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Multiplicity fluctuations in limited segments of momentum space in statistical models
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Multiplicity fluctuations in limited segments of momentum space are calculated for a classical pion gas within
the statistical model. Results for the grand canonical, canonical, and micro-canonical ensemble are obtained,
compared, and discussed. We demonstrate that even in the large volume limit correlations between macroscopic
subsystems due to energy and momentum conservation persist. Based on the microcanonical formulation we
make qualitative predictions for the rapidity and transverse-momentum dependence of multiplicity fluctuations.
The resulting effects are of similar magnitude as the predicted enhancement due to a phase transition from a
quark-gluon plasma to a hadron gas phase or due to the critical point of strongly interacting matter and qualitatively
agree with recently published preliminary multiplicity fluctuation data of the NA49 SPS experiment.
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I. INTRODUCTION

The statistical model has been, for a long time, successfully
applied to fit experimental data on mean hadron multiplicities
in heavy-ion collision experiments over a wide range of
beam energies and system sizes. For recent reviews, see
Refs. [1–4]. So naturally the question arises whether the
statistical model is able to describe event-by-event fluctuations
of these observables as well. And, indeed, a first comparison
suggests that this might be possible for the sample of
most central events. Global conservation laws, imposed on
a statistical system, lead, even in the large volume limit,
to suppressed fluctuations. The multiplicity distributions of
charged hadrons recently reported [5] by the NA49 SPS
experiment are systematically narrower than a Poissonian
reference distribution. This could be interpreted [6] as effects
due to energy and charge conservation in a relativistic hadronic
gas.

Multiplicity fluctuations are usually quantified by the ratio
of the variance of a multiplicity distribution to its mean value,
the so-called scaled variance. In statistical models there is
a qualitative difference in the properties of mean value and
scaled variance. In the case of the mean multiplicity results
obtained within the grand canonical ensemble (GCE), canon-
ical ensemble (CE), and microcanonical ensemble (MCE)
approach each other in the large volume limit. One refers
here to the thermodynamic equivalence of these ensembles.
It was recently found [7] that corresponding results for the
scaled variance are different in different ensembles, and thus
this observable is sensitive to conservation laws obeyed by a
statistical system.

The growing interest in the experimental and theoretical
study of fluctuations in strong interactions (see, e.g., Ref. [8])
is motivated by expectations of anomalies in the vicinity of the
onset of deconfinement [9] and in the case when the expanding
system goes through the transition line between a quark-gluon
plasma and a hadron gas phase [10]. In particular, a critical
point of strongly interacting matter may be accompanied
by a characteristic power-law pattern in fluctuations [11].
A nonmonotonic dependence of event-by-event fluctuations
on system size and/or center-of-mass energy in heavy-ion

collisions would therefore give valuable insight into the
phase diagram of strongly interacting matter. Provided the
signal survives the subsequent evolution and hadronization
of the system (see also Ref. [12]). Therefore, to asses the
discriminating power of proposed measures (for a recent
review, see Ref. [13]), one should first study properties of
equilibrated sources [6,14–16] and quantify “baseline” (or
thermal/statistical) fluctuations. Apart from being an important
tool in an effort to study a possible critical behavior, the study
of fluctuations within the statistical model constitutes also a
further test of its validity.

In this article we make detailed predictions for the
momentum-space dependence of multiplicity fluctuations. We
show that energy and momentum conservation lead to a
nontrivial dependence of the scaled variance on the location
and magnitude of the observed fraction of momentum space.
These predictions can be tested against existing and future
data from the heavy-ion collision experiments at the CERN
SPS and BNL RHIC facilities.

The article is organized as follows: In Sec. II we briefly
introduce our model. In Sec. III we consider multiplicity
distributions in a limited region of momentum space in GCE
and CE. For the MCE we follow, in Sec. IV, the procedure
of Ref. [17] and show how to calculate the width of the
corresponding distributions in the large volume limit. We
revisit the so-called acceptance scaling previously suggested
as an approximate implementation of experimental acceptance
in Sec. V. Technical details of the calculations are presented
in the Appendix. Concluding remarks and a summary in
Secs. VI and VII close the article.

II. THE MODEL

The ideal Boltzmann π+π−π0 gas serves as the standard
example throughout this article, whereas the main subject of
investigation is the multiplicity distribution P (N�) of particles
with momenta inside a certain segment � of momentum space.
Calculations are done for the three standard ensembles GCE,
CE, and MCE. For the sake of argument we will assume
that we want to measure only P (N−

� ), i.e., the probability
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FIG. 1. (Color online) Differential particle spectra for a classical pion gas at T = 160 MeV. (Left) Transverse-momentum spectrum
Eq. (B1). (Right) Rapidity spectrum Eq. (C1). Both curves are normalized to the total yield Eq. (6). The bins are constructed in a way that each
bin contains 1/9 of the total yield.

distribution of negatively charged pions in a limited segment
� of momentum space. Hence π− with momenta inside �

are observed, whereas π− inside the complementary segment
�̄ are not observed. π+ and π0 are never detected. In GCE
and CE the presence of π0 as a degree of freedom is of no
relevance, whereas in MCE it constitutes a heat bath for the
remaining system. For consistency we use the same system
throughout this discussion.

To keep the model simple, we assume a static homoge-
nous fireball. Our considerations therefore exclude collective
motion, i.e., flow, and resulting momentum spectra are purely
thermal. We also omit resonance decay contributions in this
work. The spectra presented in Fig. 1 are normalized to the
total π− yield in GCE and CE. Thus they are the same in
both ensembles. In MCE one expects in the large volume limit
only small deviations from Boltzmann spectra. None of the
forthcoming arguments are affected by this. In the following
we will use the transverse-momentum and rapidity spectra
presented in Fig. 1 to construct bins �i = �pT i = [pTi

, pTi+1 ]
(left) or �i = �yi = [yi, yi+1] (right), as indicated by the drop
lines.

In Sec. III we calculate the multiplicity distributions P (N�)
for arbitrary segments � for the ideal Boltzmann GCE and
CE. To characterize the distribution one can calculate its (raw)
moments 〈Nn

�〉 from:

〈
Nn

�

〉 = ∞∑
N�=0

Nn
�P (N�) . (1)

A convenient measure for the width of a distribution is the
scaled variance:

ω� ≡
〈
N2

�

〉− 〈N�〉2

〈N�〉 . (2)

To remove simple scaling effects, the bin sizes or segments are
chosen such that each bin or segment contains the same fraction
q = 〈N�〉/〈N4π 〉 of the total yield [compare Eq. (2)]. Here
〈N�〉 denotes the average particle number in the momentum-
space segment �, and 〈N4π 〉 denotes the average total
(4π integrated) multiplicity. The effect of finite acceptance

can approximately be taken into account by [7]:

ωq = 1 + q (ω4π − 1) , (3)

where ω4π assumes the ideal situation when all particles
are detected, whereas ωq assumes that particles are detected
with probability q regardless of their momentum. Hence
Eq. (3) holds when particles are assumed to be uncorrelated in
momentum space. In the limit q → 0 one observes a random
distribution with ωq → 1, i.e., a Poissonian, whereas when
q → 1 one sees the real distribution with width ωq → ω4π .
In this work we take explicitly correlations due to globally
conserved charge (CE) and energy-momentum (MCE) into
account and compare the results to Eq. (3).

