
PHYSICAL REVIEW C 77, 034911 (2008)

Viscous evolution of the rapidity distribution of matter created in relativistic heavy-ion collisions
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The longitudinal hydrodynamic expansion of the fluid created in relativistic heavy-ion collisions is considered
taking into account shear viscosity. We consider the dynamics of a non-boost-invariant energy density of the
fluid in 1+1 dimensions, using the proper time and the space-time rapidity. Both a nonvanishing viscosity and a
soft equation of state make the final particle distributions in rapidity narrower. The width of the initial Gaussian
rapidity distribution and its central energy density are fitted to reproduce the rapidity distributions of pions and
kaons as measured by the BRAHMS Collaboration. The presence of viscosity has dramatic consequences on the
value of the initial energy density. Dissipative processes and the reduction of the longitudinal work due to the
shear viscosity increase the total entropy and the particle multiplicity at central rapidities. Viscous corrections
make the longitudinal velocity of the fluid stay close to the Bjorken scaling flow vz = z/t through the evolution.
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I. INTRODUCTION

Properties of hot and dense strongly interacting matter
can be studied in ultrarelativistic nuclear collisions. The
modeling of the evolution of the dense collective phase
is most commonly undertaken within the framework of
the relativistic fluid dynamics [1–3]. Clear evidence of the
collective behavior of the system created in a collision is
given by the observation of a substantial transverse elliptic
flow of the produced particles. Collective flow arises naturally
during a hydrodynamic evolution. In ultrarelativistic heavy-ion
collisions, the movement of the matter at the initial stage is
dominated by the expansion in the longitudinal direction. Most
of the experimental data at the BNL Relativistic Heavy-Ion
Collider (RHIC) are restricted to the central rapidity region.
Therefore, hydrodynamic models often assume a simplified
geometry of the fireball with a Bjorken boost-invariant flow in
the longitudinal direction and concentrate on the dynamics
in the transverse directions with azimuthal symmetry for
central collisions [4–6] or azimuthally asymmetric geometry
for collisions of nuclei at nonzero impact parameters [7–10].
Only a few calculations consider a fully three-dimensional
evolution of the fluid [11–13]. Results of the hydrodynamic
evolution are sensitive to the chosen equation of state (EOS).
Values of the Hanbury-Brown-Twiss (HBT) radii observed at
RHIC [14] seem to exclude equations of state with a strong
first-order phase transition or even with a more prominent
soft point. The hydrodynamic evolution depends on the initial
temperature and its profile, on the chosen EOS, and on the
freeze-out temperature. Particles emitted at the hydrodynamic
freeze-out can still rescatter, which modifies somewhat their
spectra and elliptic flow [10,15–17].

Instead of a fully three-dimensional calculation, only the
longitudinal expansion of the matter created in a collision
can be considered [4,18]. Recently the rapidity distributions
of pions and kaons produced in
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collisions measured by the BRAHMS Collaboration [19]
have been analyzed in a 1+1 dimensional (in proper time
and space-time rapidity) hydrodynamic model [20]. The final
rapidity distribution of mesons obtained in this simplified
model has been found to be sensitive to the initial energy
density distribution in rapidity and to the chosen EOS.
Experimental data indicate that the boost-invariant Bjorken
scaling solution is not realized at RHIC energies. Results
of the 1+1 dimensional longitudinal fluid dynamics for the
meson rapidity distributions favor a soft EOS and a narrow
Gaussian initial energy density distribution in the space-time
rapidity [20].

The analysis of the elliptic flow in the momentum distri-
bution of particles as a function of the initial eccentricity of
the source points to the possibility of a noticeable effect of
the shear viscosity of the fluid [21,22]. Quantitative studies
have to take into account many effects, initial conditions, the
equation of state, the freeze-out temperature, and possible final
rescattering; therefore, estimates of the viscosity coefficient
are still under debate [23,24]. Theoretical estimates of the
ratio of the shear viscosity coefficient η to the entropy density
s range from a conjectured lower bound η/s = 1/4π [25] to
η � s [26,27].

The role of the shear viscosity in the dynamics is most
important during the early evolution of the system, when the
velocity gradients are the largest. Gradients of the Bjorken flow
give rise to corrections of the pressure tensor in the fluid. The
transverse pressure increases, and the fluid expands faster in
the transverse directions; this leads to stronger transverse flow
and to the saturation of the elliptic flow [23,28–33]. All recent
calculations using viscous relativistic hydrodynamics assume
boost-invariant Bjorken flow in the longitudinal direction and
study the transverse development of the fluid in azimuthally
symmetric or asymmetric conditions. Longitudinal pressure is
reduced, and hence so is the longitudinal flow of the fluid.
The fluid cools slower, at least until substantial transverse
flow builds up. Weaker longitudinal expansion and entropy
production due to dissipative evolution require an adjustment
of the initial entropy (temperature). As a result, the lifetimes of
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the plasma in the viscous and ideal fluid evolutions are similar.
Finally, let us note that viscous corrections to the distribution
functions at the freeze-out modify the spectra and the HBT
radii [32,34].

Enhanced transverse pressure and the resulting modifica-
tion of the spectra at central rapidities raise the question of
possible modifications of the fluid dynamics in the longitudinal
direction due to viscosity. Since the boost-invariant scaling
solution is not applicable at RHIC energies, the quantitative
description of the energy flow and entropy production in the
fireball should take into account a fully three-dimensional
geometry. Such a task within the dissipative fluid dynamics
has not been accomplished yet. In the following we consider a
simpler problem of the evolution of a longitudinally expanding
non-boost-invariant fluid with viscosity. The flow is directed
only in the longitudinal direction. The flow velocity, the energy
density, and the shear viscosity corrections depend only on the
proper time and space-time rapidity. In such a framework,
one expects that reduced longitudinal work in a viscous fluid
generates narrower particle distributions in rapidity than in
a similar evolution of an ideal fluid. The author is aware of
only one two-decades old work considering this problem [35]
in which first-order viscous hydrodynamics was applied. At
low energies, no strong effect of viscosity on the longitudinal
expansion was observed [35].

