention that one of the
relativistic models we have chosen to use was parametrized
so as to reproduce some microscopic nucleon properties
previously obtained through relativistic BHF calculations
[3]. The Skyrme force model, one of the most commonly
used nonrelativistic models, has been extensively used for a
long time. Since one of its first versions [4], the effective
Skyrme interaction has been improved and many different
parametrizations have been tested. The same has happened
with relativistic models, with quantum hadrodynamics (QHD),
also known as the Walecka model [5], being one of the most
used models. Before embarking on a discussion of nuclear
matter instabilities and a comparison between results obtained
with both types of models, we revisit some of their history.

In addition to what is already known about Skyrme
models [4], we bring here, based on few-nucleon universality
properties, a new insight to the understanding of how such

a simple model can describe reasonably well nuclear matter
properties. It is well known that in few-nucleon physics, the
deuteron and triton are low-energy systems with large size
scales in which the range of the potential is smaller than
the corresponding healing distance of the wave functions. This
fact, by itself, allows the nucleons to have a large probability of
being outside the interaction range. Therefore, some properties
of such systems can be described without detailed knowledge
of the nucleon-nucleon interaction but, instead, by assuming a
renormalized pairwise s-wave zero-range force [6]. However,
in a many-nucleon scenario, dominated by interactions with
a range smaller than the nucleon-nucleon scattering lengths,
and by considering the triton and 4He nuclear sizes as large
as the force range, the picture of a nucleus would be one
of a many-body system with the wave function being an
eigenfunction of the free Hamiltonian almost everywhere.
In addition, the Pauli principle allows only up to four nucleons
in the same state, forbidding certain particular configurations
in which more particles would overlap. Under such assump-
tions, it was conjectured that the details of the long-wavelength
structure of nuclei may be given by the free Hamiltonian and
by few-nucleon scales, which determine the wave function at
short distances [7]. This phenomenology is strongly based
on the Thomas-Efimov effect [8] and is valid only in the
nonrelativistic regime. We believe that such considerations are
the reason why contact interaction models, such as those based
on Skyrme forces [9], with zero range, describe reasonably
well some properties of many-nucleon systems.

Now we move to relativistic models. In its simplest
version, the Walecka model for infinite nuclear matter [5],
based on relativistic field theory in a mean-field approach,
depends, in principle, on four parameters. These are the scalar
(vector) mσ (mω) meson masses and the gσ (gω) meson-nucleon
coupling constants. However, in the equations of state these
constants curiously combine in such a way that only the
dependence on C2

σ = g2
σM2/m2

σ and C2
ω = g2

ωM2/m2
ω appear,

where M is the nucleon mass. Therefore, since C2
σ and C2

ω

are fitted to reproduce the nuclear matter bulk properties,
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values of mσ and mω become irrelevant in the Walecka
model for infinite nuclear matter in a mean-field approach,
which cannot distinguish between arbitrary values of mesonic
masses. Indeed, in the limit of infinite mesonic masses, the
Walecka model provides the same equation of state obtained
in its original formulation [10]. However, the Walecka model
does not allow for saturation in its nonrelativistic limit
and still needs relativistic corrections to avoid the collapse
of the system. This can be seen when we consider the
nonrelativistic limit of the nuclear matter energy per nucleon,
ENR = (C2

ω − C2
σ )ρ/2M2 + (3/10M)(3π2ρ/2)2/3, where ρ is

the baryon density. As ρ increases, because the scalar coupling
constant is greater than the vector one, the first term dominates,
preventing any saturation. It is precisely a relativistic mech-
anism that is responsible for saturation in most relativistic
models.

Although the Walecka model was successful in describing
nuclear matter saturation, it unfortunately failed to repro-
duce its incompressibility. More adequate versions of the
Walecka model were developed, and its nonlinear version,
the nonlinear Walecka model (NLWM), includes scalar [11]
and sometimes vector meson self-interactions [12]. Density-
dependent hadronic models (DDHMs) were also constructed
as an extension of the NLWM, and the density dependence
is normally introduced through the couplings [3,13,14] or
through different meson field interactions [15].

The nonrelativistic limit of the NLWM for infinite sym-
metric nuclear matter has been qualitatively discussed in
connection with the Skyrme model [16]. In this case, the cubic
nonlinear self-interaction of the scalar field is introduced to
rescue nonrelativistic saturation. As already mentioned, with
new free parameters given by the nonlinear self-interactions
of the scalar field, the Walecka model was then improved to fit
observables such as the nuclear matter incompressibility and
the spin-orbit splitting of finite nuclei. As a side remark, note
that there is a correlation between the effective nucleon mass
(m∗) at the saturation nuclear matter density and the spin-orbit
splitting for several nuclei [17]. This correlation assures good
theoretical L-S splittings for several finite nuclei if m∗ lies
between 0.58 and 0.62.

In general, relativistic hadronic models have a relativistic
mechanism for nuclear matter saturation, which occurs at
a density at which the scalar and the vector potentials
largely cancel each other. However, nonrelativistic saturation
mechanisms may be obtained from Yukawa-type interactions,
which are repulsive at very short distances and attractive at a
medium range.

In a recent work [18] a low-density expansion of the NLWM
energy functional for various parametrizations was performed
and the role of the isospin was investigated. It was shown that
for the isoscalar channel all the relativistic models considered
behave in a similar way. This is true for the binding energy,
isoscalar interaction term, and effective mass. The relativistic
density-dependent models give a closer description to the one
obtained by the nonrelativistic models. The isovector channel
has proved to be a different problem: There is a quite big
discrepancy even between models within the same framework.
Relativistic models generally give a very poor description of
this channel.

In the present work we compare, for asymmetric nuclear
matter, hadronic relativistic models with some nonrelativistic
parametrizations of the Skyrme model. We study thermody-
namic instabilities and phase coexistence. We shall see that,
even in a nonrelativistic model that follows very closely the
behavior of a relativistic model for some bulk properties, the
situation may change when we address some specific issues
within the instability region of the phase diagram, such as, for
instance, the isospin distillation process. In Sec. II we present
the formalism for nonrelativistic and relativistic approaches.
In Sec. III we display the boundaries of phase coexistence
(binodal) for the models and present their critical parameters.
In Sec. IV we discuss the instability regions connected to
spinodals, neutral charge matter under β equilibrium, isospin
distillation, and stellar matter. In Sec. V we investigate the
high-density region of the models regarding experimental
predictions [19]. Finally, in Sec. VI the main conclusions are
summarized.

