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Simulating elliptic flow with viscous hydrodynamics
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In this work we simulate a viscous hydrodynamical model of noncentral Au-Au collisions in 2+1 dimensions,
assuming longitudinal boost invariance. The model fluid equations were proposed by Öttinger and Grmela
[Grmela, M., and Öttinger, H. C., Phys. Rev. E, 56, 6620 (1997)]. Freeze-out is signaled when the viscous
corrections become large relative to the ideal terms. Then viscous corrections to the transverse momentum and
differential elliptic flow spectra are calculated. When viscous corrections to the thermal distribution function are
not included, the effects of viscosity on elliptic flow are modest. However, when these corrections are included, the
elliptic flow is strongly modified at large pT . We also investigate the stability of the viscous results by comparing
the nonideal components of the stress tensor (πij ) and their influence on the v2 spectrum to the expectation of the
Navier-Stokes equations (πij = −η〈∂iuj 〉). We argue that when the stress tensor deviates from the Navier-Stokes
form the dissipative corrections to spectra are too large for a hydrodynamic description to be reliable. For typical
Relativistic Heavy Ion Colloder initial conditions this happens for η/s >∼ 0.3.
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I. INTRODUCTION

A. Motivation

One of the first and most exciting observations from the
Relativistic Heavy Ion Collider (RHIC) was the very strong
elliptic flow in noncentral collisions [2,3]. The elliptic flow is
quantified by the anisotropy of particle production with respect
to the reaction plane v2

v2 =
〈

p2
x − p2

y

p2
x + p2

y

〉
, (1.1)

and can be measured as a function of pT , rapidity, centrality,
and particle type.

The adopted interpretation of the v2 measurements is
that the medium responds as a fluid to the differences in
pressure gradients in the x and y directions. The fluid then
expands preferentially in the reaction plane and establishes the
observed momentum-space anisotropy. This hydrodynamic
interpretation is supported by the qualified success of ideal
hydrodynamic models in describing a large variety of data over
a range of colliding systems and energies [4–8]. Nevertheless,
the hydrodynamic interpretation of the flow results is not
unassailable. A back of the envelope estimate of viscous
corrections to hydrodynamic results [9] suggests that viscous
corrections are actually rather large, i.e., the mean-free path
is comparable to the system size [10]. These estimates are
best conveyed in terms of the shear viscosity to entropy ratio,
η/s. The conditions for partial equilibrium at RHIC are so
unfavorable that at unless η/s is small (say 0.5 or less), it is
difficult to imagine that the medium would participate in a
coordinated collective flow.

From a theoretical perspective, it is difficult to reliably
estimate η/s in the vicinity of the quantum chromodynamics
(QCD) phase transition where the system is strongly coupled.
Lattice QCD measurements of transport are hard (perhaps im-
possible [11,12]) though recent efforts have lead to estimates
that are not incompatible with the hydrodynamic interpretation

of RHIC results [13,14]. In a strict perturbative setting (where
the quasi-particle picture is exact) η/s is large ∼1/g4. Never-
theless an extrapolation of weak coupling results to moderate
coupling also leads to an η/s that is perhaps reconcilable
with the hydrodynamic interpretation [15,16]. Finally, these
perturbative estimates should be contrasted with N = 4 Super
Yang Mills at strong coupling, where η/s is 1/4π [17,18].
Although N = 4 SYM is not QCD, the calculation was im-
portant because it showed that there is at least one theory where
η/s is sufficiently small that collective phenomena would be
observed under conditions similar to those produced at RHIC.

From a phenomenological perspective one of the most
compelling evidences for the hydrodynamic interpretation
of RHIC flow results is the fact that the deviations from
hydrodynamics are qualitatively reproduced by kinetic theory
[19,20]. In particular, kinetic theory calculations generically
reproduce the flattening of v2(pT ) at higher pT , and the
reduction of elliptic flow at large impact parameters. Some
aspects of these kinetic theory results can be understood
by considering the first viscous corrections to the thermal
distribution function [21]. These estimates motivated full
viscous hydrodynamic simulations of the elliptic flow that will
be performed in this work. Recently such viscous simulations
were performed by two other groups [22,23] and we compare
our results to these works in Sec. VI B. A brief discussion of
the history surrounding viscous relativistic hydrodynamics is
given below.