In the following we use BRAHMS data [19] to constrain
meson rapidity distributions after freeze-out. Solving viscous
hydrodynamics in the 1+1 longitudinal geometry and adjust-
ing the parameters of the initial density, we find a significant
reduction of the initial energy density when viscosity is taken
into account. Although the values of the obtained parameters
are only indicative because of the very simplified geometry,
the qualitative dependence of the initial energy density on
the viscosity coefficient is generic. Also the longitudinal flow
is modified; viscosity reduces the flow and counteracts the
acceleration due to rapidity gradients of the pressure. At the
CERN Large Hadron Collider (LHC) energies, we find that
the modification of the longitudinal dynamics due to shear
viscosity leads to an increase of the rapidity range where the
Bjorken scaling flow applies in the final state, assuming that
such a Bjorken plateau is present in the initial distributions.

II. LONGITUDINAL HYDRODYNAMIC EQUATIONS
WITH SHEAR VISCOSITY

We consider a baryon-free fluid with nonzero shear viscos-
ity. The energy-momentum tensor is the sum of the ideal fluid
component and the shear tensor πµν

T µν = (ε + p)uµuν − pgµν + πµν, (2.1)

where ε and p are the local energy density and pressure of the
fluid,

uµ = γ (1, 0, 0, v)

= (cosh Y, 0, 0, sinh Y ) (2.2)

is the four-velocity of the fluid element (γ = 1/
√

1 − v2),
and Y = 1

2 ln( 1+v
1−v

) is its rapidity. In the whole evolution, the
velocity of the fluid is directed in the longitudinal direction;
the transverse flow is neglected. The energy density and the

pressure are related by the equation of state. The energy density
ε(t, z) and the longitudinal velocity component v(t, z) are
functions of the time t and the beam axis coordinate z only.
Instead of the time and the z coordinate, it is preferable to use
the proper time τ = √

t2 − z2 and the space-time rapidity

θ = 1

2
ln

(
t + z

t − z

)
. (2.3)

Hydrodynamic equations ∂µT µν = 0 can be written as [36,37]

(ε + p)Duµ = ∇µp − 	µ
ν ∇απνα + πµνDuν (2.4)

and

Dε = −(ε + p)∇µuµ + 1
2πµν〈∇µuν〉, (2.5)

where

D = uµ∂µ = cosh(Y − θ )∂τ + sinh(Y − θ )

τ
∂θ , (2.6)

〈∇µuν〉 = ∇µuν + ∇νuµ − 2

3
	µν∇αuα, (2.7)

∇µ = 	µν∂ν

= (− sinh YK,−∂x,−∂y,− cosh YK), (2.8)

with 	µν = gµν − uµuν and

K = sinh(Y − θ )∂τ + cosh(Y − θ )

τ
∂θ . (2.9)

The equations of second-order viscous hydrodynamics (2.4)
and (2.5) are supplemented with a dynamic equation for the
stress tensor [29,34,37–40]

τπ	µ
α	ν

βπαβ + πµν = η〈∇µuν〉 − 2τππα(µων)
α , (2.10)

where η is the shear viscosity coefficient and τπ is the
relaxation time of the stress tensor. The above equation defines
the stress tensor πµν , i.e., the traceless and orthogonal to uµ

deviation of the energy-momentum tensor from the one of
the ideal fluid. ωµν = 	µα	νβ(∂αuβ − ∂βuα) is the vorticity
of the fluid; it is zero for the longitudinal flow considered
here. The relaxation time and the viscosity coefficient can be
estimated from microscopic models, considering equilibration
processes [25–27,41]. In this work, we take several values for
the ratio of the viscosity coefficient to the entropy η/s, and
we drop viscosity effects for temperatures below 130 MeV;
the relaxation time is [26] τπ/η = 6/T s, unless specified
otherwise (T is the local temperature). For short relaxation
times, the stress tensor relaxes fast and stays close to the
Navier-Stokes value πµν = η〈∇µuν〉. The dependence on the
initial value of the stress tensor and on the relaxation time is
discussed in Sec. VI.

For a fluid expanding only in the longitudinal direction, with
the energy density and the velocity constant in the transverse
plane, the stress tensor can be written using one scalar
function 

πµν =




− sinh2 Y 0 0 − sinh Y cosh Y

0 1
2 0 0

0 0 1
2 0

− sinh Y cosh Y 0 0 − cosh2 Y


 .

(2.11)
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Such a simple form of the shear tensor is due to the assumed
form of the flow, in the longitudinal direction only and
independent of the transverse coordinates. In general the shear
tensor has five independent components. In the considered 1+1
dimensional geometry, viscous hydrodynamic equations take
the form

(ε + p)DY = −Kp + DY + K,

Dε = (ε + p)KY − KY, (2.12)

D = (
4
3ηKY − 

)
/τπ .

The above equations are solved numerically in the τ -θ plane,
starting from some energy density ε(τ0, θ ) at the initial proper
time of the evolution, τ0 = 1.0 fm/c. For the initial fluid
rapidity, we always take the Bjorken flow

Y (τ0, θ ) = θ. (2.13)

Assuming boost invariance, i.e.,

Y (τ, θ ) = θ, ε(τ, θ ) = ε(τ ), p(τ, θ ) = p(τ ), (2.14)

the hydrodynamic equations simplify to [37,38]

dε

dτ
= −ε + p − 

τ
,

(2.15)
d

dτ
= (4η)/(3τ ) − 

τπ

.