III. GRAND CANONICAL AND CANONICAL ENSEMBLE

A. Grand canonical ensemble

In the GCE, both heat and charge bath are assumed to
be infinite. And thus charge, energy, and momentum are
not conserved exactly. Temperature T and charge chemical
potential µ regulate average energy and charge density in a
system of volume V . Usually it is said that charge, energy, and
momentum are conserved in the average sense and fluctuations
about an equilibrium value are allowed. Apart form Bose
and Fermi effects [18] particles are therefore uncorrelated
in momentum space. However, this example serves as an
illustration for the following CE and MCE calculations. We
start by decomposing the Boltzmann single particle partition
function z−(φN�

) of π− into two parts,

z− (φN�

) = z−
�

(
φN�

)+ z−
�̄

= gV

(2π )3

∫
�

d3pe− ε+µ

T eiφN�

+ gV

(2π )3

∫
�̄

d3pe− ε+µ

T , (4)

where the single-particle energy ε =
√

p2 + m2, and m and g

are mass and degeneracy factor of π−, respectively. Only for
momentum states inside the momentum space region � do we
introduce additionally a Wick-rotated fugacity exp(iφN�

). For
the positive and neutral pion (which we do not want to detect
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in our example) we write:

z+ = gV

(2π )3

∫
d3pe− ε−µ

T and z0 = gV

(2π )3

∫
d3pe− ε

T .

(5)

The value of the single-particle partition function, for instance,
of the neutral pion, is given by:

z0 = 〈N0〉 = gV

2π2
m2T K2

(m

T

)
. (6)

For the sake of simplicity we assume equal masses for
all pions. To obtain the GCE multiplicity distribution for
N� in a momentum-space segment � we use the Fourier
integral over the generalized GCE partition functionZ(φN�

) =
exp[z−

�(φN�
) + z−

�̄
+ z+ + z0], normalized by the GCE parti-

tion function:

Pgce(N�) ≡ Z−1
gce ×

∫ π

−π

dφN�

2π
e−iN�φN�Z

(
φN�

)
= (z−

�)N�

N�!
exp[−z−

�], (7)

where the system partition function is given by Zgce ≡
Z(φN�

= 0) and z−
� = z−

�(φN�
= 0). Independent of the shape

or size of � we find a Poissonian for the multiplicity
distribution Eq. (7). Thus, using Eq. (2), one finds for the
scaled variance ω

gce
� = 1, because 〈N�〉 = z−

� and 〈N2
�〉 =

〈N�〉2 + 〈N�〉.
For Bose and Fermi statistics one does not expect a Poisson

distribution and (in particular when the chemical potential is
large) deviations from a Poissonian can be large. Thus one
expects also deviations from Eq. (3) when considering only
finite acceptance.

B. Canonical ensemble

In the CE the heat bath is still assumed to be infinite, while
we remove the charge bath and drop the chemical potential.
Thus, we introduce a further Wick-rotated fugacity µ/T →
iφQ into the single-particle partition functions to account for
global (however, not in the momentum-space segment �)
conservation of electric charge Q. Particles in � are therefore
correlated, due to the condition of fixed net charge, with a
finite charge bath composed of π+ and unobserved π−. We
again split the single-particle partition function for π− into an
observed, z−

�(φN�
, φQ), and an unobserved part, z−

�̄
(φQ),

z− (φN�
, φQ

) = z−
�

(
φN�

, φQ

)+ z−
�̄

(φQ)

= gV

(2π )3

∫
�

d3pe− ε
T e−iφQeiφN�

+ gV

(2π )3

∫
�̄

d3pe− ε
T e−iφQ, (8)

whereas we do not want to measure π+ and π0 and thus:

z+(φQ) = gV

(2π )3

∫
d3pe− ε

T e+iφQ

and

z0 = gV

(2π )3

∫
d3pe− ε

T . (9)

The normalization of the CE multiplicity distribution is given
by the CE system partition function Zce, i.e., the number of all
micro states with fixed charge Q, Zce = IQ(2z) exp(z0), where
IQ is the modified Bessel function. The multiplicity distribu-
tion of N� in a momentum-space segment �, whereas charge
Q is globally conserved, can be obtained from Fourier integra-
tion of the generalized GCE partition function Z(φN�

, φQ) =
exp[z−

�(φN�
, φQ) + z−

�̄
(φQ) + z+(φQ) + z0], over both angles

φQ and φN�
:

Pce (N�)

≡ Z−1
ce ×

∫ π

−π

dφN�

2π

∫ π

−π

dφQ

2π
e−iN�φN� e−iQφQZ

(
φN�

, φQ

)
(10)

= I−1
Q (2z) × (z−

�)N�

N�!

∞∑
a=0

(z−
�̄

)a

a!

zQ+N�+a

(Q + N� + a)!
, (11)

where in CE z−
� = z−

�(φN�
= φQ = 0), z−

�̄
= z−

�̄
(φQ = 0), and

z = z+(φQ = 0) = z0. For the respective first two moments
one finds from Eq. (1):

〈N�〉 = z−
�

IQ+1 (2z)

IQ (2z)

and 〈
N2

�

〉 = (z−
�)2 IQ+2 (2z)

IQ (2z)
+ z−

�

IQ+1 (2z)

IQ (2z)
. (12)

Thus, we obtain the well-known canonical suppression of
yields [19–22] and fluctuations [7,23]. The result, however,
is completely independent of the position of the segment �.
And therefore the scaled variance, Eq. (2), takes the form:

ωce
� = 1 + z−

�

[
IQ+2 (2z)

IQ+1 (2z)
− IQ+1 (2z)

IQ (2z)

]

and

ωce
4π = 1 + z

[
IQ+2 (2z)

IQ+1 (2z)
− IQ+1 (2z)

IQ (2z)

]
, (13)

where ω� is the width of Pce(N�), i.e., the multiplicity
distribution of π− with momenta inside �, whereas ω4π

is the width of the corresponding distribution when � is
extended to the full momentum space. It can immediately be
seen that this formula is consistent with acceptance scaling,
Eq. (3), ω� = 1 + q(ω4π − 1), if q ≡ z−

�/z. Generally we find
ωce

4π < ωce
� < ωgce = 1. In the limit of z−

�/z → 0 we approach
the Poisson limit of a “random” distribution with ω = 1, i.e.,
the observed part of the system is embedded into a much larger
charge bath and the GCE is a valid description.

IV. MICROCANONICAL ENSEMBLE

For the MCE an analytical solution seems to be out of
reach presently, so we use instead the asymptotic solution,
applicable to large systems, derived in Ref. [17]. To avoid
unnecessary repetition of calculations, we give only a general
outline here and refer the reader for a detailed discussion to
Ref. [17]. It should be mentioned that this method be would be
also applicable to systems of finite spatial extention, provided
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the average particle number in a given momentum space bin
exceeds roughly 〈N�〉 >∼ 5. In this work we confine ourselves
to large systems and try to asses the general trends.

The basic idea is to define the MCE multiplicity distribution
in terms of a joint GCE distribution of multiplicity, charge,
energy, momentum, etc. The MCE multiplicity distribution
is then given by the (normalized) conditional probability in
the GCE to find a number N� of particles in a segment �

of momentum space, whereas electric charge Q, energy E,
and three-momentum �P are fixed. Therefore we will keep
temperature and chemical potentials as parameters to describe
our system. Effective temperature and effective chemical
potential, i.e., Lagrange multipliers, can be determined by
demanding that the GCE partition function is maximized for
a certain equilibrium state (Q,E, �P ). This requirement is
entirely consistent [17] with the usual textbook definitions of T

and µ in MCE and CE through differentiation of entropy and
Helmholtz free energy with respect to conserved quantities.
In principle we would have to treat all conservation laws on
equal footing [24] and thus introduce Lagrange multipliers
for momentum conservation as well. However, here we are
only interested in a static source, thus �P = �0, and the relevant
parameters are equal to zero.