B. Viscous hydrodynamics

The Navier-Stokes equations describe viscous corrections
to ideal fluid flow by keeping terms up to first order in gradients
of ideal quantities [24]. The resulting equations are parabolic,
which permits acausal signal propagation [25]. For instance,
the stress tensor instantaneously adjusts to any thermodynamic
force, ∂iuj . This is, of course, an unphysical picture because
the stress tensor should relax to the thermodynamic forces over
a typical collision time scale.
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One would therefore like a phenomenological theory that
explains this relaxation correctly. Much work has been done
in this direction but there is still no completely satisfactory
theory. Probably the most used model is that of Israel and
Stewart [26,27], but there are also others by Lindblom and
Geroch [28], Pavón, Jou, and Casas-Vásquez [29], and also
by Öttinger and Grmela [1,30], which is used in this work. In
fact, a wide class of models was developed by Lindblom and
Geroch in two separate articles [28,31]

All of the above theories have the same behavior: they relax
on small time scales to the first-order relativistic Navier-Stokes
equations and have some generalized entropy that increases as
a function of time. It was shown by Lindblom [32] that for a
large class of these second-order theories, the physical fields
should be indistinguishable from the simple Navier-Stokes
form. To paraphrase Lindblom; any measurement of the
stress energy tensor or particle current on a time scale larger
than the microscopic time scale will be indistinguishable
from the Navier-Stokes theory. The differences between
the causal theories and the acausal Navier-Stokes equations
are indicative of the corrections quantitatively captured by the
full kinetic theory. Nevertheless, the causal theories provide a
qualitative guide to the magnitude of these corrections [33].
However, the form of these corrections implicitly assumes a
good quasi-particle description that may not exist in a strongly
coupled plasma [34].

There is a large body of work in applying dissipative
theories to central heavy-ion collisions [21,35,36]. Perhaps a
particle method will ultimately be the best way to include the
effects of viscosity and the corresponding fluctuations in the
stress tensor [37–39]. Even though the equations for noncentral
(2+1 dimensions) dissipative hydrodynamics are known (e.g.,
Ref. [40]), only recently have results come out that simulate
noncentral heavy-ion collisions [22,23,41]. Further discussion
of these results will be given in Sec. VI A.

II. THE HYDRODYNAMIC MODEL

In the following section we outline the equations of motion
for the hydrodynamical model used in the following simu-
lations. We start by summarizing the well-known first-order
Navier-Stokes theory. Then we outline the equations required
for a second-order causal description of dissipative fluid
dynamics. This is done assuming a boost-invariant expansion
as first proposed by Bjorken [42], where the equations of
motion are expressed in terms of the proper time τ = √

t2 − z2

and the spatial rapidity ηs = 1
2 ln t+z

t−z
. The Cartesian coordinate

z denotes the position along the beam axis, whereas the x, y

label positions transverse to the beam axis.

A. First-order viscous hydrodynamics: Navier-Stokes

Viscous hydrodynamics was originally formulated in the
first-order Navier-Stokes approximation where the energy-
momentum tensor and baryon flux is a sum of their ideal
and dissipative parts:

T µν = εuµuν + (p + �)�µν + πµν, (2.1)

nµ = nuµ + j
µ

d , (2.2)

where p, ε, n, and uµ = (γ, γ v) are the pressure, energy
density, baryon density, and four-velocity of the fluid. We
use the convention that gµν = diag(−1,+1,+1,+1) and
therefore uµuµ = −1. The dissipative terms π and jd depend
on the definition of the local rest frame (LRF) of the fluid.
A specific form of πµν and vµ can be found using the
Landau-Lifshitz definition [24] of the LRF (uµπµν = 0),
constraining the entropy to increase with time and by working
within the Navier-Stokes approximation (keeping terms to first
order in gradients only), resulting in

πµν = −η
(∇µuν + ∇νuµ − 2

3�µν∇βuβ
)
, (2.3)

� = −ζ∇βuβ, (2.4)

j
µ

d = −κ

(
nT

ε + p

)2

∇µ
(µ

T

)
, (2.5)

where κ, η, and ζ are the heat conduction, shear, and bulk
viscosities of the fluid with temperature T and chemical po-
tential µ. The viscous tensor is constructed with the differential
operator ∇µ = �µνdν , where �µν = gµν + uµuν is the local
three-frame projector, dµuν = ∂µuν + ν

γµuγ , is the covariant
derivative and ν

γµ ≡ 1/2gνα(∂µgαγ + ∂γ gαµ − ∂αgγµ) are
the Christoffel symbols.