III. EQUATION OF STATE

The EOS determines the evolution of the fireball. In the
following we take a parametrization of the EOS proposed
by Chojnacki and Florkowski [42]. It is an interpolation of
the lattice data at temperatures above Tc = 170 MeV and
of an EOS of noninteracting hadrons at lower temperatures.
The two limiting formulas are joined smoothly with only a
slight softening of the EOS around the critical temperature
(Fig. 1). This minimally softened, realistic EOS has proved to
be suitable for describing the transverse expansion of the fluid
and the buildup of the elliptic flow, and it gives reasonable
HBT radii [42,43].

In this section, we consider the hydrodynamic longitudinal
expansion of an ideal fluid. Equations for fluid rapidity and
energy density are obtained from Eqs. (2.12) setting  = 0.
This problem has been discussed recently in the context of
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FIG. 1. Square of the velocity of sound as a function of tem-
perature for an EOS interpolating between the hadron gas and the
quark-gluon plasma expressions [42].

heavy-ion collisions at RHIC [20]. For completeness, we study
the effect of the EOS we use on the longitudinal expansion.
For that purpose, we compare the evolution using the EOS
of Chojnacki and Florkowski with an evolution based on a
relativistic gas EOS p = 1

3ε.
At the initial time τ0 = 1.0 fm/c, the energy density profile

is taken as

ε(τ0, θ ) = ε0 exp(−θ2/(2σ 2)). (3.1)

The initial energy density ε0 and the width of the initial rapidity
distribution σ are parameters adjusted to reproduce final
meson rapidity distributions. The freeze-out takes place at the
temperature Tf = 165 MeV; this high freeze-out temperature
is the same as the chemical freeze-out temperature [44,45].
The spectrum of particles emitted with four-momentum qµ =
(E, q) is given by the Cooper-Frye formula [20,46]

E
d3N

d3q
= d3N

dy d2q⊥
= 1

(2π )3

∫
d�µqµf (qµuµ), (3.2)

f (E) = e−E/Tf is the thermal distribution corresponding to the
Jüttner distribution in the Cooper-Frye formula (Boltzmann
distribution for simplicity), and y denotes the rapidity of
the emitted particle. The EOS of the fluid at the freeze-out
temperature is the same as the EOS of a gas of noninteracting
hadrons [42]. The continuity of the EOS should guarantee
the conservation of energy and momentum; however, the
approximation of the thermal Fermi and Bose distributions of
hadrons by the Boltzmann distribution breaks these relations
to some extend. Energy conservation is even more severely
broken for the illustrative calculations of this section using a
constant sound velocity (p = ε/3) [47]. Also, the assumption
that particles after freeze-out follow the Jüttner distribution is
an approximation, the quality of which depends on the time
extent of the freeze-out process [48]. Such deviations from
thermal distributions could have noticeable consequences on
some observables [49]. Since in the limit of massless particles
the rapidity distribution of particles emitted from a source does
not depend on the form of the momentum distribution, we
expect that also for massive particles the rapidity distribution
is not very sensitive to these effects.

The element of the hypersurface of constant freeze-
out temperature is d�µ = S(τ ′(θ ) sinh θ + τ (θ ) cosh θ, 0, 0,
τ ′(θ ) cosh θ − τ (θ ) sinh θ ), where S = πR2

Au is the transverse
area of the fireball in central collisions and τ (θ ) is the line of
constant temperature Tf in the τ -θ plane. Particle distributions
in rapidity are obtained by integration over the transverse
momenta q⊥ in Eq. (3.2)

dN

dy
= S

4π2

∫ θmax

−θmax

(τ (θ ) cosh(y − θ ) − τ ′(θ ) sinh(y − θ ))

× (2mξ + 2ξ 2 + m2)ξ exp

(
−mcosh(y − Yf (θ ))

Tf

)
dθ,

(3.3)

m is the meson mass, Yf (θ ) = Y (τ (θ ), θ ) is the fluid rapidity
at the freeze-out hypersurface, and

ξ = Tf

cosh(y − Yf (θ ))
. (3.4)
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The expression (3.3) neglects the transverse expansion of
the fluid at the freeze-out. This has only a small effect on
rapidity distributions, the distributions should be narrower.
Pions and kaons come to a large extent from secondary decay
of resonances. The emission takes place in two stages, first
an emission of a heavy resonance according to Eq. (3.3)
and then the decay of the resonance into pions (kaons). The
emission of resonances and their decay is also influenced by
their transverse expansion. A hint of the spread in rapidity
of the decay products of resonances is given by charge
balance correlations [50–52]. Narrow charge balance functions
indicate that decay products of a resonance are only 0.5
unit of rapidity away from the parent resonance; convoluting
this distribution with the spread in rapidity of the emitted
resonances, one obtains a distribution of half-width similar to
that for the emission of direct pions in Eq. (3.3). Since 75%
of pions come from resonances at Tf = 165 MeV [53], we
multiply the distribution from Eq. (3.3) by a factor of 4 to
account for all pions, direct and from resonance decays (the
factor is 1.7 for kaons).

The parameters ε0 and σ have been adjusted for the cal-
culation using a realistic sound velocity (Fig. 1) to reproduce
the width and normalization of the observed pion distribution.
As a result, the final meson distributions can be made similar
to the ones observed experimentally. On the other hand, when
using an ultrarelativistic gas EOS (p = 1

3ε) one always gets
a meson distribution in rapidity that is too wide. We present
three calculations (for p = 1

3ε) with different initial widths σ

and with the initial energy densities ε0 adjusted to reproduce
dN/dy for central rapidities only (Fig. 2 and Table I). The
final meson distribution is much wider than the initial energy
density distribution in all cases because of the breaking of the
Bjorken scaling of the longitudinal flow, Y (τ, θ ) > θ (Fig. 3).
Fast-moving fluid elements emit mesons in the far forward and
backward rapidities.
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p=1/3ε case II
p=1/3ε case III
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BRAHMS 200AGeV

FIG. 2. (Color online) Rapidity distribution of mesons calculated
using a realistic EOS (solid line) and using a relativistic gas EOS for
three different initial conditions (dashed, dotted, and dashed-dotted
lines), see Table I. Data are from the BRAHMS Collaboration [19].