In the large volume limit energy, charge, and particle density
in the MCE will correspond to GCE values. This is required
by the thermodynamic equivalence of ensembles for mean
quantities. MCE and CE partition functions are generally
obtained from their GCE counterpart by multiplication with
δ functions, which pick out a set of micro states consistent with
a particular conservation law. Here it will be of considerable
advantage to use Fourier representations of δ functions, similar
to the treatment in Sec. III. This method could be considered to
be a Fourier spectral analysis of the generalized GCE partition
function [17].

The normalized conditional probability distribution of
multiplicity N� can be defined by the ratio of the values of
two partition functions:

Pmce(N�)

≡ number of all states with N�,Q,E, and �P = �0
number of all states with Q,E, and �P = �0 .

(14)

The real MCE partition function and our modi-
fied version are connected as Z(V,N�,Q,E, �P ) ≡
ZN�,Q,E, �P (V, T , µ)e+E/T e−Qµ/T . In either case the nor-
malization in Eq. (14) is given by the partition functions
with fixed values of Q,E, �P , but arbitrary particle num-
ber N�, hence Z(V,Q,E, �P ) ≡ ∑∞

N�=0 Z(V,N�,Q,E, �P )

or ZQ,E, �P (V, T , µ) ≡ ∑∞
N�=0 ZN�,Q,E, �P (V, T , µ). However,

when taking the ratio (14) auxiliary parameters chemical
potential and temperature drop out:

Pmce(N�) ≡ Z(V,N�,Q,E, �P )

Z(V,Q,E, �P )
= ZN�,Q,E, �P (V, T , µ)

ZQ,E, �P (V, T , µ)
.

(15)

The main difference between the two versions of partition
functions is that for Z(V,N�,Q,E, �P ) one is confronted
with a heavily oscillating (or even irregular) integrant, whereas
for ZN�,Q,E, �P (V, T , µ) the integrant becomes (T ,µ correctly
chosen) very smooth. Thus, introduction of T and µ allows to
derive (and use) the asymptotic solution of Ref. [17].

We have a total number of six conserved “charges” and
hence we need to solve the six-dimensional Fourier integral
for the numerator in Eq. (15)1:

ZN�,Q,E, �P

=
∫ π

−π

dφN�

2π

∫ π

−π

dφQ

2π

∫ ∞

−∞

dφE

2π

∫ ∞

−∞

dφPx

2π

∫ ∞

−∞

dφPy

2π

×
∫ ∞

−∞

dφPz

2π
e−iN�φN� e−iQφQe−iEφE e−iPxφPx e−iPyφPy

× e−iPzφPz exp

[
V
∑

k

ψk

(
φN�

φQ, φE, φPx
, φPy

, φPz

)]
.

(16)

The summation in Eq. (16) should be taken over the single-
particle partitions V ψk = zk of all considered particle species
k. The Wick-rotated fugacities φQ, etc., are related to the
individual conservation laws. The distinction between the
Kronecker δ function (limits of integration [−π, π ]) for
discrete quantities and the Dirac δ function (limits of inte-
gration [−∞,∞]) for continuous quantities is important here;
however, for deriving an asymptotic solution it will not be. To
simplify Eq. (16) we change to shorthand notation for φj =
(φN�

φQ, φE, �φP ) and the conserved “charge” vector Qj =
(N�,Q,E, �P ). We again split the single-particle partition
functions in two parts. The first part counts the number of
momentum states observable to our detector, whereas the
second part counts momentum states invisible to our detector:

ψk

(
φj

) = gk

(2π )3

∫
�

d3pe− εk−qkµ

T eiq
j

k,�φj

+ gk

(2π )3

∫
�̄

d3pe− εk−qkµ

T e
iq

j

k,�̄
φj . (17)

For the “charge” vector of all measured particle species k we
write q

j

k,� = (1, qk, εk, �pk) for momenta inside � and q
j

k,�̄
=

(0, qk, εk, �pk) for momenta outside of �. For all unobserved
particle species we write q

j

k,� = q
j

k,�̄
= (0, qk, εk, �pk). Here

qk is the electrical charge of particle species k, and εk and
�pk are its energy and momentum vector. In Ref. [17], where
only multiplicity distributions in the full momentum space
were considered, the general “charge” vector took the form
q

j

k,4π = (nk, qk, εk, �pk), where nk is the multiplicity of this
particle. For stable particles nk = 1 in case they are observed,
and nk = 0 if they are not measured, whereas for unstable
particles nk could also denote the number of measurable decay
products.

The real part of the integrant of the integral Eq. (16) has a
sharp maximum around �φ = �0, with both the peak height as

1We drop in the following the argument (V, T , µ) to simplify the
notation.
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well as the second derivative being proportional to the GCE
partition function Zgce. (The imaginary part is antisymmetric.)
For large system volume the main contribution to the integral
(16) comes therefore from a small region around the origin
[15]. Thus we proceed by Taylor expansion of the integrant of
Eq. (16) around φj = �0. In this context 	(φj ) = ∑

k ψk(φj )
would be called the cumulant generating function (CGF).
Cumulants (expansion terms) are defined by differentiation
of the CGF at the origin:

κj1,j2,...,jn

n ≡ (−i)n
∂n	(φj )

∂φj1∂φj2 . . . ∂φjn

∣∣∣∣∣
φj =�0

. (18)

Generally are cumulants tensors of rank n and dimension
defined by the number of conserved quantities. Here κ1 is
a six-component vector, while κ2 is a 6 × 6 matrix, etc.

The parts of the integrant related to discrete quantities, i.e.,
N� and Q, are now not 2π periodic anymore [whereas in
Eq. (16) they are] but superpositions of oscillating and
decaying parts. Thus we extent the limits of integration to ±∞,
what introduces a negligible error. Equation (16) therefore
simplifies to:

ZQj �

 6∏

j=1

∫ ∞

−∞

dφj

(2π )


 exp

(
− iQjφj

+V

∞∑
n=0

in

n!
κj1,j2,...,jn

n φj1φj2 . . . φjn

)
. (19)

Summation over repeated indices is implied. Existence and
finiteness of the first three cumulants provided, any such
integral can be shown to converge to a multivariate normal
distribution in the large volume limit:

ZQj � Zgce

exp
(
− ξj ξj

2

)
(2πV )6/2 det |σ | , (20)

where Zgce ≡ exp[V κ0] is the GCE partition function, κ0 is
the cumulant of 0th order, ξ j = (Qk − V κk

1 )(σ−1) j

k V −1/2 is
(in the large volume limit) a measure for the distance of
a particular macro state Qk to the peak V κk

1 of the joint
distribution, and σ is the square root of the second rank tensor
κ2. The expansion Eq. (19) converges to the approximation
Eq. (20) for sufficiently large volume, as long as higher-order
expansion terms κn, (n � 3) remain finite. This is the case
for the model considered here. For a detailed derivation and
calculation of finite volume corrections, see Ref. [17] for
details.