II. FORMALISM

We start by outlining the main properties and displaying the
most important equations of the Skyrme-type and relativistic
models we want to discuss in the present work.

A. Skyrme-type models

The Skyrme interactions are normally parametrized through
four parameters, t0, t1, t2, and t3. At the microscopic level, the
claim is that t1 and t2 account for finite-range effects acting
on even- and odd-parity states, whereas t0 and t3 are the
strengths of zero-range two- and three-nucleon interactions,
respectively. In a standard mean-field approach for symmetric
nuclear matter at zero temperature, this model furnishes the
following energy per nucleon [4]:

E(ρ) = T0(ρ/ρ0)2/3 + 3
8 t0ρ + 1

16 t3ρ
1+σ

+ 3
80 (3t1 + 5t2)ρk2

F , (1)

where T0 = 3k02

F /10M is the average kinetic energy, ρ =
(2/3π2)k3

F is the nuclear density, M is the nucleon mass, kF is
the Fermi momentum, and σ is a model-dependent parameter.
At saturation, ρ and kF are designated by ρ0 and k0

F . Note here
that t1 and t2 combine together in the mean-field approach to
form a single strength parameter.

We start by generalizing for finite temperature and asym-
metric nuclear matter Skyrme equation of state (EoS). For
T = 0 MeV, the corresponding energy density can be found in
Ref. [20]. Here, we present the pressure,

P = t0

8
ρ2[2(x0 + 2) − (2x0 + 1)H2] + t3

48
(σ + 1)ρσ+2

× [2(x3 + 2) − (2x3 + 1)H2]

+ 1

8

(
3π2

2

)2/3

ρ8/3(aH5/3 + bH8/3)

+ 2

3

∫
d3p

p2

2M

1

e
β(p2−p2

Fq
)/2M + 1

, (2)
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TABLE I. Parameters of Skyrme models.

Force PRC45 [22] SIII [20] SLy230a [20]

t0 (MeV fm3) −1089.00 −1128.75 −2490.23
t1 (MeV fm5) 0.00 395.00 489.53
t2 (MeV fm5) 0.00 −95.00 −566.58
t3 (MeV fm3+3σ ) 17480.40 14000.00 13803.00
x0 0.50 0.45 1.1318
x1 0.00 0.00 −0.8426
x2 0.00 0.00 −1.00
x3 −0.50 1.00 1.9219
σ 1 1 1

6

with
a = t1(x1 + 2) + t2(x2 + 2), (3)

b = 1
2 [t2(2x2 + 1) − t1(2x1 + 1)] , (4)

Hn(y) = 2n−1[yn + (1 − y)n], (5)

where the parameters x1, x2, and x3 are given in Table I,
β = 1/kBT , q refers either to protons (p) or neutrons (n),
and the last integral is in fact the sum of two terms, one
for each species. The kinetic term in Eq. (2) can be put in
the form of a Fermi integral Fα(ηq) with ηq(ρ − q, T ) =
F−1

1/2(
√

πλ3ρq/2γ ), where λ =
√

2πh̄2/MT is the thermal
de Broglie wavelength, M = 939 MeV is the nucleon mass,
and γ = 2 is the degeneracy factor for neutrons and protons
separately. The nuclear density is ρ = ρp + ρn and y = ρp/ρ

is the asymmetry factor given by the proton fraction.
The Fermi integrals may be expanded in the parameter λ3ρ

and they acquire different forms depending on their size [21].
In the regime of a nearly nondegenerate Fermi gas, the resulting
EoS has an ideal gas character in leading order plus higher
order corrections, and it can be cast in the form

P = f (T )
h̄2

5M

(
3π2

2

)2/3

ρ5/3H5/3 + t0

8
ρ2[2(x0 + 2)

− (2x0 + 1)H2] + t3

48
(σ + 1)ρσ+2[2(x3 + 2)

− (2x3 + 1)H2] + 1

8

(
3π2

2

)2/3

ρ8/3(aH5/3 + bH8/3)

+ Tρ + T λ3

8
√

2γ
[1 + (2y − 1)2]ρ2, (6)

where,f (T ) is a Kronecker δ symbol δ0T .
In this approximation, the equations of state can be obtained

analytically. Indeed, by using the Gibbs-Duhem relation and
following the same procedure as developed in Ref. [22], the
chemical potentials are given by

µq = f (T )
h̄2

2M

(
3π2

2

)2/3

ρ2/3H5/3 + 1

5

(
3π2

2

)2/3

× ρ5/3(aH5/3 + bH8/3) + t0

4
ρ[2(x0 + 2)

− (2x0 + 1)H2] + t3

48
(σ + 2)ρσ+1[2(x3 + 2)

− (2x3 + 1)H2] ± 1

2
[1 ∓ (2y − 1)]

×
[
f (T )

3h̄2

10M

(
3π2

2

)2/3

ρ2/3H ′
5/3

− t0

8
ρ(2x0 + 1)H ′

2 − t3

48
ρσ+1(2x3 + 1)H ′

2

+ 3

40

(
3π2

2

)2/3

ρ5/3(aH ′
5/3 + bH ′

8/3)

]

+ T ln

(
λ3

γ
[1 ± (2y − 1)]

ρ

2

)

+ T λ3

2
√

2γ
[1 ± (2y − 1)]

ρ

2
, (7)

with the upper sign for protons and the lower sign for neutrons
and H ′

n(y) = dHn/dy.
For the sake of completeness we also give the energy density

divided by ρ:

E
ρ

= f (T )
3h̄2

10M

(
3π2

2

)2/3

ρ2/3H5/3

+ t0

8
ρ[2(x0 + 2) − (2x0 + 1)H2]

+ t3

48
ρσ+1[2(x3 + 2) − (2x3 + 1)H2]

+ 3

40

(
3π2

2

)2/3

ρ5/3(aH5/3 + bH8/3)

+ 3T

2
+ 3T λ3

16
√

2γ
[1 + (2y − 1)2]ρ. (8)

Let us remark that at finite temperature the expansion used
in Eqs. (6)–(8) works well only for T > 5 MeV.