TABLE I. Parameters of the initial energy density distribution
[Eq. (3.1)] for ideal fluid calculations, one using a realistic EOS and
three calculations using a relativistic gas EOS. The last column shows
the lifetime of the system until freeze-out.

ε0 (GeV/fm3) σ τ (0) (fm/c)

EOS [42] 16.9 1.05 14.8

p = 1
3 ε case I 71.5 1.05 14.8

p = 1
3 ε case II 102 0.8 15.7

p = 1
3 ε case III 50.8 1.5 13.7

Concluding this section, we confirm the findings of
Ref. [20]. Within the framework of 1+1 dimensional hy-
drodynamics, a hard EOS never works. A narrow initial
distribution of the energy density in rapidity leads to a strong
acceleration of the longitudinal flow; wider initial distributions
are incompatible with the narrow final meson distributions.
In the simple 1+1 dimensional model only by imposing a
softened EOS, experimental pion and kaon distributions can
be approximately reproduced. The development of transverse
flow is expected to relax somewhat this constraint on the
equation of state. In the following, we take the realistic EOS
from Ref. [42] and study the effect of nonnegligible shear
viscosity.

IV. DISSIPATIVE LONGITUDINAL EXPANSION

Following the hydrodynamic evolution with viscosity re-
quires the solution of the coupled equations (2.12), for the fluid
rapidity Y , the viscous correction , and the energy density ε.
The initial conditions are given in Eqs. (3.1) and (2.13). For
the initial viscous corrections, we take (τ0, θ ) = p(τ0, θ ).
This means that at the initial time, the effective pressure

-0.5

-0.25

0

0.25

0.5

-5 0 5

p=1/3ε case I
p=1/3ε case II
p=1/3ε case III
EOS

θ

Y
(τ

,θ
)-

θ

τ=2fm/c

FIG. 3. (Color online) Difference between the flow rapidity of
the fluid and the Bjorken value, calculated using a realistic EOS and
using a relativistic gas EOS for three different initial conditions, see
Table I.
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is maximally anisotropic in the fluid rest frame, with zero
longitudinal pressure. We vary the value of the shear viscosity
coefficient η/s, and in each case we adjust the parameters of
the initial energy density distribution [Eq. (3.1)] to reproduce
BRAHMS data for the pion distribution in rapidity. Viscous
corrections modify the momentum distribution functions in the
fluid and the energy-momentum tensor. In the fluid rest frame,
the pressure is anisotropic. The form of the energy-momentum
tensor is not enough to fix the corresponding momentum
distributions of the noninteracting gas after freeze-out. As
mentioned in Sec. III, the momentum distribution after freeze-
out depends on the details of the decoupling process [48].
The same is true if viscous corrections are important. The
simplest formula for the momentum distribution with viscous
corrections can be assumed in the form of a multiplicative
correction to the Jüttner distribution [28]. We assume the same
modification for all the particle species in the fluid

f (q) + δf (q) = f (q)

(
1 + qµqνπ

µν

2T 2(ε + p)

)
. (4.1)

The correction to the particle distribution function is propor-
tional to the ratio of the viscous correction  to the enthalpy
ε + p. Viscous corrections to the distribution functions at the
freeze-out modify the outcome of the Cooper-Frye formula

dNvisc

dy
= dN

dy
+ dδN

dy
. (4.2)

To the expression (3.3), one has to add

dδN

dy
= S

4π2

∫ θmax

−θmax

(τ (θ ) cosh(y − θ ) − τ ′(θ ) sinh(y − θ ))

× [12ξ 5 + 5ξ 3m2 + 12ξ 4m + ξ 2m3

− sinh(y − Yf (θ ))(24ξ 5 + 12ξ 3m2 + 24ξ 4m

+ 4ξ 2m3 + ξm4)]


2T 2(ε + p)

× exp

(
−m cosh(y − Yf (θ ))

Tf

)
dθ, (4.3)

In Fig. 4 is shown the result of this procedure for the case
η/s = 0.2. Again, direct meson spectra are multiplied by a
factor of 4 for pions and 1.7 for kaons, to account for the
expected ratio of all mesons to directly produced mesons [53],
at the chosen freeze-out temperature. Pion emission at the end
of the viscous hydrodynamic evolution (solid line) can be made
similar as observed experimentally after tuning the parameters
of the initial Gaussian energy density profile. In Fig. 4 is also
shown the meson distribution obtained using the equilibrium
distribution at freeze-out [Eq. (3.3), dotted line]. Deviations
from the full result [Eq. (4.2)] is only noticeable at rapidities
three units away from central rapidity. It can be understood
as being due to an earlier freeze-out at large rapidities, which
makes the relative viscous corrections

(τ (θ ), θ )

ε(τ (θ ), θ ) + p(τ (θ ), θ )
(4.4)

at freeze-out more important (Fig. 5). Modifications of the
momentum distributions from viscous corrections given by
equation (4.1) are know to modify particle distributions in
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π+
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K+(x3)

K-(x3)

EOS
EOS+visc

BRAHMS 200AGeV

η/s=0.2

FIG. 4. (Color online) Rapidity distribution of mesons calculated
using a realistic EOS and viscosity η/s = 0.2 (solid line) and using
ideal fluid hydrodynamics (dashed line). The dotted line denotes
the results of a viscous hydrodynamic evolution, but neglecting the
viscous corrections to the particle emission at freeze-out [Eq. (4.3)].
Data are from the BRAHMS Collaboration [19].

the transverse momentum [28], the pT spectra, the HBT
radii and the elliptic flow. In our estimate, a more important
effect would come from the neglected transverse expansion of
the fluid than from nonequilibrium corrections in Eq. (4.3).
Hopefully we find that the rapidity distribution is not sensitive
to nonequilibrium, anisotropic modifications of the momentum
distribution (4.1). Following the estimates of Teaney [28], only
at large rapidities could one expect some corrections from the
longitudinal flow with viscosity to particle spectra, elliptic
flow, and HBT radii. However, at high rapidities, the 1+1
dimensional geometry assumed in the paper is questionable.