The normalization in Eq. (15) can essentially be found
in two ways. The first way would be to integrate the
distribution (20) over all possible values of multiplicity
N�, while all other variables are set to their peak val-
ues, e.g., Q = V κ

Q
1 , E = V κE

1 , �P = �0. The second and
more practical way is to use an approximation similar to
Eq. (20) to describe the macro state Qj = (Q,E, �P ).
The normalization in Eq. (15), ZE,Q, �P , is then given by the
five-dimensional integral, similar to Eq. (16), without the
integration over φN�

. The one-dimensional slice along N�,

i.e., the conditional distribution of particle number N�, while
charge, energy, and momentum are fixed to Q,E, �P = �0, can
then be shown [17] to converge to a Gaussian in the large
volume limit:

Pmce(N�) � 1(
2πωmce

� 〈N�〉)1/2 exp

[
− (N� − 〈N�〉)2

2ωmce
� 〈N�〉

]
. (21)

The scaled variance ωmce
� is given by the ratio of the two

determinants of the two relevant second-rank cumulants, κ2

and κ̃2, of the two partition functions ZN�,E,Q, �P and ZE,Q, �P ,
hence2:

ωmce
� = det |κ2|

κ
N�

1 det |κ̃2|
. (22)

The asymptotic (V → ∞) scaled variance can therefore be
written in the form of Eq. (28) in Ref. [17]. For an explicity
derivation of Eqs. (21) and (22) the reader is referred to Sec. III
and Appendix D of Ref. [17]. Considering only the asymptotic
solution we need to investigate only the first two cumulants
(n = 1, 2) in detail. We will first discuss the structure of κ1

and κ2 and then deduce a few properties of Eq. (22).
The first-order cumulant κ1 of ZN�,Q,E, �P gives GCE

expectation values for particle density κ
N�

1 , charge density κ
Q
1 ,

energy density κE
1 , and expectation values of momentum κ

px

1 ,
etc. Because we are only interested in a static source we find
due to the antisymmetric momentum integral (see Appendix A)
κ

px

1 = κ
py

1 = κ
pz

1 = 0. The general form of the first cumulant
κ1 is then:

κ1 = (
κ

N�

1 , κ
Q
1 , κE

1 , 0, 0, 0
)
. (23)

The second cumulant κ2 of ZN�,Q,E, �P contains information
about correlations due to different conserved quantities. A
detailed discussion of correlation terms only involving Abelian
charges and/or energy, e.g., κQ,Q

2 , κ
Q,E
2 , and κ

E,E
2 , can be found

in Ref. [17]. Again, due to the antisymmetric nature of the
momentum integral, all cumulant entries involving an odd
order in one of the momenta, e.g., κ

E,px

2 , κ
px,py

2 , or κ
Q,px

2 ,
are equal to zero. The general second-order cumulant κ2 thus
reads:

κ2 =




κ
N�,N�

2 κ
N�,Q
2 κ

N�,E
2 κ

N�,px

2 κ
N�,py

2 κ
N�,pz

2

κ
Q,N�

2 κ
Q,Q
2 κ

Q,E
2 0 0 0

κ
E,N�

2 κ
E,Q
2 κ

E,E
2 0 0 0

κ
px,N�

2 0 0 κ
px,px

2 0 0

κ
py,N�

2 0 0 0 κ
py,py

2 0

κ
pz,N�

2 0 0 0 0 κ
pz,pz

2 .



(24)

Please note that by construction, Eq. (18), the matrix (27) is
symmetric, hence κ

N�,Q
2 = κ

Q,N�

2 , etc.
The second matrix κ̃2, now related to the partition function

ZQ,E, �P , is obtained from κ2, Eq. (27), by crossing out the first
row and first column. In the following we are going to make

2Please note, that to simplify formulas, the notation is slightly
different from Ref. [17].
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use of the fact that one can express the determinant of a matrix
A by:

det |A| =
n∑

j=1

(−1)j+k Aj,kMj,k, (25)

where Aj,k is the matrix element j, k of a general nonsingular
n × n matrix A and Mj,k is its complementary minor. A simple
consequence of Eq. (25) is:

det |κ̃2| = κ
px,px

2 κ
py,py

2 κ
pz,pz

2

[
κ

E,E
2 κ

Q,Q
2 − (

κ
E,Q
2

)2]
= (

κ
px,px

2

)3
det |κ̂2|, (26)

where κ
px,px

2 = κ
py,py

2 = κ
pz,pz

2 , due to spherical symmetry
in momentum space, and κ̂2 is just a 2 × 2 matrix involving
only terms containing E and Q. In case correlations between
particle number and conserved momenta are vanishing, i.e.,
κ

N4π ,px

2 = 0 or κ
N�,px

2 = 0, then, similarly to Eq. (26), the
determinant of κ2 factorizes into a product of correlation terms
(κpx,px

2 )3 and the determinant of a 3 × 3 submatrix involving
only terms containing E,Q, and N . Hence in taking the ratio
Eq. (22) one notes that in this case momentum conservation
will not affect multiplicity fluctuations in the large volume
limit [17]. In this work, however, we do not necessarily find
κ

N�,px

2 = 0, as we integrate over only a limited segment �

of momentum space, and taking momentum conservation into
account may affect the result.

Finally, it should be stressed that this procedure can be
easily generalized to account for Bose or Fermi statistics. Also
phenomenological phase-space suppression (enhancement)
factors γq [25] or γs [26] could be straightforwardly included.
However, without proper implementation of the effect of
additional correlations due to resonance decay and collective
motion, i.e., flow, it seems of little value to do too strict
calculations for experimentally measurable distributions. We
thus return to the pion gas example from Sec. III and restrict
the discussion to simple momentum space cuts in rapidity,
transverse momentum, and azimuthal angle; see also the
Appendix for details.

V. RESULTS

A. Multiplicity fluctuations in the full momentum space

Let us first recall basic properties of multiplicity fluctua-
tions of negative particles in the full momentum space (4π

fluctuations) in the three standard ensembles of the Boltzmann
pion gas considered here.

Multiplicity fluctuations in the CE are suppressed due
to exact charge conservation. For a neutral (Q = 0) system
one finds in the large volume limit ωce

4π = 0.5 [7]. Further
suppression of fluctuations arise from additionally enforcing
exact energy conservation in the MCE. Here one finds ωmce

4π ≈
0.25 for a Boltzmann pion gas at T ≈ 160 MeV. In the GCE,
because no conservation laws are enforced, we always find a
Poisson distribution with width ω

gce
4π = 1.

Because charge conservation in CE links the distributions
of negatively charged particles to the one of their positive
counterparts, i.e., P (N−) = P (N+ − Q), the relative width
of P (N−) increases (decreases) as we move the electric

charge density to positive (negative) values [27]. This can
be easily be seen from Eq. (27) by crossing out all rows and
columns containing energy and momentum. The second-order
CE cumulant κce

2 is:

κce
2 =

(
κ

N4π ,N4π

2 κ
N4π ,Q
2

κ
Q,N4π

2 κ
Q,Q
2

)
. (27)

One can then calculating the asymptotic CE scaled variance of
negatively charged particles, ωce

4π , from Eq. (22),

ωce
4π = κ

N4π ,N4π

2 κ
Q,Q
2 − (

κ
N4π ,Q
2

)2

κ
N4π

1 κ
Q,Q
2

. (28)

For the ideal Boltzmann pion gas one finds for the expectation
value of particle number density of negatively charged pions:

κ
N4π

1 =
(

−i
∂

∂φN4π

)
	(φj )

∣∣∣∣
φj =�0

= g

2π2
m2T K2

(m

T

)
e− µ

T = ψ− = ψ0e
− µ

T , (29)

where 	(φj ) = ψ−(φj ) + ψ+(φj ) + ψ0(φj ) is the CGF of
ideal Boltzmann pion gas, and ψk(φj ) are the single-particle
partition functions given by Eq. (17) of π−, π+, and π0

respectively. Further one finds from Eq. (18) in Boltzmann
approximation:

κ
N4π ,N4π

2 = κ
N4π ,Q
2 = κ

N4π

1 . (30)

Fluctuations of electric charge in the GCE pion gas are given
by:

κ
Q,Q
2 =

(
−i

∂

∂φQ

)2

	(φj )

∣∣∣∣∣
φj =�0

= ψ0e
+ µ

T + ψ0e
− µ

T

= 2ψ0 cosh
(µ

T

)
. (31)

Substitution of above relations into Eq. (28) leads to the result
known from Ref. [27]:

ωce
4π = exp

(
µ

T

)
2 cosh

(
µ

T

) . (32)

The same effect is present in the MCE; however, the calculation
is slightly longer.