The symmetry energy at T = 0, Esym = 1
8

∂2(E/ρ)
∂y2

∣∣
ρ,y=0.5, is

given in these nonrelativistic models by

Esym = h̄2

6M

(
3π2

2

)2/3

ρ2/3 − t0

8
(2x0 + 1)ρ

− t3

48
(2x3 + 1)ρσ+1 + 1

24

(
3π2

2

)2/3

ρ5/3[a + 4b].

(9)

The behavior of this quantity as a function of the nuclear
density can be seen in Fig. 1. In this figure we have also
included, for comparison, the symmetry energies obtained
within relativistic nuclear models. The results are discussed
in the next section. From the symmetry energy, which is
repulsive, the density symmetry, given by the slope of the
curve, and the symmetry incompressibility, given by its
curvature, are, respectively, defined by

L = 3ρ0

(
∂Esym

∂ρ

)
ρ=ρ0

= h̄2

3M

(
3π2

2

)2/3

ρ
2/3
0

− 3t0

8
(2x0 + 1)ρ0 − t3

16
(2x3 + 1)(σ + 1)ρσ+1

0

+ 5

24

(
3π2

2

)2/3

(a + 4b)ρ5/3
0 , (10)
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FIG. 1. Symmetry energy versus density.

Ksym = 9ρ2
0

(
∂2Esym

∂ρ2

)
ρ=ρ0

= − h̄2

3M

(
3π2

2

)2/3

ρ
2/3
0

− 3t3

16
(2x3 + 1)(σ + 1)σρσ+1

0

+ 5

12

(
3π2

2

)2/3

(a + 4b)ρ5/3
0 , (11)

where ρ0 is the saturation nuclear matter density. These last
three quantities allow the construction of an approximate EoS,
largely used to study nonrelativistic nuclear matter and finite
nuclei behavior [23],

E(ρ, δ)

ρ
= −B

A
+ 1

18
(K + Ksymδ2)

(
ρ − ρ0

ρ0

)2

+
[
J + L

3

(
ρ − ρ0

ρ0

)]
δ2, (12)

where B/A is the nuclear matter binding energy, δ = (ρn −
ρp)/ρ = 1 − 2y, J = Esym, and the volumetric incompress-
ibility at T = 0 is given by

K = 9

(
∂P

∂ρ

)
ρ=ρ0

= 3h̄2

M

(
3π2

2

)2/3

ρ
2/3
0 H5/3

+ 9t0

4
ρ0[2(x0 + 2) − (2x0 + 1)H2]

+ 3t3

16
(σ + 1)(σ + 2)ρσ+1

0 [2(x3 + 2) − (2x3 + 1)H2]

+ 3

(
3π2

2

)2/3

ρ
5/3
0 (aH5/3 + bH8/3). (13)

The phenomenological EoS, given in Eq. (12), has been
used to fit data for a large number of nuclei masses, by using
the nonrelativistic Thomas-Fermi statistical model with the
Myers-Swiatecki phenomenological nucleon-nucleon interac-
tion [24] and with Skyrme interactions [23]. However, robust
experimental data for Ksym and L are still missing.

In Table I we show the parameters of the Skyrme models
used in the present work.

B. Relativistic models

The Lagrangian density that incorporates two of the most
commonly used parametrizations of the NLWM [11,12] reads

L = ψ̄[γµ(i∂µ − gvV
µ − gρτ · bµ) − (M − gsφ)]ψ

+ 1

2

(
∂µφ∂µφ − m2

sφ
2
) − 1

3!
κφ3 − 1

4!
λφ4 − 1

4
�µν�

µν

+ 1

2
m2

vVµV µ + 1

4!
ξg4

v(VµV µ)2 − 1

4
Bµν · Bµν

+ 1

2
m2

ρbµ · bµ, (14)

where φ, V µ, bµ, and Aµ are the scalar-isoscalar, vector-
isoscalar, and vector-isovector meson fields, respec-
tively, �µν = ∂µVν − ∂νVµ, Bµν = ∂µbν − ∂νbµ − �ρ(bµ ×
bν), Fµν = ∂µAν − ∂νAµ, and τ is the baryon isospin. The
parameters of the model are the nucleon mass, of the order
of M = 939 MeV, depending on the parametrization used; the
masses of the mesons ms,mv , and mρ , which are also model
dependent; and the coupling constants between the nucleons
and the mesons. Nonlinear σ terms are also included in both
parametrizations through the constants κ and λ and a nonlinear
ω term is present in the TM1 [12] parametrization through the
constant ξ .

The Lagrangian density of the density-dependent model
(DDHM) we use next reads

L = ψ̄[γµ(i∂µ − �vV
µ − �ρτ · bµ) − (M − �sφ)]ψ

+ 1
2

(
∂µφ∂µφ − m2

sφ
2
) − 1

4�µν�
µν + 1

2m2
vVµV µ

− 1
4 Bµν · Bµν + 1

2m2
ρbµ · bµ. (15)

The parameters of the model are again the masses and
the couplings, which are now density dependent; that is, �s

replaces gs, �v replaces gv, and �ρ replaces gρ and these
density-dependent couplings �s, �v, and �ρ are adjusted to
reproduce some of the nuclear matter bulk properties shown
in Table II, by using the following parametrization:

�i(ρ) = �i(ρ0)hi(x), x = ρ/ρ0, (16)

with

hi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
, i = s, v, (17)

and

hρ(x) = exp[−aρ(x − 1)], (18)

with the values of the parameters mi, �i(ρ0), ai, bi, ci, and
di, i = s, v, ρ, given in Ref. [3]. From now on, we refer to
this parametrization of the DDHM as TW. This model does
not include self-interaction terms for the meson fields (i.e.,
κ = 0, λ = 0, and ξ = 0) as in NL3 or TM1 parametrizations
for the NLWM.

Within a simple mean-field approximation, the equations
for the energy density and pressure in terms of the baryonic
density (usually referred to as the equation of state) are easily
obtained. If one wants to follow the analytical calculations in
detail, refer to Refs. [25,26], among many other papers in the
literature.
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TABLE II. Nuclear matter properties.