The transport coefficients in a quark-gluon plasma (QGP)
and also in the hadronic gas were studied in Refs. [9,15,16,
43]. It was found that the dominate dissipative mechanism
was shear viscosity in both the QGP and hadronic gas. Bulk
viscosity may, however, dominate in the transition region [44].
Heat transport can be ignored in the limit that µB � T , which
is the limit taken here.

In the following work we will consider viscous effects in a
quark-gluon plasma phase only. For this purpose we consider a
constant shear to entropy ratio, η/s = const and a massless gas
p = 1/3ε. Future work will discuss viscosity in the mixed and
hadronic phases. From this point on we will neglect the thermal
conductivity. We keep the bulk viscosity in the equations for
consistency but always set ζ = 0 in any calculations.

B. Second-order viscous hydrodynamics

To render a second-order theory it is necessary to introduce
additional variables. These variables will relax on very short
time scales to the standard thermodynamic quantities in the
first-order theory, but an evolution equation for them is still
required to avoid acausal signal propagation. One such theory
that has been used in a number of works was introduced by
Israel and Stewart [26]. Instead we use a theory developed by
Öttinger and Grmela [1,30] due to its appealing structure when
implemented numerically. However, as discussed above, all of
these theories should agree (i.e., they all relax on short time
scales to the same the first-order equations).

We now summarize the evolution equations used in the
current analysis following the mathematical structure outlined
in Ref. [30]. We use a simplified version of the model for
deviations of the stress energy tensor close to equilibrium.
The new dynamical variable that is introduced is the tensor
variable cµν , which will later be shown to be closely related
to the velocity gradient tensor, πµν . The tensor variable cµν is
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conveniently defined to have the property

cµνu
ν = uµ, (2.6)

and the energy-momentum tensor is given by

T µν = (ε − uαP
αβuβ)uµuν + P

µν. (2.7)

The explicit form of the stress tensor P
µν is given in Ref. [30]

and has a fairly complicated form. The discussion is simplified
by considering small deviations from local thermal equilibrium
and working in the local rest frame so that the stress tensor can
be approximated as

T
ij

LRF = p(δij − αcij ), (2.8)

where α is a small parameter related to the relaxation time
(see Appendix C). The equations of motion are dictated
by conservation of energy and momentum that is given
by dµT µν = 0. In addition, an evolution equation for the
generalized mechanical force tensor is needed and is given
by [30]

uλ(∂λcµν − ∂µcλν − ∂νcµλ) = −1

τ0
cµν − 1

τ2
c̊µν, (2.9)

where c and c̊ are defined as the isotropic and traceless parts
of the tensor variable cµν defined as

cµν = 1
3

(
cλ
λ − 1

)
(ηµν + uµuν), (2.10)

cµν + uµuν = c̊µν + cµν. (2.11)

In the limit that the relaxation times (τ0, τ2) are very small
the evolution equation yields

cij = τ2
(
∂iu

j + ∂ju
i − 2

3δij ∂ku
k
) + 2

3τ0δ
ij ∂ku

k. (2.12)

Substituting the above equation into T
ij

LRF and comparing the
result to the Navier-Stokes equation (2.5) the bulk and shear
viscosities can be identified as

η = τ2pα,
(2.13)

ζ = 2

3
τ0pα.

In the model proposed by Öttinger [30] the quantity α is related
to the equation of state, but in the linearized version it is
simply treated as a constant parameter related to the relaxation
time. We fix α = 0.7 in all calculations, which then fixes the
relaxation times (τ2, τ0) as a function of η and ζ . The effects
of varying α is shown in Appendix C1.