Results for 4π multiplicity fluctuations of negatively
charged particles in a Boltzmann pion gas at T = 160 MeV
and different charge densities are summarized in Table I.

TABLE I. Multiplicity fluctuation of π− in a classical pion gas
in the large volume limit in the three standard ensembles at T =
160 MeV for different charge densities. The index “4π” denotes
fluctuations in the full momentum space, whereas the index “q =
1/9” assumes acceptance scaling, Eq. (3). The ratio n−/ntot equals to
0.33 for µ = 0, 0.48 for µ = −m/2, and 0.20 for µ = +m/2.

ω
gce
4π ωce

4π ωmce
4π ω

gce
q=1/9 ωce

q=1/9 ωmce
q=1/9

µ = 0 1 0.5 0.235 1 0.944 0.915
µ = −m

2 1 0.294 0.147 1 0.922 0.905
µ = +m

2 1 0.706 0.353 1 0.967 0.928

034909-6



MULTIPLICITY FLUCTUATIONS IN LIMITED SEGMENTS . . . PHYSICAL REVIEW C 77, 034909 (2008)

Additionally estimates, based on our previously employed
“uncorrelated particle” approach, Eq. (3), for multiplicity
fluctuations with limited acceptance are given. Despite the
fact that ω4π is very different in GCE, CE, or MCE and also
rather sensitive to the charge density, the estimates for limited
acceptance (q = 1/9) based on Eq. (3) vary only by a few
percentages. To decisively distinguish predictions for different
ensembles a large value of q would be needed.

B. Multiplicity fluctuations in limited segments of
momentum space

In Sec. III we have seen that in the Boltzmann CE
multiplicity fluctuations observed in a limited segment of
phase space are insensitive to the position of this segment.
The dependence on the size of the segment can thus be taken
into account by use of acceptance scaling Eq. (3). To balance
charge a particle can be produced or annihilated anywhere
in momentum space. And due to a infinitely large heat and
momentum bath in the CE no momentum state is essentially
preferred.

In the MCE this dependence is qualitatively different. When
using the MCE formulation particles are correlated due to
the constraints of exactly conserved energy and momentum,
even in the large volume limit. Fluctuations in a macroscopic
subsystem are strongly affected by correlations with the
remainder of the system.

In Fig. 2 we show the scaled variance of multiplicity
fluctuations for negatively charges particles in finite bins in
transverse momentum (left) and rapidity (right). The bins
are constructed such that each bin contains on average the
same fraction q of the total average yield. The width of
each bin is indicated by the bars. Calculations are done
for two values of acceptance (q = 1/5, and q = 1/9). The
dashed and dotted lines correspond to acceptance scaling
Eq. (3), whereas the markers are calculated from Eq. (22).
One finds that multiplicity fluctuations in bins with high
transverse momentum and high values of rapidity are, due
to energy and momentum conservation, essentially suppressed

with respect to bins where individual particles carry less energy
and momentum.

A intuitive explanation would probably look like this: Let
us consider an event with an unusually large (small) number
of particles at the most forward rapidity bin. In this bin we
would find therefore a macroscopic state with unusually large
(small) observed longitudinal momentum P obs

z and energy
Eobs. The remainder of the system therefore has to have
rather large (small) momentum −P obs

z and rather small (large)
energy E-Eobs. Because both probability distributions, for the
observed and the unobserved subsystems, do not factorize into
independent probability distributions but are correlated, this
macro state would be rather unlikely. Fluctuations about the
mean 〈Ny〉 at forward (backward) rapidities should therefore
be suppressed. However, modest multiplicity fluctuations in a
high-pT bin induce stronger fluctuations in the lower-pT bins,
and fluctuations about 〈NpT

〉 in a low-pT bin are enhanced.
Even when detecting only a fraction of about 10% of the total
system these correlations can have a sizable effect.

C. Conservation laws

It seems worthwhile to consider individual conservation
laws and their impact on multiplicity fluctuations in more
detail. One of the main advantages of the analytical procedure
presented here is certainly that one can easily “switch on”
or “switch off” a particular conservation law. For illustrative
purposes we show the result of ωmce

�y for MCE without
longitudinal momentum conservation in Fig. 3.

In comparing Fig. 2, right, to Fig. 3 it becomes obvious
that energy conservation alone cannot account for the strong
suppression of multiplicity fluctuations at forward rapidities
but has to be explained by combined energy and longitudinal
momentum conservation.

The relevant cumulants elements, which give information
about the strength of correlations between particle number
and a particular conserved quantity, are κ

N�,Q
2 , κ

N�,E
2 , κ

N�,px

2 ,
etc. Whenever a element is vanishing, then the corresponding
conservation law has no impact on multiplicity fluctuations.

 [GeV]
T

p
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m
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 p∆
ω

0.7
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q = 1/5
q = 1/9

y
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0.9

0.95

1
 conservation

z
including P q = 1/5

q = 1/9

FIG. 2. (Color online) Transverse-momentum (left) and rapidity dependence (right) of the scaled variance of π− at T = 160 MeV, for a
classical pion gas at zero charge density. Momentum bins are constructed in a way that each bin contains the same fraction q of the average
π− yield. The (error) bars indicate the width of the pT or y bins, whereas the marker indicate the position of the center of gravity of the
corresponding bin. The lines indicate acceptance scaling Eq. (3). Calculations are done for different values of acceptance. q = 1/5 (square
marker, dotted line), q = 1/9 (triangle down, dashed).
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y
-3 -2 -1 0 1 2 3

m
ce  y∆

ω

0.7

0.75

0.8

0.85

0.9

0.95

1
 conservationzwithout P q = 1/5

q = 1/9

FIG. 3. (Color online) Same as Fig. 2(right) but without Pz

conservation.

For details of the calculations please see the Appendix.
Because for fluctuations of charged particles κ

N�,Q
2 and κ

N�,E
2

are generally nonzero, we will focus only on the effects of
momentum conservation.

For multiplicity fluctuations in bins in transverse momen-
tum, momentum conservation does not affect the result, see
Appendix B, and the suppression effect is a result of energy
conservation alone. When considering cuts in rapidity one
finds in general κ

Ny,pz

2 
= 0, but κ
Ny,px

2 = κ
Ny,py

2 = 0, and only
longitudinal momentum conservation needs to be taken into
account, see Appendix C. In considering the third idealized
case, where our detector observes only a segment in azimuthal
angle φ, but all rapidities y and transverse momenta pT , both
global Px , and Py conservation lead to nontrivial modifications
of Eq. (3), see Appendix D.

To understand the difference between the strong suppres-
sion of fluctuations at high transverse momentum and the
rather modest suppression at high rapidity when momentum
conservation is not enforced, one should compare the elements

κ
NpT

,E

2 in Eq. (B3), and κ
Ny,E

2 in Eq. (C4), which measure in
Boltzmann approximation the average energy density carried
by particles in a bin �pT or �y, to the total average energy

density 〈E−〉 = κ
N4π ,E
2 carried by π−. [All other elements

in Eqs. (B3) and (C4) do not depend on the location of the
segment.] In case of kinematical cuts in �pT the fraction

κ
NpT

,E

2 /〈E−〉 rises from about 5% in the lowest to roughly
20% in the highest pT bin. In contrast to that for the central
y-bin this ratio is about 10%, whereas the most forward or
backward bins it is roughly 12%. However, in both cases the
bins contain on average q = 1/9 ≈ 11% of the total average
π− yield. The effect of energy conservation is thus weaker for
cuts in rapidity than for cut in transverse momentum, see also
Appendices B and C.