NL3 [11] TM1 [12] TW [3] SIII [20] SLy230a
[20]

PRC45
[22]

B/A (MeV) 16.3 16.3 16.3 15.9 16.0 15.8
ρ0 (fm−3) 0.148 0.145 0.153 0.145 0.160 0.143
K (MeV) 272 281 240 355 230 362
Esym (MeV) 37.4 36.9 32.0 28.2 32.0 50.3
M∗/M 0.60 0.63 0.56 0.76 0.70 1.00
L (MeV) 123 117 55 10 44 140
Ksym (MeV) 108 36 −124 −392 −98 −23

Besides the EoS, the nuclear bulk symmetry energy, the
density symmetry, and symmetry incompressibility already
discussed in the context of the nonrelativistic models, are also
important physical quantities since their values and behavior
at ρ �= ρ0 are still not well established. The values of the sym-
metry energy are related with studies involving neutron skins,
radioactive nuclei, and neutron stars. In general, relativistic
and nonrelativistic models give different predictions for the
symmetry energy. At T = 0 the symmetry energy reads

Esym = k2
F

6E∗
F

+ ρ
g2

ρ

8mρ
2
, (19)

with kF = (3π2ρ/2)1/3 and E∗
F = (k2

F + M∗2)1/2. For the
model with density-dependent couplings, the gρ coupling
constant should be replaced by the �ρ coupling.

In Fig. 1 we have plotted the symmetry energy as a
function of ρ for densities below 2ρ0 and for three different
relativistic and nonrelativistic models. The NL3 and TM1
parametrizations have very similar behaviors, whereas TW
presents a somewhat different behavior at densities both lower
and higher than the nuclear saturation density. In Refs. [25–27]
extensive discussions involving the symmetry energy curve, its
slope and curvature, and its relation with stellar matter have
been presented for the models used in the present work and
some others. Among the nonrelativistic models there are large
differences in the symmetry energy: (a) PRC45 behaves like
NL3 and TM1 with a linear rise with density. This is due
to the simple isospin dependence on density of this model
for σ = 1 and t1 = t2 = 0. (b) SIII has a totally different
behavior, becoming negative for a density slightly above 2ρ0

and giving rise to an instability. This is a drawback of many
Skyrme models [28]. (c) Finally, the parametrization SLy230a,
specially designed to describe isospin asymmetric nuclear
matter, has a behavior very similar to the relativistic TW model.

In Table II the most important nuclear matter bulk properties
are shown for all the models discussed so far. In this table,
B/A is the binding energy, ρ0 is the saturation density, K

is the incompressibility, Esym is the symmetry energy, also
usually referred to as J, and the effective nucleon mass is M∗.
We have also included important quantities for the very low
density region (L and Ksym as already defined).

The negative values for Ksym is characteristic of the non-
relativistic models. It is also remarkable how nonrelativistic
SLy230a and relativistic TW models approach one another
in the value of the quantities shown in Table II, calculated

at the nuclear matter saturation density ρo. As we will see,
this fact can justify their similar phase diagrams. However, we
anticipate that this is not the case for the isospin distillation
process.

III. PHASE COEXISTENCE

Once the EoS is obtained, either for a Skyrme-type or a
relativistic model, the investigation of phase coexistence by
the Gibbs criteria for a two-fluid (or binary) system is possible:

P (ρa, ya, T ) = P (ρb, yb, T ), (20)

µp(ρa, ya, T ) = µp(ρb, yb, T ), (21)

µn(ρa, ya, T ) = µn(ρb, yb, T ), (22)

where a and b refer to different (liquid-gas) system phases.
To solve this set of equations, we use the method described
in Ref. [29] and summarized next. For a given pressure
and temperature, the chemical potentials µq are functions
only of ρ and y. Then, ya, yb, ρa, and ρb are found by
searching for rectangles with horizontal and vertical edges in
µq versus y diagrams, which amounts to satisfying the Gibbs
criteria. The same procedure was used in Refs. [30,31] for
different parametrizations of the NLWM. A standard situation
is displayed in Fig. 2.

For each value of pressure and temperature we obtain a pair
of points (ya, yb) that correspond to (ρa, ρb). By repeating
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FIG. 2. Geometric construction for the PRC45 model with T =
10 MeV and P = 0.1 MeV fm−3.
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the same procedure for a range of values of pressure and
temperature, the coexistence phase surface (usually called
binodal) can be constructed. In Fig. 3 we display a section
of the binodal surface at T = 10 MeV for the nonrelativistic
models (PRC45 [22], SIII, and SLy230a [20]) and the relativis-
tic ones (NL3 [11], TM1 [12], and TW [3]). Differences and
similarities are directly related to the way the isovector channel
is described in each model, completing the information given
by the symmetry energy shown in Fig. 1.

The figure shows that the coexistence points in the phase
diagram of the nonrelativistic SLy230a fall close to those of
the relativistic model TW, following the same behavior of the
symmetry energy displayed in Fig. 1. The parametrizations
NL3 and TM1 also show a similar behavior. The Skyrme
forces SIII and PRC45 keep apart from all the other models,
yielding much larger coexistence regions. These Skyrme
parametrizations give a poor description of the isovector
channel with several parameters important for the description
of this channel equal to zero. For example, for PRC45 the
quantities a and b defined in Eqs. (3) and (4) are zero.

Each point (y, P ) at the boundary of the binodal section at
this temperature represents a stable phase with a definite value
of the asymmetry factor y. Points with the same value of P and
different values of y represent two stable phases with different
proton fractions in mechanical and chemical equilibrium
coexisting at the temperature at which the section of the binodal
surface was cut. Nevertheless, these points do not represent
end points of a phase transition, as opposed to what happens
in the usual Maxwell construction for a simple fluid. In binary
systems, the constraint of a fixed overall asymmetry factor
prevents the phase transition from proceeding isobarically. In
other words, if one wants to have end points of the phase
transition at the same pressure, the temperature at each of
these points has to be different. These considerations justify a
somewhat loose terminology that characterizes the line of the
phase diagram that connects the end points of an isothermal
phase transition as a modified Maxwell construction for binary
systems. In this context, for a given temperature, the point of
the binodal section that corresponds to the maximum pressure
is called a critical point. A line of critical points appear in
the phase diagram, one for each temperature, ending at the

TABLE III. Critical parameters.