We have noticed (Sec. III) that longitudinal pressure
gradients accelerate the fluid motion in the beam direction.
On the other hand, viscosity reduces the longitudinal motion
of the fluid and as a consequence reduces its expansion in the
longitudinal direction. Shear viscosity prevents the develop-
ment of large gradients of the velocity field. One can compare
the rapidity of the fluid with and without shear viscosity

0
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0.3

-4 -2 0 2 4

Π
/(

ε+
p

)

θ

η/s=0.2

FIG. 5. Relative viscous corrections /(ε + p) at freeze-out as a
function of space-time rapidity [Eq. (4.4)].
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FIG. 6. (Color online) Difference between the flow rapidity of the
fluid and the Bjorken value, calculated for an evolution with shear
viscosity coefficient η/s = 0.2 (solid lines), for an ideal fluid with a
realistic EOS (dashed lines), and using a relativistic gas EOS (case I)
(dashed-dotted lines).

(Fig. 6). For η/s = 0.2, the flow stays close to the Bjorken
one during a substantial part of the evolution. At the freeze-out
hypersurface, the flow is still Bjorken-like for |θ | < 1.8 and
η/s = 0.2 (Fig. 7). The acceleration from pressure gradients
and the deceleration from viscosity approximately cancel for
this choice of parameters. Reduced longitudinal expansion
with viscosity requires smaller initial energy densities to
reproduce the final meson distributions. Table II lists the initial
energy densities and widths of rapidity distributions adjusted
to reproduce the observed meson distributions for several
values of the shear viscosity coefficient. The shape of the

-0.4

-0.2

0

0.2

0.4

-4 -2 0 2 4

EOS+vis
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f(θ

)-
θ
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FIG. 7. (Color online) Difference between the flow rapidity of the
fluid and the Bjorken value at the freeze-out hypersurface, calculated
for an evolution with shear viscosity coefficient η/s = 0.2 (solid
line), for an ideal fluid with a realistic EOS (dashed line), and using
a relativistic gas EOS (case I) (dashed-dotted line).

TABLE II. Parameters of the initial energy density distribution
of Eq. (3.1) for hydrodynamic calculations with several values of the
shear viscosity coefficient. The last column shows the lifetime of the
system until freeze-out.

η/s ε0 (GeV/fm3) σ τ (0) (fm/c)

0 16.9 1.05 14.8
0.1 9.8 1.18 14.1
0.2 5.6 1.8 13.1
0.3 4.0 1.86 12.4

initial energy density is extremely sensitive to the dynamics
of the longitudinal expansion (Fig. 8). Obviously the value
of the initial energy density, or in other words the cooling
rate from the longitudinal motion, is an important ingredient
in the modeling of the transverse expansion of the fluid. Let
us also note that when reduced initial energy densities are
imposed, the lifetime of the system until freeze-out is only
weakly dependent on the viscosity coefficient.

All the results presented so far are obtained using a Gaussian
initial energy density profile in space-time rapidity [Eq. (3.1)],
which best reproduces the observed meson distributions. In
a fully three-dimensional hydrodynamic simulation, initial
profiles of the energy density with a plateau in the space-
time rapidity are used [13] to reproduce the experimental
distributions. The difference lies in the complete treatment
of the transverse expansion. A similar initial energy density
profile with a plateau can be also used in the 1+1 dimensional
model studied in this paper, that is,

ε(τ0, θ ) = ε0 exp(−(θ − σp)2�(|θ | − σp)/2σ 2). (4.5)

Using a relatively narrow plateau for central rapidities,
σp = 0.4, one gets meson distributions compatible with the
experimental data of the BRAHMS Collaboration by tuning
the parameters ε0 and σ of the initial distribution (Table III).
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FIG. 8. (Color online) Initial energy density distribution for the
ideal fluid hydrodynamic evolution with a realistic EOS (dashed
line), for viscous hydrodynamic evolutions (solid lines), and for a
relativistic gas EOS (case I) (dashed-dotted line).
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TABLE III. Parameters of the initial energy density distribution
of Eq. (4.5) for hydrodynamic calculations with several values of
the shear viscosity coefficient, σp = 0.4. The last column shows the
lifetime of the system until freeze-out.

η/s ε0 (GeV/fm3) σ τ (0) (fm/c)

0 14.3 0.9 14.8
0.1 8.1 1.0 13.3
0.2 5.2 1.5 12.2
0.3 4.3 1.7 11.8

Similarly as for Gaussian initial conditions with an increasing
shear viscosity coefficient, the initial energy density goes
down. For η/s � 0.2, the initial energy density is smaller for the
initial condition with a plateau than for the Gaussian profile.
It is a sign of a slower cooling in a boost-invariant system than
in a system with gradients in space-time rapidity (see Sec. V);
while for η/s = 0.3, the situation is reversed. We have to real-
ize that the extraction of the form of the initial energy density
in such a simple 1+1 dimensional model is not very realistic.
Nevertheless, we can conclude that it should be a relatively
narrow distribution in space-time rapidity and that the initial
energy density decreases with increasing shear viscosity.

V. COOLING AND ENTROPY PRODUCTION

It is instructive to compare the cooling rate in our solution
and in the boost-invariant scaling solution. Finite extension in
space-time rapidity makes the cooling rate faster. On the other
hand, reduced velocity of sound and shear viscosity reduce the
longitudinal work of the pressure and slow down the cooling.
Figure 9 compares the cooling of the central region of a finite
system to the cooling in the boost-invariant case [Eq. (2.15)].