It is natural to ask what the effect of the relaxation time
on the theory is. In some sense this was already answered by
Lindblom [32]. He showed that the physical fluid must relax to
a state that is indistinguishable from the Navier-Stokes form.
Therefore we expect the physical velocity gradients to agree
with those given by the auxiliary tensor variable cµν as in
Eq. (2.12). This is shown in Appendix D2 for various values
of η/s. We expect higher-order gradient terms to be necessary
when there are large deviations between any observable
computed using the physical fields or the auxiliary field cµν .
This will be used as a gauge to find the limit of applicability
of any hydrodynamic calculations.

1. 1+1 dimensions

We now outline the equations of motion for the stress-
energy tensor and the generalized mechanical force tensor
assuming a boost-invariant expansion as well as azimuthal
symmetry with arbitrary transverse expansion. It is easiest
to work in polar coordinates (τ, r, φ, η) and because there
is no dependence on φ or η the four-velocity can be
expressed as uµ = (γ, γ vr , 0, 0), where γ = 1/

√
1 − v2

r . In
this coordinate system the metric tensor is given by gµν =
diag(−1, 1, 1/r2, 1/τ 2).

The first two equations of motion are given by the
conservation of energy and momentum, dµT µν = 0 for ν = τ

and ν = r . (Due to boost invariance and azimuthal symmetry
the ν = η and ν = φ equations are trivial.)

∂τT
00 + ∂rT

01 = −1

τ
(T 00 + P̃ 33) − 1

r
T 01, (2.14)

∂τT
01 + ∂rT

11 = −1

τ
T 01 − 1

r
(T 11 − P̃ 22), (2.15)

where P̃ 22 = r2P 22 and P̃ 33 = τ 2P 33. The evolution equa-
tions for the generic mechanical force tensor cµν are

∂τ c
11 + v∂rc

11 − 2

γ
[(1 − c11)∂ru

1 + c01∂ru
0]

= −1

γ τ0
c11 − 1

γ τ2
c̊11, (2.16)

∂τ c̃
22 + v∂r c̃

22 + 2v

r
(c̃22 − c11) + 2

r
c10

= −1

γ τ0
c̃

22 − 1

γ τ2

˚̃c
22

, (2.17)

∂τ c̃
33 + v∂r c̃

33 + 2

τ
(c̃33 + c00) − 2v

τ
c10

= −1

γ τ0
c̃

33 − 1

γ τ2

˚̃c
33

, (2.18)

where c̃22 = r2c22 and c̃33 = τ 2c33.

2. 1+2 dimensions

We now consider the 1+2 dimensional case without
azimuthal symmetry but still having longitudinal boost in-
variance and use a coordinate system whereby the coordinates
transverse to the beam axis are Cartesian, (τ, x, y, η). Because
there is no dependence on η the four-velocity can be expressed

as uµ = γ (1, vx, vy, 0), where γ = 1/
√

1 − v2
x − v2

y . In this
coordinate system the metric tensor is given by gµν =
diag(−1, 1, 1, 1/τ 2).

In this coordinate system the first three equations of
motion are given by the ν = τ, x, and y components of the
conservation law dµT µν = 0

∂τT
00 + ∂xT

01 + ∂yT
02 = −1

τ
(T 00 + τ 2P 33), (2.19)

∂τT
10 + ∂xT

11 + ∂yT
12 = −1

τ
T 10, (2.20)

∂τT
20 + ∂xT

21 + ∂yT
22 = −1

τ
T 20. (2.21)
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The evolution equations for the generalized mechanical force
tensor are:

(∂τ + vx∂x + vy∂y)c11 + 2[(c11 − 1)∂xvx + c12∂xvy]

= −1

γ τ0
c11 − 1

γ τ2
c̊11, (2.22)

(∂τ + vx∂x + vy∂y)c22 + 2[(c22 − 1)∂yvy + c21∂yvx]

= −1

γ τ0
c22 − 1

γ τ2
c̊22, (2.23)

(∂τ + vx∂x + vy∂y)c̃33 + 2

τ
(c̃33 − 1) = −1

γ τ0
c̃

33 − 1

γ τ2

˚̃c
33

,

(2.24)

(∂τ + vx∂x + vy∂y)c12 + c12(∂xvx + ∂yvy) + (c22 − 1)∂xvy

+ (c11 − 1)∂yvx = −1

γ τ0
c12 − 1

γ τ2
c̊12, (2.25)

3. Initial conditions

The hydrodynamic simulation is a 2+1 dimensional
boost-invariant model with an ideal gas equation of state
p = 1

3 ε. The temperature is related to the energy density
with the Nf = 3 ideal QGP equation of state. We chose this
extreme equation of state because the resulting radial and
elliptic flow are too large relative to data on light hadron
production. Thus, this equation of state will estimate the
largest elliptic flow possible for a given shear viscosity. We
note that for any noncentral collision we have chosen a default
impact parameter of b = 6.5 fm.