Tc (MeV) ρc (fm−3) y1 y2

SIII 0 0.1189 0.0041 0.9959
SLy230a 0 0.0843 0.0149 0.9851
PRC45 0 0.0829 0.0402 0.9598
NL3 0 0.0766 0.0567 0.9433
TM1 0 0.0774 0.0496 0.9504
TW 0 0.0818 0.0238 0.9762

SIII 10 0.0810 0.0575 0.9425
SLy230a 10 0.0608 0.1100 0.8900
PRC45 10 0.0692 0.1460 0.8540
NL3 10 0.0573 0.1785 0.8215
TM1 10 0.0601 0.1594 0.8406
TW 10 0.0628 0.1163 0.8837

SIII 20.47 0.0563 0.50 0.50
SLy230a 16.52 0.0535 0.50 0.50
PRC45 20.59 0.0561 0.50 0.50
NL3 14.55 0.0463 0.50 0.50
TM1 15.62 0.0486 0.50 0.50
TW 15.18 0.0509 0.50 0.50

highest temperature for which a binodal section is still present,
at which the critical point corresponds to symmetric matter
y = 1/2 as seen, for instance, in Refs. [32,33].

We have also calculated some critical parameters of
the nonrelativistic and relativistic models at T = 0, T =
10 MeV, and T = Tcmax . In Table III we show ρc and the proton
fractions for these temperatures.

From Table III, we see that the critical parameters for
SLy230a and TW differ very little. The SIII model has the
largest isospin asymmetry and largest critical density. The
other models have similar critical densities at zero temperature
but somewhat different isospin asymmetries, showing that they
describe the isospin channel differently. At T = 10 MeV,
the differences are small, with SIII giving the largest dif-
ference. Finally, the critical temperatures are larger for the
nonrelativistic models. However, the critical temperature for
SLy230a is very similar to the values obtained with the
relativistic models. Notice also that the critical temperatures
for symmetric matter are generally much lower for relativistic
than for nonrelativistic models, except for SLy230a.

IV. INSTABILITIES

In this section we discuss the regions of instability in
binary systems. Compared to one-component systems, such as
symmetric nuclear matter, there is a reasonable complexity in
such a study that deserves a theoretical explanation. After this
study, but still in this section, we present some applications.

A. Theory

Inside the coexistence region, there are spinodal regions
coming from the mechanical and the chemical instability
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regions, which can be found, respectively, by(
∂P

∂ρ

)
y,T

= 0 and

(
∂µq

∂y

)
P,T

= 0. (23)

However, as has been pointed out in Ref. [32], for asymmetric
nuclear matter, only the product of these two derivatives define
the system instability region.

Notice that at the critical point, which depends on ρ, y,

and T , both regions of metastability meet. Note also that the
chemical potentials do not depend on the pressure explicitly.
Therefore,(

∂µq

∂y

)
P,T

=
(

∂µq

∂y

)
ρ,T

+
(

∂µq

∂ρ

)
y,T

(
∂ρ

∂y

)
P,T

(24)

has to be considered. Since

(
∂ρ

∂y

)
P,T

= −

(
∂P

∂y

)
ρ,T(

∂P

∂ρ

)
y,T

, (25)

the instability boundaries can be obtained through(
∂µq

∂y

)
ρ,T

(
∂P

∂ρ

)
y,T

−
(

∂µq

∂ρ

)
y,T

(
∂P

∂y

)
ρ,T

= 0. (26)

At this point, we briefly discuss some formal issues con-
cerning the instability criteria. The thermodynamical stability
of a system at constant temperature is associated with the
convexity of the Helmholtz free energy F . For uniform
nuclear matter, F can be given as a function of the state
variables ρp, ρn, and T . So, the convexity of F is equivalent
to demanding the positivity of the matrix F , whose elements
are defined by

Fij ≡ ∂2f

∂ρi∂ρj

∣∣∣∣
T

= ∂µi

∂ρj

∣∣∣∣
T ,ρi

, (27)

where i, j stand for neutron and proton indices. The positivity
of F requires that both of its eigenvalues be positive. Since, for
dilute nuclear matter, it happens that one of its eigenvalues is
always positive [32], the instability region is determined when
the lowest eigenvalue becomes negative. In other words, the
boundaries of the spinodal instability region is determined by
the condition that detF vanishes:(

∂µp

∂ρp

)
ρ,T

(
∂µn

∂ρn

)
ρ,T

−
(

∂µp

∂ρn

)
ρ,T

(
∂µn

∂ρp

)
ρ,T

= 0. (28)

In fact, the last expression indicates that a unique instability
region should be considered instead of a chemical and a
mechanical one. As we show in the Appendix, this relation
is fully equivalent to the previous one, given by Eq. (26).

It is easy to show that the eigenvalues of F are given by

λ± = trF ±
√

(trF)2 − 4detF
2

, (29)

where trF and detF are, respectively, the trace and the de-
terminant of F . The corresponding eigenvectors components
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FIG. 4. Spinodal section at (a) T = 0 and (b) T = 10 MeV.

(δρ(±)
p , δρ(±)

n ) satisfy the following relation:

δρ±
p

δρ±
n

= λ± − Fnn

Fnp

. (30)

Therefore, in a typical situation, the eigenvector associated
with a negative λ− gives the direction of the instability
or the direction along which the phase separation occurs.
Furthermore, the ratio between its components characterizes
the isospin distillation effect, which is discussed later.

B. Spinodals

Any one of the set of Eqs. (26) or (28) has to be solved
numerically to obtain the thermodynamical spinodal for a
given equation of state. In Fig. 4, for T = 0 and T = 10 MeV,
we show the spinodals for the models we are considering
in this work. At both temperatures the SIII spinodal stands
out, both because it extends to a larger region for asymmetric
matter and because at ρp = ρn it shows a different curvature.
As before, TM1 and NL3 show very similar behaviors and the
same occurs for SL230a and TW. It is interesting to see that
PRC45 follows the behavior of SLy230a and TW, although the
binodal defined in terms of the pressure and proton fraction
had a very different behavior. In the ρp versus ρn plane this
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difference is not so large but still reasonable, as can be seen in
Fig. 5 where the spinodals and binodals are compared for the
nonrelativistic models.