200

300

1 10

T
(τ

) 
  [M

eV
]

τ      [fm/c]

EOS

EOS  (boost inv)

EOS+visc

EOS+visc  (boost inv)η/s=0.1

η/s=0.2

η/s=0.3

FIG. 9. (Color online) Time dependence of the temperature at
the center for a longitudinally expanding ideal fluid fireball (dashed
line) compared with the boost-invariant solution (dashed-dotted line).
Same for the evolution with viscosities η/s = 0.1, 0.2, 0.3 (solid
lines, increasing η from top to bottom), and for the boost-invariant
case with viscosity (dotted lines). For η/s = 0.2, the solid and dotted
curves lie on top of each other.

To compare the solution in the 1+1 dimensional system to
the boost-invariant one, the initial temperatures are fixed so as
to give the same lifetimes of the two systems until freeze-out.
Boost-invariant solutions underestimate the values of the initial
temperature (energy density) and of the cooling rate for an ideal
fluid evolution. In a finite system, additional cooling appears
and the longitudinal flow is stronger than the Bjorken scaling
flow. As the shear viscosity coefficient increases, the velocity
gradients in the dynamics are more and more constrained.
The flow accelerates less. At η/s = 0.2, the effects of the
viscosity and space-time rapidity gradients of the pressure
counterbalance each other, and the flow is approximately
Bjorken-like. With stronger viscosity η/s = 0.3, the Bjorken
flow is decelerated, and the cooling is slower than for the boost-
invariant solution. This means that the gradients of the viscous
correction  are larger than the gradients of the pressure itself,
and the applicability of second-order viscous hydrodynamics
is questionable.

Dissipative hydrodynamics conserves the total energy but
produces entropy. The expression for the total energy of the
system at proper time τ is

E(τ ) = τS

∫ ∞

−∞
dθ [ε cosh Y cosh(Y − θ )

+ (p − ) sinh Y sinh(Y − θ )]. (5.1)

It is mainly composed of the kinetic energy of the longitudinal
motion of the fluid. Small changes of the energy density at large
rapidities can cause significant changes of the energy density
for central rapidities. Softening of the EOS and nonzero shear
viscosity modify the dynamics at large rapidities, which leads
to less cooling at θ = 0, while the global energy of the fireball
is unchanged. Dissipative processes driving the system locally
toward equilibrium produce entropy [39–41,54,55]. The total
entropy of the system

S(τ ) = τS

∫ ∞

−∞
dθ s cosh(Y − θ ) (5.2)

increases with time, if shear viscosity is active (Fig. 10).
Conservation of entropy given by Eq. (5.2) in the ideal fluid
evolution is a good test of the quality of the numerical
solution. Numerical viscosity could cause a spurious increase
of the entropy for the ideal fluid. We have checked that the
relative increase of the entropy in the ideal fluid evolution,
due to numerical effects in the dynamics, is 2 × 10−4 after
20 fm/c. When reducing the shear viscosity coefficient, the
relative entropy production smoothly decreases from about
50% at η/s = 0.2 to 0.1% for η/s = 10−3. This means that
the observed dissipative effects of the shear viscosity are not
due to numerical inaccuracies of the solution.

The increase of the entropy at central rapidity τs(τ, θ ) is
responsible for an increase of the particle multiplicity in the
central rapidity region. Estimates of the entropy production
[55] based on the boost-invariant solution [Eq. (2.15)]

d(τs)

dτ
= 

T
(5.3)

are very close to the 1+1 dimensional dynamical result, which
happens if the shear viscosity is strong enough to conserve the
Bjorken flow in the evolution.
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FIG. 10. (Color online) Relative entropy production in the vis-
cous hydrodynamic evolution [Eq. (5.2)] (solid line), of the entropy
density at central space-time rapidity (dashed line), and of the entropy
from the boost-invariant Bjorken solution [Eq. (5.3)] (dashed-dotted
line). All calculations are with η/s = 0.2.

VI. ROLE OF THE INITIAL STRESS TENSOR

Second-order viscous hydrodynamics introduces a dynam-
ical equation for the stress tensor. A crucial parameter is given
by the relaxation time τπ . For small relaxation times, the
viscosity correction stays close to the Navier-Stokes value

NS(τ ) = 4η

3τ
. (6.1)

Such a behavior of viscous corrections has been confirmed in
numerical simulations of the transverse expansion in viscous
hydrodynamics with small relaxation times [23,32], unlike
in Ref. [56] where a large value of the relaxation time was
postulated. We check the effect of the initial value of (τ )
on the evolution by comparing two scenarios: (τ0) = p(τ0),
which corresponds to an anisotropic momentum (pressure)
at the initial time, and (τ0) = 0, which corresponds to
initially locally equilibrated distributions. With the choice of
the relaxation time τπ = 6η/T s, the two initial conditions
lead to different results. As before, for each choice of the
initial conditions and parameters we retune the parameters of
the initial energy density distribution (3.1) to reproduce the
final pion rapidity distribution.

In Fig. 11 we show the ratio of the dynamical value of
the viscous correction (τ ) to the Navier-Stokes value of
Eq. (6.1). After several fm/c, the stress tensor, which is set
initially to zero (dashed-dotted line), relaxes to and overshoots
the steady flow value [Eq. (6.1)]. For an initial stress tensor
corresponding to the anisotropic effective pressure (solid
line), the viscous correction overshoots the Navier-Stokes
value almost immediately. Since the dissipative effects are the
strongest at the early stages, the integrated entropy production
is smaller for an evolution with an initial zero stress tensor than
for an evolution starting with a nonzero stress tensor (Fig. 12).
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FIG. 11. (Color online) Ratio of the dynamical shear viscosity
correction (τ ) to the Navier-Stokes value NS(τ ) at η/s = 0.2 for
two initial conditions for the viscous corrections (τ0) = p(τ0) (solid
line) and for (τ0) = 0 [Eq. (6.1)] (dashed-dotted line), and for a
reduced relaxation time τπ = 1.5η/T s (dashed line).