D. Charged systems

In Fig. 4 the transverse-momentum (left) and rapidity (right)
dependence of the scaled variance is presented for two different
values of charge density. Similar to the CE, in MCE the
effective size of the heat and charge bath matters. We find that
in general MCE effects for negatively charged particles are
stronger (weaker) when the electric charge density is negative
(positive). In the limit of a strongly positively charged system,
the π− subsystem could be considered as embedded in a large
heat, charge, and momentum bath (provided by π+ and π0

particles) and MCE effects would cease. The GCE would here
be the appropriate limit. In the opposite limit of a strongly
negatively charged system, charge conservation essentially
becomes equivalent to particle number conservation. This
scenario might be more familiar from textbooks, where the
CE is usually understood as the ensemble with fixed particle
number. However here also the same arguments as above apply,
except the effect would be much stronger, and ωmce

4π = 0.
In general one would expect that suppression effects in bins

of high transverse momentum or high values of rapidity are
stronger the more abundant the analyzed particle species is.
In the context of heavy-ion collision this implies that MCE
effects should be stronger for positively charged particles than
for negatively charged particles, due to the fact that the created
system carries positive net charge.

 [GeV]
T

p
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

m
ce T

 p∆
ω

0.7

0.75

0.8

0.85

0.9
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1
 = +m/2µ
 = -m/2µ

y
-3 -2 -1 0 1 2 3
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ce  y ∆

ω
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0.8
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0.9

0.95

1
 conservation

z
including P  = +m/2µ

 = -m/2µ

FIG. 4. (Color online) Transverse-momentum (left) and rapidity dependence (right) of the scaled variance of π− at T = 160 MeV, for a
classical pion gas at zero charge density. Momentum bins are constructed in a way that each bin contains the same fraction q of the average
π− yield. The (error) bars indicate the width of the pT or y bins, whereas the markers indicate the position of the center of gravity of the
corresponding bin. The lines indicate acceptance scaling Eq. (3). Calculations are done for different charge densities µ = −m

2 (square marker,
dotted) and µ = +m

2 (triangle down, dashed).
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Previous work suggests that the asymptotic values for the
scaled variance are indeed reached rather quickly [15] and the
above results are certainly applicable to large systems expected
to be created in relativistic heavy-ion collisions.

VI. REMARKS AND CONCLUSION

Some concluding remarks seems to be in order. Although
it might seem inappropriate to use the MCE formulation of
a hadron resonance gas model for calculation of multiplicity
fluctuations in heavy-ion collisions, as energy and volume
cannot be assumed to be the same in all events, it should be
stressed that GCE and CE still imply a very particular type of
heat (and momentum) bath, namely an infinite (and ideal) one.
This assumption seems to us even less appropriate. Also the
MCE is often understood as the ensemble with energy (and
charge); however, not momentum conservation. It is usually
assumed that taking momentum conservation into account will
not affect fluctuations in the large volume limit. We have shown
[17] in a recent article that this is indeed the case, when one
assumes information about all produced particles. However,
for calculations of multiplicity fluctuations in arbitrary finite
subsystems in momentum space all kinematic conservation
laws need to be taken into account.

In a realistic heavy-ion experiment it seems impossible to
measure the entire final state of each collision. The observed
subsystem could therefore be seen as effectively embedded
into a (possibly much larger) heat, charge, and momentum
bath. Sometimes it is therefore argued that, when investigating
only a small part of a statistical system (canonical or micro-
canonical), one can ignore correlations of the subsystem under
investigation with the remaining system. This argument is
often applied when considering yields and/or fluctuations in a
limited segment of momentum space. More precisely, usually
the GCE is thought to be the appropriate ensemble to model
fluctuations of particle multiplicity or particle ratios found in
some mid-rapidity interval [28]. In this work we have argued
that this assumption should be checked carefully. The GCE is
the correct ensemble to choose only if heat and charge bath are
assumed to be infinite, while the observed subsystem remains
finite.

Based on our previous line of arguments, one would also
expect that strong collective longitudinal and transverse flow
would lead to a strong correlation of macroscopic subsystems.
Longitudinal momentum conservation implies that when
“observing” in an event a final state with a certain small
(large) number of produced particles at very forward rapidity,
a similarly small (large) number of particles should exist at
backward rapidities. Particles in these bins carry substantial
longitudinal momenta and hence energy. Modest fluctuations
in their numbers should therefore induce stronger fluctuations
in the central rapidity region. The same line of arguments
is applicable to the transverse-momentum dependence. One
would therefore expect a similar momentum space dependence
of experimentally measured charged particle multiplicity
fluctuations as shown in Fig. 2.

This argument is additionally supported by ultrarelativistic
quantum molecular dynamics (UrQMD) model simulations

[29]. In transport calculations the produced systems stay far
away from global or local equilibrium [30] and other (dy-
namical) mechanisms might lead to similar effects. However,
one could also infer from Ref. [29] that even in nonequilibrium
systems correlations due to exactly enforced conservation laws
determine the general trend, although transport simulations
show, for instance, a very different dependence of multiplicity
fluctuations on beam energy [31,32] than statistical equilib-
rium models. This should be subject of further investigation.

Finally, and most importantly, we want to stress that
recently presented preliminary NA49 analysis of multiplicity
fluctuations in certain rapidity and transverse-momentum
windows [33] shows qualitatively the very same trends as
they are suggested by the MCE formulation of the statistical
model. Data, UrQMD simulations, and the statistical model
exhibit suppressed multiplicity fluctuations when bins with
high transverse momentum (or high values of rapidity) are
compared to bins of same mean multiplicity at lower transverse
momentum (or lower values of rapidity). We are certainly
tempted to interpret this rather unexpected common behavior
as a manifestation of energy and momentum conservation
effects.

For a direct comparison of model calculations to exper-
imental data [33] the formalism presented here should be
essentially extended. Inclusion of the effects of resonance
decay and collective motion should therefore be subject of
future studies.

The cumulants defined by Eq. (18) cannot directly be
related to experimentally measurable quantities. However
measurement of correlation functions between “global” ob-
servables in present or future heavy-ion collision experiments,
e.g., measurement of correlations between mean transverse-
momentum pT and average particle number 〈N〉 (see also
Ref. [34]), fluctuations of transverse momentum [35], or
any other fluctuation or correlation measure that can be
related to moments of corresponding distributions, can also
be related to a covariance matrix of the type shown in
Eq. (27). Experimental determination of such a covariance
matrix would provide valuable information on statistical prop-
erties of systems created in high-energy heavy-ion collisions.
Theoretical calculation within the afore mentioned extensions
to the model should therefore also be subject of future studies.

VII. SUMMARY

We have discussed the effect of momentum space cuts on
multiplicity fluctuations in the framework of an ideal classical
pion gas in the three standard ensembles, GCE, CE, and MCE.
Only in the MCE we expect a momentum space dependence
of multiplicity fluctuations when comparing intervals of same
average multiplicity. We have shown that even in the ther-
modynamic limit energy-momentum conservation can leave a
sizable effect in the fluctuation pattern.