It is worth emphasizing some points mentioned in
Ref. [32]. There are two possibilities of λ± eigenvalues. First,
only one eigenvalue is negative, implying that a single order
parameter is sufficient to describe the transition. Second, both
eigenvalues are negative, implying that two independent order
parameters should exist, indicating that more than two phases
can coexist. For all models studied here, both relativistic and
nonrelativistic, we have obtained only one negative eigenvalue,
suggesting therefore the need for a single order parameter.
In the context of asymmetric nuclear matter, it is a delicate
question because it addresses the issue of the order of the
phase transition itself either as first [32] or second order [33].

The region between the boundaries of the thermodynam-
ical spinodal and the coexistence curve is defined as the
metastability region. To illustrate this region, we present in
Fig. 5 the thermodynamical spinodal and coexistence curve
for each nonrelativistic model at some temperature, chosen to
be T = 10 MeV. In this figure, the points where the spinodal
and coexistence curves touch are symmetric with respect to
the line ρp = ρn and define a single value for ρ and y, which
is precisely the critical point at the temperature for which
the spinodal and binodal were obtained. These two points
coalesce on a single point of the diagonal line at the maximum
temperature for which there still is phase coexistence, which
corresponds to the end point of the critical line. Let us
remark that such symmetry is broken when one introduces
the Coulomb interaction [22]. For relativistic models the same
relation between the spinodals and binodals exists and the
same considerations apply.

C. Charge-neutral matter

Proceeding with the comparison between relativistic and
nonrelativistic models, we also investigate the thermody-
namical instabilities of asymmetric charge-neutral matter.
Here, electrons and neutrinos can be generated by β decay
as well as by inverse β-decay processes. We assume that

neutrinos escape this matter and, therefore, (µν = 0) charge
neutrality requires that µn = µp + µe. At zero temperature µe

is the relativistic Fermi energy of a Fermi gas, µe =√
k2
Fe

+m2
e .

β equilibrium requires kFe
= kFp

or, equivalently, ρp = ρe.
Let us remark that a nonrelativistic limit of µe makes sense
only when kFe < me, which leads to a region of negligible
values for the density. Therefore, the electrons will be included
only relativistically.

The pressure has to be calculated by including the electron
kinetic term added to the nucleonic part, E = EN + Ee:

P = ρ
∂E
∂ρ

− E, (31)

where µe = ∂Ee

∂ρ
.

From Fig. 4, without the β-equilibrium condition, one
sees that the size of the thermodynamical instability region
decreases as the temperature increases. Roughly speaking,
the same should happen if one considers charge neutrality,
since the addition of the electronic pressure to the nucleonic
one would play the same role as an increase of the temperature
in the nucleonic pressure alone. This behavior can be seen
in Ref. [25] for different relativistic models. At T = 0,
by imposing charge neutrality in the nonrelativistic models,
the electron pressure is so strong that no thermodynamical
instability was found. Consequently, within nonrelativistic
models, the requirement of charge neutrality will also eliminate
thermodynamical instability regions at finite temperature. At
least for SLy230a, the failure to find a thermodynamical
instability region in this context should come as no surprise,
since the relativistic TW model, with which it shares a number
of quantitative similarities [see Figs. 4(a) and 4(b)], does
not present such a region either. For the other nonrelativistic
models, which also turned out not to show this region, we
had no prior expectations, because it is already known that
thermodynamical instability with β equilibrium is strongly
model-dependent [26] and shows up clearly in the other
relativistic models studied here. Whether the absence of
this instability region is a universal characteristic of all
nonrelativistic models remains to be examined.

Although from the thermodynamical point of view, a
static approach, neutral matter formed by neutrons, protons,
and electrons would be stable, this is only a metastable
configuration. Any perturbation would clusterize matter since
such a configuration would have a smaller energy. For small
clusters this would be a behavior similar to the one that occurs
during a relativistic heavy-ion collision after a compound
nucleus configuration. However, in stellar matter we may have
new situations corresponding to the formation of large stable
clusters.

D. Isospin distillation

In the study of asymmetric nuclear matter, there is an
important observational scenario in which the gas phase
becomes more neutron-rich than the liquid phase [34]. This
happens for different nuclei with distinct proton/neutron ratios.
Therefore, it is an important issue to investigate how this
neutron-richness changes as a function of the nuclear density
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for a constant asymmetry parameter, as well as a function
of the asymmetry itself for a constant value of the nuclear
density. The quantity that allows this investigation is the
ratio δρp/δρn. In principle, one could expect that this ratio
would just follow the value of ρp/ρn that characterizes the
matter under investigation. This is however not the case since,
to minimize the energy, the system clusterizes in almost
symmetric clusters immersed in a neutron-rich gas. The ratio
δρp/δρn gives exactly this information. By comparing this
ratio for different models, we are able to discuss the fraction
of protons of the large fragments and of the evaporated small
fragments predicted by each one.

Next we plot the ratio δρ−
p /δρ−

n given by Eq. (30) in
Fig. 6 for all the models discussed in the present work. This
is an important quantity since it measures the efficiency in
restoring isospin symmetry: the larger its value, the greater
the efficiency. In Fig. 6(a), the ratio δρ−

p /δρ−
n is plotted as

a function of the proton fraction with ρ = 0.06 fm−3 and in
Fig. 6(b) it is plotted as a function of the density with y = 0.2
at T = 0 MeV in both cases.

One can see from Fig. 6(a) that the TW parametrization
of the DDHM has the smaller ratios of δρ−

p /δρ−
n among

the relativistic models. Although still larger than ρp/ρn, the
restoration of isospin symmetry in liquid nuclear matter is
not as efficient as in NL3 and TM1, except for the very low

densities. At subsaturation densities the symmetry energy of
the TW model is larger than the one of the NL3 model, as
seen from Fig. 1. This explains the behavior of the distillation
effect at very low densities, which is larger for TW than
for NL3. Moreover, although for NL3 and TM1 the ratio
δρ−

p /δρ−
n increases with ρ and attains values larger than 0.85

for ρ > 0.03 fm−3, the opposite occurs for TW: The ratio
δρ−

p /δρ−
n in the latter decreases with density, reaching values

below 0.7 at the larger density values in the unstable region.
This behavior is in accordance with the results obtained in
Ref. [32] within the density functional formalism with Skyrme
and Gogny effective forces.