Even though, the effect of the change of the initial viscosity
correction can be counterbalanced by a suitable change in
the initial energy density distribution, the amount of entropy
produced in the dynamics depends on the initial value of the
dissipative corrections. We also performed a calculation with
a smaller relaxation time (dashed lines in Figs. 11 and 12).
In that case, the initial value of (τ ) is less important, as it
rapidly relaxes to the steady flow value NS(τ ). The integrated
dissipative effects are smaller.
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FIG. 12. (Color online) Relative entropy increase in the dissipa-
tive evolution at η/s = 0.2 for two initial conditions for the viscous
corrections (τ0) = p(τ0) (solid line) and for (τ0) = 0 [Eq. (6.1)]
(dashed-dotted line), and for a reduced relaxation time τπ = 1.5η/T s

(dashed line).
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FIG. 13. (Color online) Rapidity distribution of pions (upper
curves) and kaons (lower curves, ×3) for LHC plateau-like initial
conditions [Eq. (4.5)], calculated for an evolution with shear viscosity
coefficient η/s = 0.2 (solid lines) and for an ideal fluid with a realistic
EOS (dashed lines). The dotted line denotes the result of a viscous
hydrodynamic evolution, but neglecting the viscous corrections to the
particle emission at freeze-out [Eq. (4.3)].

VII. EXPECTATIONS FOR LHC

In this section we present some simple estimates of the
effects of the shear viscosity on the longitudinal expansion
at LHC energies. To get a rough estimate, we set arbitrarily
the multiplicity of pions for central rapidity at twice the
value observed for central collisions at RHIC. The initial
energy density distribution in space-time rapidity is modified;
it includes a plateau of width σp [Eq. (4.5)]. The width of
the plateau is σp = 3.3 and takes all the increase of the
rapidity range when going from RHIC to LHC energies. The
parameter σ is the same as at RHIC energies, and the energy
density ε0 is adjusted to reproduce the assumed final pion
density dN

dy
|y=0. The meson distributions are shown in Fig. 13.

For the viscous evolution, the plateau in the final meson
distributions survives. For an ideal fluid, one gets ε0 =
16.9 GeV/fm3; while for a shear viscosity η/s = 0.2, one
needs ε0 = 12.4 GeV/fm3. The difference between the initial
energy densities in the viscous and ideal fluid evolutions is not
as big as for RHIC energies. At LHC energies, both the ideal
and viscous fluid evolutions have a Bjorken scaling form in
several units of central rapidity (Fig. 14). The lack of space-
time rapidity gradients in the distributions makes the evolution
and cooling last longer, around 20 fm/c. Even at freeze-out,
the flow is Bjorken-like at central rapidities (Fig. 15). This
observation justifies the use at LHC energies of thermal and
hydrodynamic models assuming boost invariance [8,57,58].
The hydrodynamic evolution can be restricted to the 1+2
dimensional boost-invariant geometry to describe distributions
in the 4–5 central units of rapidity. At the freeze-out hyper-
surface, dissipative corrections to the momentum distributions
have almost disappeared (compare the solid and dotted lines in
Fig. 13).
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FIG. 14. (Color online) Difference between the flow rapidity of
the fluid and the Bjorken value at τ = 10 fm/c, calculated for an
evolution with shear viscosity coefficient η/s = 0.2 (solid line) and
for an ideal fluid with a realistic EOS (dashed line) for LHC plateau-
like initial conditions.

Since the cooling of the fluid due to the longitudinal
expansion is slow (like in the Bjorken solution), a realistic
modeling of the time scales and of the freeze-out hypersurface
must take into account the transverse expansion. The speed
of the transverse expansion would determine the lifetime of
the system; while at RHIC energies, longitudinal expansion
(in space-time rapidity) is also important. We also per-
formed calculations using Gaussian initial energy distributions
[Eq. (3.1)] with rescaled width parameters σ for the increased
LHC rapidity range. For a viscous fluid, we find a broad
region of rapidities where the Bjorken scaling flow survives
through the evolution, |θ | < 2.5. For the ideal fluid, the scaling
is broken but to a significantly lesser extent than at RHIC
energies.
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FIG. 15. (Color online) Same as Fig. 14, but calculated at the
freeze-out hypersurface.
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VIII. CONCLUSIONS

The evolution of a fireball of dense and hot matter created
in a heavy-ion collision can be modeled as a hydrodynamic
expansion of a viscous fluid. We analyze the effects of the shear
viscosity on the longitudinal expansion of the matter. We solve
numerically coupled evolution equations for the longitudinal
flow, the energy density, and the viscous corrections in a 1+1
dimensional geometry, corresponding to a rapid expansion
in the beam direction. As a function of the space-time
rapidity, the distribution of matter evolves slowly with proper
time. The average density drops and the distribution gets
wider. The last phenomenon takes place when the flow of
the fluid gets stronger than the Bjorken one. At the freeze-out
temperature, the hydrodynamic stage finishes and particles
are emitted thermally according to the Cooper-Frye formula.
Experimental measurements of the distribution of mesons in
rapidity [19] constrain the allowed distribution of the longitu-
dinal velocities of the fluid elements. The correlation between
space-time and momentum rapidities of the fluid means that the
space-time rapidity extension of the fluid must be limited and
that its longitudinal flow cannot deviate significantly from the
Bjorken flow. Shear viscosity counteracts the gradients of the
velocity field. As a consequence, it slows down the longitudinal
expansion. At freeze-out, the energy density distribution in
space-time rapidity is narrower and the longitudinal flow gets
less accelerated than for the ideal fluid hydrodynamics. Fitting
the parameters of a Gaussian initial energy density distribution
to reproduce the final meson distributions, one observes a
striking effect. With an increasing shear viscosity coefficient,
the initial energy density of the fireball decreases significantly,
from 16.9 GeV/fm3 for an ideal fluid to 5.6 GeV/fm3 for
η/s = 0.2. These estimates cannot be taken literally in a model
without transverse expansion, but the qualitative dependence
on the shear viscosity coefficient of the longitudinal dynamics
is meaningful. Shear viscosity reduces both the cooling and the
longitudinal acceleration. In the 1+1 dimensional longitudinal