In a previous publication we have argued that despite the
fact one may expect event-by-event fluctuations of the thermal
energy, i.e., the part of the total energy which goes into
thermal particle production rather than collective expansion,
these event-by-event fluctuations remain small compared to
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energy fluctuations one would expect from grand canonical and
canonical ensembles. In this work we have shown that energy
and momentum conservation lead to a nontrivial momentum
space dependence of the fluctuation pattern. This argument
seems to be strongly supported by data.

Above results become all the more interesting when
compared to models that seek to describe effects beyond
our considerations. In fact our calculations suggest a similar
strength of respective suppression or enhancement as they were
predicted as signals for the critical point of strongly interacting
matter, the onset of deconfinement, or generally a possible
phase transition. One might also be tempted to argue that
enhanced fluctuations around mid-rapidity, when compared to
a more forward rapidity slice, should be interpreted as a signal
of a phase transition from a quark gluon plasma to a hadron gas
phase, expected to be first realized in the presumably hotter
and denser central rapidity region. However, in this case there
should be a nonmonotonic variation as center-of-mass energy
of colliding nuclei is changed. This seems not to be supported
by preliminary NA49 data.

In summary, the above results should be treated as a
prediction for general trends of multiplicity fluctuations in
limited segments of momentum space. The existence of
this general behavior should be further tested by current
experiments. Observation of effects similar to those of Fig. 2
in experimental data would, in our opinion, strongly speak
in favor of our hypothesis that fluctuations of extensive
observables are indeed dominated by material and motional
conservation laws.
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APPENDIX A: GLOBALLY CONSERVED QUANTITIES

Turning now to calculations of cumulants, Eq. (18), we
employ always coordinates most suitable to our problem. The
invariant phase-space element is given by:

ε
dN

d3p
= dN

mT dmT dy dφ
= dN

pT dpT dy dφ

= ε
g

(2π )3 exp

(
−ε − µ

T

)
, (A1)

where the single-particle energy ε = mT cosh y, its longi-
tudinal momentum pz = mT sinh y, transverse mass m2

T =
p2

T + m2, transverse momentum p2
T = p2

x + p2
y , and rapidity

y = tanh(pz/ε). Additionally we employ spherical coordi-
nates:

dN

d3p
= sin θ p2 dN

dφdθdp
. (A2)

For clarity we consider explicitly a few terms, not given in
Ref. [17], here. The total energy density is given by the sum

over individual contributions of all particle species k:

κE
1 =

(
−i

∂

∂φE

)
	(φj )

∣∣∣∣∣
φj =�0

=
∑

k

∫ +π

0
dθ

∫ +π

−π

dφ

∫ ∞

0
dpεk

dNk

dφ dθ dp

=
∑

k

gk e
qkµ

T

2π2
m3

k T

[
K1

(mk

T

)
+ 3

T

mk

K2

(mk

T

)]

=
∑

k

〈Ek〉. (A3)

The diagonal energy element κ
E,E
2 is given by:

κ
E,E
2 =

(
−i

∂

∂φE

)2

	(φj )

∣∣∣∣∣
φj =�0

=
∑

k

∫ +π

0
dθ

∫ +π

−π

dφ

∫ ∞

0
dpε2

k

dNk

dφ dθ dp

=
∑

k

gk e
qkµ

T

2π2
m4

k T

[
K0

(mk

T

)
+ 5

T

mk

K1

(mk

T

)

+ 12
T 2

m2
k

K2

(mk

T

)]
. (A4)

Additionally we define the diagonal momentum correlation
terms, with pz = p cos θ :

κ
pz,pz

2 =
(

−i
∂

∂φpz

)2

	(φj )

∣∣∣∣∣
φj =�0

=
∑

k

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞

0
dp p2

z

dNk

dφ dθ dp

=
∑

k

gk e
qkµ

T

2π2
m4

k T

[
T

mk

K1

(mk

T

)
+ 4

T 2

m2
k

K2

(mk

T

)]
.

(A5)

Due to spherical symmetry in momentum space we find
κ

px,px

2 = κ
py,py

2 = κ
pz,pz

2 . Correlation terms of odd order in one
of the momenta are identical to zero. As an example we find
for correlations between energy and longitudinal momentum:

κ
E,pz

2 =
(

−i
∂

∂φE

)(
−i

∂

∂φpz

)
	(φj )

∣∣∣∣∣
φj =�0

=
∑

k

∫ 2π

0
dφ

∫ π

0
dθ

∫ ∞

0
dpεpz

dNk

dφdθdp
= 0, (A6)

because the integral over the polar angle
∫ π

0 sin θ cos θ = 0.

Similarly we find κ
Q,px

2 = κ
px,py

2 = 0. Additionally κ
px

1 = 0,
etc., because for a static source 〈 �P 〉 = �0.

APPENDIX B: TRANSVERSE MOMENTUM SEGMENT

The average particle number density of π− in a segment
of transverse momentum �pT is given by Eq. (18), i.e., the
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first derivative of the CGF with respect to φN�
= φNpT

at the
origin:

κ
NpT

1 =
(

−i
∂

∂φNpT

)
	(φj )

∣∣∣∣∣
φj =�0

=
∫

�pT

dpT

∫ 2π

0
dφ

∫ ∞

−∞
dy

dN

dpT dy dφ

= ge− µ

T

2π2

∫
�pT

dpT pT

√
p2

T + m2K1



√

p2
T + m2

T


 .

(B1)

Please note that κ
NpT

1 = ∫
�pT

dpT dN/dpT = 〈NpT
〉. Correla-

tions of π− in a segment �pT with globally conserved energy
are given by double differentiation of 	(φj ) with respect to
φNpT

and φE , thus:

κ
NpT

,E

2 =
(

−i
∂

∂φNpT

)(
−i

∂

∂φE

)
	(φj )

∣∣∣∣∣
φj =�0

=
∫

�pT

dpT

∫ 2π

0
dφ

∫ ∞

−∞
dyε

dN

dpT dy dφ

= ge− µ

T

2π2

∫
�pT

dpT pT

(
p2

T + m2
)K0



√

p2
T + m2

T




+ T√
p2

T + m2
K1



√

p2
T + m2

T




 . (B2)

Correlations between conserved momenta and particles in

�pT , given by the elements κ
NpT

,px

2 , κ
NpT

,py

2 , and κ
NpT

,pz

2 are
identical to zero, due to symmetry in azimuthal angle φ for
the first two and due to an antisymmetric rapidity integral
for the last. Therefore, all elements involving an odd order
in one of the momenta in Eq. (27) are equal to zero. The
determinant of Eq. (27) thus factorizes, similarly to Eq. (26),
into a product of (κpx,px

2 )3 and the determinant of a 3 × 3
submatrix involving only terms containing NpT

, E,Q. Hence
momentum conservation drops out when calculating Eq. (22).
However, the strength of correlations between particle number
NpT

and globally conserved energy E will depend on the
position of the segment �pT . Thus using Eqs. (22) and (27),
one can express the width of the MCE multiplicity distribution
(21) by:

ωmce
�pT

= κ
NpT

,NpT

2

κ
NpT

1

− 1

κ
NpT

1 det |κ̂2|
[(

κ
NpT

,Q

2

)2
κ

E,E
2

+ (
κ

NpT
,E

2

)2
κ

Q,Q
2 − 2κ

NpT
,E

2 κ
NpT

,Q

2 κ
E,Q
2

]
(B3)

In Boltzmann approximation, we find from Eq. (18),

κ
NpT

,NpT

2 = κ
NpT

,Q

2 = κ
NpT

1 = qκ
N4π

1 , where we have defined

the acceptance q ≡ κ
NpT

1 /κ
N4π

1 . However, when observing a
fraction q of the particle density, one does not necessarily
observe the same fraction q of the energy density 〈E−〉 carried

by π−, and thus κ
NpT

,E

2 
= q〈E−〉. Therefore depending on the
location of �pT , our detector sees a larger (smaller) fraction
of the total energy, which leads to smaller (larger) particle
number fluctuations, see Fig. 2(left). One can easily verify

that setting κ
NpT

,E

2 = q〈E−〉 in Eq. (B3), leads to acceptance
scaling, Eq. (3), ωmce

�pT
= 1 + q(ωmce

4π − 1).