Regarding the nonrelativistic models, the situation is as
follows. Now, instead of SLy230a, it is SIII that better
approaches the relativistic TW model. However, the similarity
occurs only for densities smaller than 0.05 fm−3 since the slope
is different. The ratio δρ−

p /δρ−
n is smaller for SLy230a, but it

presents the same kind of slope as TW. Looking back at Fig. 1
for densities below 0.1 fm−3, we see that the symmetry energy
has similar values for all the models, but the slope is quite
different. A comparison of the first and second derivatives of
the symmetry energy is important to understand the similarities
and differences among the models. Note also how NL3, TM1,
and PRC45 become similar.

The fact that similar behavior for the symmetry energy,
critical points, spinodal, and coexistence curves followed
by SLy230a and TW breaks down when we consider the
efficiency to restore isospin symmetry seems to be new and
interesting. Again, it shows that all the models have to be
investigated in as many as possible properties before one could
predict results. Our numbers robustly suggest that the isospin
distillation effect is strongly uncorrelated with other known
bulk properties and has to be taken into consideration when
selecting nuclear models for asymmetric nuclear matter. This
finding has surprised us, since it is known that fractionation
should reflect the features of the symmetry energy in nuclear
matter [35]. Notice here that, even for quantities such as L and
Ksym, which are expected to better reflect the features of the
very low density regime, it is still SLy230a, the nonrelativistic
model, that more closely approaches TW as seen in Table II.

E. Stellar matter nucleation

In Fig. 7 we show the EoS for stellar matter in β equilibrium
for the relativistic NL3 and TW models [Figs. 7(a) and 7(b)]
and the nonrelativistic SLy230a model [Fig. 7(c)]. Whenever
it crosses the spinodal curve, a region of nucleation is expected
to show up at the crust of the star. One can see that, for NL3
at T = 0, this is the case. However, at T = 10 MeV, the EoS
for stellar matter does not cross the corresponding spinodal.
The same behavior is seen for TM1 (not shown) and TW, for
which the crossing occurs at a larger density at T = 0 than
for NL3. At finite temperatures, one could expect that the
stellar EoS could include trapped neutrinos. Indeed, if these
are considered, the related EoS also crosses the respective
spinodal, as can be seen in Ref. [36], and the nonhomogeneous
phase is then also expected. In Fig. 7(c), we see that the
SLy230a model, following the relativistic ones, also crosses
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FIG. 7. Spinodal section at T = 0 and the β-equilibrium EoS
solution, µn = µp + µe for (a) NL3, (b) TW, and (c) SLy230a.

the spinodal curve at T = 0. In this aspect, let us remark
that PRC45, as well as SIII, also presents the same feature
(not shown). Therefore, relativistic and nonrelativistic models
have indicated the possibility of describing the instability
region in stellar matter at zero temperature. In this section,
we have only considered thermodynamical instabilities. The
densities at the inner edge of the crust of a neutron star

TABLE IV. Densities and proton fraction for the crossing
between stellar matter EoS and spinodal.

ρp (fm−3) ρn (fm−3) ρ (fm−3) y

SIII 0.0051 0.111 0.1161 0.044
SLy230a 0.0033 0.086 0.0893 0.037
PRC45 0.0058 0.081 0.0868 0.067
NL3 0.0014 0.064 0.0654 0.021
TM1 0.0017 0.068 0.0697 0.024
TW 0.0032 0.082 0.0852 0.037

should be determined by including the electron contribution
and dynamical instabilities. It has, however, been shown that
the instability region is only slightly smaller, so the values
obtained already give a good preview of an upper limit.

Here, let us mention that, since the regions bounded by the
spinodal at T = 0 are larger than those for finite temperature,
the figures show the upper density limits for the instability we
are discussing. By studying the inner boundary of a neutron-
star crust [37], the transition between matter in the crust of a
neutron star and the uniform matter in its interior was found to
be at ρ ≈ 0.09 fm−3. If we use ρ = ρn + ρp where the stellar
matter EoS crosses the spinodal in Fig. 7, we get results close
to that, particularly for the TW, SLy230a, and PRC45 models
(see Table IV). The TW and SLy230a models also show the
same proton fraction.

V. EOS HIGH-DENSITY BEHAVIOR

Up to now we have restricted our study of models for
asymmetric nuclear matter to the regime of small temperature
and small nuclear densities. Studies of relativistic hadronic
models at the extreme regime of density and temperature
have been largely studied in connection to quark-gluon plasma
phase transition [38]. It is natural that, the more the density
and the temperature increase, the more the hadronic models
differ, since they were built to fit nuclear matter observables
measured at the saturation density ρ0 and zero temperature.
To compress nuclear matter in the laboratory is a difficult task
and can only be achieved through very high energy heavy-ion
collision experiments [19,39]. In the very beginning of the
reaction, before expansion and freeze-out, projectile and target
overlap in a very small phase space volume, or, equivalently,
in a very high dense matter regime. For a very short time, a
sample of what may happen in neutron stars and core-collapse
supernovae is created.

In a very important recent work [19], measured values for
the directed transverse flow in collisions of 197Au nuclei at
incident kinetic energy per nucleon varying from about 0.15
to 10 GeV were analyzed. This study allowed the authors to
extrapolate the available data [40] for pressure at about 2ρ0 to
higher values of density for symmetric infinite nuclear matter,
as well as for neutron matter. Notice that the 197Au isotope
has approximately the same asymmetry parameter y as that of
supernovae, being distinct from that of neutron matter (y = 0)
and symmetric nuclear matter (y = 1/2). The extrapolation for
such matter has taken into account the uncertainty bands of the
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weakest (Asysoft) and strongest (Asystiff) density dependence
of the symmetry energy proposed [41], since experimental data
for symmetry energy at ρ > ρ0 are still poor [19].

In Fig. 8 we present the proposed experimental constraints
for neutron matter and symmetric nuclear matter, respectively
[19], together with results from the models we have studied.