geometry, the fitted energy density corresponds only to an
average over the transverse plane. Nevertheless, estimates of
the maximal energy density reached in heavy-ion collisions
at RHIC energies must be strongly revised down if shear
viscosity is effective during the expansion of the fireball. This
dramatic reduction of the initial density should also be taken
into account in hydrodynamic models dealing with transverse
expansion only, both in 1+1 and 1+2 dimensions.

Depending on the balance of the acceleration of the flow
from pressure gradients and deceleration from viscosity, the
flow gets faster or slower than the Bjorken one. For some
values of the parameters, the effects of the shear viscosity and
pressure gradients on the longitudinal flow of the fluid cancel,
i.e., the flow stays close to the Bjorken flow. This could be an
argument justifying models that combine transverse viscous
expansion with a Bjorken flow in the beam direction. When
the initial conditions are adjusted to reproduce the final meson
distributions, we find that the freeze-out hypersurfaces are
very similar, irrespective of the value of the shear viscosity
coefficient. Obviously the lifetime of the system is not sensitive
to viscous effects either (Table II) in the 1+1 dimensional
model. At freeze-out, the viscous corrections (from the
longitudinal flow) to the thermal distributions are small, except
possibly at large space-time rapidities. At LHC energies, a
substantial rapidity plateau, where Bjorken scaling applies, is
expected to appear. Shear viscosity helps preserve it in a wider
rapidity interval through the evolution.
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Phys. Rev. C 75, 024903 (2007).
[21] C. E. Aguiar, Y. Hama, T. Kodama, and T. Osada, Nucl. Phys.

A698, 639 (2002).
[22] H. J. Drescher and Y. Nara, Phys. Rev. C 75, 034905

(2007).
[23] H. Song and U. W. Heinz, Phys. Lett. B658, 279 (2008).
[24] R. A. Lacey et al. (2007), arXiv:0708.3512 [nucl-ex].
[25] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005), hep-th/0405231.

034911-10



VISCOUS EVOLUTION OF THE RAPIDITY . . . PHYSICAL REVIEW C 77, 034911 (2008)

[26] R. Venugopalan and M. Prakash, Nucl. Phys. A546, 718 (1992).
[27] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys.

11 (2000) 001.
[28] D. Teaney, Phys. Rev. C 68, 034913 (2003).
[29] R. Baier, P. Romatschke, and U. A. Wiedemann, Nucl. Phys.

A782, 313 (2007).
[30] R. Baier and P. Romatschke, Eur. Phys. J. C 51, 677 (2007).
[31] A. K. Chaudhuri, Phys. Rev. C 74, 044904 (2006).
[32] P. Romatschke, Eur. Phys. J. C 52, 203 (2007).
[33] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey, and Y. Nara,

Phys. Lett. B636, 299 (2006).
[34] A. Muronga and D. H. Rischke, nucl-th/0407114.
[35] M.-C. Chu, Phys. Rev. D 34, 2764 (1986).
[36] A. Muronga, Phys. Rev. C 76, 014909 (2007).
[37] R. Baier, P. Romatschke, and U. A. Wiedemann, Phys. Rev. C

73, 064903 (2006).
[38] A. Muronga, Phys. Rev. Lett. 88, 062302 (2002).
[39] W. Israel and J. Stewart, Ann. Phys. (NY) 118, 341 (1979).
[40] A. Muronga, Phys. Rev. C 69, 034903 (2004).
[41] A. Muronga, arXiv:0710.3280 [nucl-th].
[42] M. Chojnacki and W. Florkowski, Acta Phys. Pol. B 38, 3249

(2007).
[43] M. Chojnacki, W. Florkowski, W. Broniowski, and A. Kisiel,

arXiv:0712.0947 [nucl-th].

[44] P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel,
Phys. Lett. B518, 41 (2001).

[45] W. Florkowski, W. Broniowski, and M. Michalec, Acta Phys.
Pol. B B33, 761 (2002).

[46] F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).
[47] C. Anderlik et al., Phys. Rev. C 59, 3309 (1999).
[48] V. K. Magas, L. P. Csernai, and E. Molnar, Eur. Phys. J. A 31,

854 (2007).
[49] D. Molnar and P. Huovinen, Phys. Rev. Lett. 94, 012302

(2005).
[50] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 90,

172301 (2003).
[51] P. Bozek, W. Broniowski, and W. Florkowski, Acta Phys. Hung.

A. Heavy Ion Phys. 22, 149 (2005).
[52] S. Cheng et al., Phys. Rev. C 69, 054906 (2004).
[53] G. Torrieri et al., Comput. Phys. Commun. 167, 229 (2005).
[54] H. T. Elze, J. Rafelski, and L. Turko, Phys. Lett. B506, 123

(2001).
[55] A. Dumitru, E. Molnar, and Y. Nara, Phys. Rev. C 76, 024910

(2007).
[56] P. Bozek, arXiv:0711.2889 [nucl-th].
[57] A. Kisiel, T. Taluc, W. Broniowski, and W. Florkowski, Comput.

Phys. Commun. 174, 669 (2006).
[58] N. S. Amelin et al., Phys. Rev. C 74, 064901 (2006).

034911-11