APPENDIX C: RAPIDITY SEGMENT

The average particle number density of π− in a rapidity
interval �y is given by:

κ
Ny

1 =
(

−i
∂

∂φNy

)
	(φj )

∣∣∣∣∣
φj =�0

=
∫ ∞

m

dmT

∫ 2π

0
dφ

∫
�y

dy
dN

dmT dy dφ

= ge− µ

T

(2π )2 T 3
∫

�y

dy exp
[
−m

T
cosh(y)

]

×
[(m

T

)2
+ 2

m

T
cosh−1 y + 2 cosh−2 y

]
. (C1)

Please note that κ
Ny

1 = ∫
�y

dydN/dy = 〈Ny〉. Correlations of
particles in �y with globally conserved energy are given by:

κ
Ny,E

2 =
(

−i
∂

∂φNy

)(
−i

∂

∂φE

)
	(φj )

∣∣∣∣∣
φj =�0

=
∫ ∞

m

dmT

∫ 2π

0
dφ

∫
�y

dyε
dN

dmT dy dφ

= ge− µ

T

(2π )2 T 4
∫

�y

dy cosh y exp
(
−m

T
cosh y

) [(m

T

)3

+ 3
(m

T

)2
cosh−1 y + 6

m

T
cosh−2 y + 6 cosh−3 y

]
.

(C2)

The correlation term of particles in �y with globally conserved
longitudinal momentum Pz reads:

κ
Ny,pz

2 =
(

−i
∂

∂φNy

)(
−i

∂

∂φpz

)
	(φj )

∣∣∣∣∣
φj =�0

=
∫ 2π

0
dφ

∫ ∞

m

dmT

∫
�y

dypz

dN

dmT dy dφ

= ge− µ

T

(2π )2 T 4
∫

�y

dy sinh y exp
(
−m

T
cosh y

) [(m

T

)3

+ 3
(m

T

)2
cosh−1 y + 6

m

T
cosh−2 y + 6 cosh−3 y

]
.

(C3)
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Thus the element κ
Ny,pz

2 in the matrix (27) is nonvanishing, and
longitudinal momentum (Pz) conservation seems to affects
correlations between particles in a segment �y and the
remaining system. In contrast to that further elements are equal
to zero, κ

Ny,px

2 = κ
Ny,py

2 = 0, and Px and Py conservation have
no additional effect. When momentum conservation is taken
into account the scaled variance (22) can be calculated from
Eq. (25):

ωmce
�y = κ

Ny,Ny

2

κ
Ny

1

− 1

κ
Ny

1 κ
pz,pz

2 det |κ̂2|
{(

κ
Ny,Q

2

)2
κ

E,E
2 κ

pz,pz

2

+ (
κ

Ny,E

2

)2
κ

Q,Q
2 κ

pz,pz

2 + (
κ

Ny,pz

2

)2[
κ

Q,Q
2 κ

E,E
2

− (
κ

E,Q
2

)2]− 2κ
pz,pz

2 κ
Ny,E

2 κ
Ny,Q

2 κ
E,Q
2

}
. (C4)

Similarly to the previous section, we find a large (small)
κ

Ny,pz

2 leads to small (large) fluctuations, see Fig. 2(right).
When intervals symmetric in rapidity are assumed, e.g.,
�y = [−y1, y1], or �y = [−y2,−y1] ∪ [y1, y2], correlations
between particle number and momentum disappear, κ

Ny,pz

2 =
0, and Eq. (C4) reduces to Eq. (B3), and momentum con-
servation does not play a role. Equally when disregarding
longitudinal momentum conservation the same arguments as
those of Appendix B apply and Eq. (B3) holds; however, the
effect is much weaker, see Fig. 3.

APPENDIX D: AZIMUTHAL ANGLE SEGMENT

Th average particle number in �φ, whereas integrating over
all pT and y is simply a fraction q = �φ/2π of the total yield
〈N4π 〉. Therefore κ

Nφ

1 = qκ
N4π

1 . Equally, the energy carried

by π− in this interval is κ
E,Nφ

2 = q〈E−〉. Due to symmetry

around y = 0, we find additionally κ
Nφ,pz

2 = 0. However, for
the transverse momenta px = pT cos φ, and py = pT sin φ the

correlation with Nφ is generally nonzero.

κ
Nφ,px

2 =
(

−i
∂

∂φNφ

)(
−i

∂

∂φpx

)
	(φj )

∣∣∣∣∣
φj =�0

= g

(2π )3

∫
�φ

dφ

∫ ∞

0
dpT

∫ ∞

−∞
dypx

dN

dpT dy dφ

=
∫

�φ

dφ cos φ
2ge− µ

T

(2π )3 m2T

√
π

2
mT K5/2

(m

T

)
= (2π )−1 (sin φ)�φ〈pT 〉. (D1)

Similarly we find κ
Nφ,py

2 = −(2π )−1[cos φ]�φ〈pT 〉. Unlike in
the previous sections there is no particular dependence of
the position of the interval �φ. However, in general there
is a dependence. When momentum conservation is taken into
account Eq. (22) can be calculated from Eq. (25):

ωmce
�φ = κ

Nφ,Nφ

2

κ
Nφ

1

− 1

κ
Nφ

1 κ
px,px

2 det |κ̂2|
{(

κ
Nφ,Q

2

)2
κ

E,E
2 κ

px,px

2

+ (
κ

Nφ,E

2

)2
κ

Q,Q
2 κ

px,px

2 + [(
κ

Nφ,px

2

)2 + (
κ

Nφ,py

2

)2]
× [

κ
Q,Q
2 κ

E,E
2 − (

κ
E,Q
2

)2]− 2κ
px,px

2 κ
Nφ,E

2 κ
Nφ,Q

2 κ
E,Q
2

}
,

(D2)

where we have used κ
px,px

2 = κ
py,py

2 . As mentioned before

there is no particular dependence of κ
Nφ,E

2 and κ
Nφ,Q

2 on the

position of �φ. However we have a term (κ
Nφ,px

2 )2 + (κ
Nφ,py

2 )2.
In case we assume a continuous interval �φA = [φ1, φ2] this
terms reads:(

κ
Nφ,px

2

)2 + (
κ

Nφ,py

2

)2 = 〈pT 〉2

(2π )2
[1 − cos(φ1 − φ2)]. (D3)

This term is evidently positive, hence fluctuations are sup-
pressed. One can easily verify that when one takes �φB =
[φ1, φ2] ∪ [φ1 + π, φ2 + π ], i.e., two opposite slices in az-
imuthal angle, the correlation disappears, κ

Nφ,px

2 = κ
Nφ,py

2 =
0, and one returns to acceptance scaling, Eq. (3).

[1] J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys.
Rev. C 73, 034905 (2006).

[2] F. Becattini, J. Manninen, and M. Gaździcki, Phys. Rev. C 73,
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[6] V. V. Begun, M. Gaździcki, M. I. Gorenstein, M. Hauer,

V. P. Konchakovski, and B. Lungwitz, Phys. Rev. C 76, 024902
(2007).
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