In face of this result, only a few nuclear models fit the two
extreme experimental soft-stiff bands assigned as acceptable
for neutron matter theoretical model calculations. As we can
see, TW, TM1, and Sly230a data lie inside these bands. In the
case of symmetric nuclear matter, again the same models fulfill
this experimental constraint. At high density TM1 behaves
differently from NL3 owing to its nonlinear ω-meson term.

VI. CONCLUSIONS

We have studied nuclear nonrelativistic and relativistic
models for asymmetric nuclear matter. These models have
been compared for different applications. From the zero-
temperature regime, in which their free parameters are ad-
justed from nuclear matter bulk properties, up to the finite-
temperature regime, we studied the stable coexistence regime,

critical parameters, metastable spinodal regions, neutron-
matter in β equilibrium, and isospin distillation. At T =
0 MeV, the high-density regime predicted from the models
was confronted with experimental predictions [19]. We can
summarize our main findings as follows:

(i) The models studied differ in relation to their symmetry
energy as the density increases. Figure 1 signals that
this difference becomes extreme when we compare the
nonrelativistic SIII and PRC45 models, for which the
symmetry energy has opposing slopes at high densities.

(ii) The phase coexistence regions displayed in Fig. 3
also differ. These differences are also present on the
symmetric nuclear matter critical temperature shown in
Table III. The binodal surface of SLy230a approaches
that of the relativistic models, whereas that of the other
nonrelativistic models do not.

(iii) The spinodal curves plotted in Fig. 4 delimit the
instability region. Such curves can be put inside
the coexistence region, the binodals, as seen in
Fig. 5. The region between both defines the metastabil-
ity region predicted by each model. For each different
model, stability, instability and metastability regions
move together. These regions for the nonrelativistic
SLy230a approach well those obtained with the rela-
tivistic TW model.

(iv) By studying the charge-neutral matter with the β-
equilibrium process, no instability region was found for
the nonrelativistic models. In other words, no spinodal
region, even at T = 0 MeV, was obtained. It is, however,
not the case for the relativistic models we studied since,
among them, only the TW model lies in the same
situation as the nonrelativistic ones.

(v) The study of isospin distillation has surprised us. The
relativistic TW and the nonrelativistic SLy230a, which
gave similar behaviors for other nuclear properties as
well as in the spinodals and in the coexistence phase
regime, as seen in Figs. 1, 3, and 4, became not so
close when we considered restoration of the isospin
symmetry, although they did show the same slope, as
seen in Fig. 6. In contrast, SIII, which, for the other
nuclear properties, was quite different from the TW
model, has approached it in this kind of instability. The
same occurred for the PRC45, TM1, and NL3 models.
Therefore, we consider that this instability is strongly
model dependent and this issue shall be addressed in
further investigations.

(vi) We used all the models in a simplified stellar matter
modeling and have investigated whether β-equilibrium
EoS crosses the spinodal as shown in Fig. 7. Whenever
it does, a region of nucleation is expected at the crust
of the star. We have seen that at T = 0 MeV, SLy230a,
TW, and PRC45 EoSs (see Table IV) cross the spinodal
curve at about ρn = 0.08 fm−3 and ρ = ρn + ρp ≈
0.09 fm−3, close to the results obtained for some
interactions of Ref. [37]. At T = 10 MeV, none of the
models show the crossing, and the nonhomogeneous
matter is not expected to exist in warm stellar matter
without trapped neutrinos. Had neutrino trapping been
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included, the situation would be different: The proton
fraction would be close to 0.3 and the EoS would cross
the spinodal region [42]. Therefore, relativistic and
nonrelativistic models have indicated the possibility of
describing the instability region in stellar matter for
zero temperature. Here, we ask the same question as
posed in Ref. [37]: How is the transition density related
to other nuclear properties?

(vii) For the high-density regime (see Fig. 8), the models that
simultaneously fit the experimental predictions better
for neutron matter and symmetric nuclear matter [19]
are TW, TM1, and SLy230a.

The study we have performed helps in our understanding
of relativistic and nonrelativistic equations of state, their
similarities, discrepancies, and model dependencies. There is
no specific particularity in our results that favors the relativistic
description of asymmetric nuclear matter, other than having
a sound theoretical basis and completeness. By handling
different parametrizations to fit different data, they reveal
discrepancies as we investigate more physical quantities. More
data are needed in to develop better selection criteria among all
these models. A full understanding of how one EoS deviates
from another with similar values for the bulk properties (such
as, for example, SLy230a and TW) is still lacking.
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APPENDIX

Here we give the steps to prove that both criteria for the de-
termination of the instability boundary, given by Eqs. (26) and
(28), are equivalent. Assuming that g is an arbitrary function
and using the Jacobi determinant for the transformation from
the variables (ρ, y) to the variables (ρp, ρn), one obtains

∂g

∂ρ

∣∣∣∣
y

= ∂(g, y)

∂(ρ, y)
= ∂(g, y)

∂(ρp, ρn)

∂(ρp, ρn)

∂(ρ, y)

= 1

ρ

[
ρp

∂g

∂ρp

∣∣∣∣
ρn

+ ρn

∂g

∂ρn

∣∣∣∣
ρp

]
(A1)

and

∂g

∂y

∣∣∣∣
ρ

= ρ

[
∂g

∂ρp

∣∣∣∣
ρn

− ∂g

∂ρn

∣∣∣∣
ρp

]
. (A2)

By substituting P = −f + µpρp + µnρn into Eq. (26) and
using Eqs. (A1) and (A2) it follows that

0 = ∂P

∂ρ

∣∣∣∣
T ,y

∂µq

∂y

∣∣∣∣
T ,ρ

− ∂µq

∂ρ

∣∣∣∣
T ,y

∂P

∂y

∣∣∣∣
T ,ρ

= ρ

[(
∂µp

∂ρn

∣∣∣∣
ρp

ρp + ∂µn

∂ρn

∣∣∣∣
ρp

ρn

)
∂µq

∂ρp

∣∣∣∣
ρn

−
(

∂µp

∂ρp

∣∣∣∣
ρn

ρp + ∂µn

∂ρp

∣∣∣∣
ρn

ρn

)
∂µq

∂ρn

∣∣∣∣
ρp

]
, q = p, n.

Taking q = n (or, equivalently, q = p) in this equation, we
recover the criterion given in Eq. (28) for the instability
boundaries.
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