Aside from the equation of state, the hydrodynamic model is
based on Ref. [5]. At an initial time τ0 = 1 fm/c, the entropy is
distributed in the transverse plane according to the distribution
of participants for a Au-Au collision. Then one parameter,
Cs , is adjusted to set the initial temperature and total particle
yield. Specifically the initial entropy density in the transverse
plane is

s(x, y, τ0) = Cs

τ0

dNp

dx dy
, (2.26)

where dNp/dx dy is the number of participants per unit
area. The value Cs = 15 closely corresponds to the results
of full hydrodynamic simulations [5–7] and corresponds to
a maximum initial temperature of T0 = 420 MeV at impact
parameter b = 0. With the entropy density specified the energy
density can be determined. This requires inverting the equation
of state.

In a viscous formulation we must also specify the viscous
fields, i.e., the cµν in the second-order setup. Following the
general philosophy outlined in Sec. II we will choose the cµν

such that the stress tensor deviations are

πµν = −η〈∇µuν〉 � = −ζ∇µuµ = 0. (2.27)

Because at time τo the transverse flow velocity and the
longitudinal flow velocity is Bjorken this means that at
midrapidity

πxx = πyy = − 1
2 πzz = 2

3η∂zu
z � = 0. (2.28)

To achieve this condition we first rewrite the flow equations
for small cµν and vanishing transverse flow. The cij equations
become

∂τ c
11 = − c̄11

τ0
− c̊11

τ2
, (2.29)

∂τ c
22 = − c̄22

τ0
− c̊22

τ2
, (2.30)

∂τ c
33 − 2

τ
= − c̄33

τ0
− c̊33

τ2
. (2.31)

In writing this we have used the fact that for small velocity
c00 ≈ −u0u0. Then looking for the quasi-stationary state we
set the time derivatives to zero and use the relations c̄ij =
1
3cl

l δ
ij and cij = c̊ij + c̄ij to find that

c11 = 2

3

τ0

τ
− 2

3

τ2

τ
, (2.32)

c22 = 2

3

τ0

τ
− 2

3

τ2

τ
, (2.33)

c33 = 2

3

τ0

τ
+ 4

3

τ2

τ
. (2.34)

III. HYDRODYNAMIC RESULTS

The equations outlined in the previous two sections were
integrated numerically using the initial conditions described
above. The algorithm [45] and a discussion of the numerics
can be found in Appendix D. In this section we now show
the results of the simulation. Before showing the results of
the 2+1 dimensional simulation we outline some of the main
physics points using results from the 1+1 dimensional case.

Figure 1 shows the energy density per unit rapidity (left) and
the transverse velocity (right) at various times for both ideal
hydrodynamics and for finite viscosity (η/s = 0.2). The effect
of viscosity is twofold. The longitudinal pressure is initially
reduced and the viscous case does less longitudinal pdV work
as in the simple Bjorken expansion [9]. This means that at
early times the energy per rapidity decreases more slowly in
the viscous case. The reduction of longitudinal pressure is
accompanied by a larger transverse pressure. This causes the
transverse velocity to grow more rapidly. The larger transverse
velocity causes the energy density to deplete faster at later
times in the viscous case. The net result is that a finite viscosity
(even as large as η/s = 0.2) does not integrate to give major
deviations from the ideal equations of motion. A preliminary
account of this effect was given long ago [46].

We now present results of the 2+1 dimensional boost
invariant hydrodynamic model. Figure 2 shows contour plots
of the energy density per unit rapidity in the transverse plane
at proper times of τ = 1, 3, 6, 9 fm/c. The initial conditions
(τ = 1) is taken from the Glauber model discussed before.

Figure 3 shows contour plots of the transverse velocity at
the same times of τ = 1, 3, 6, 9 fm/c. At τ = 1 the figure is
blank because the velocity in the transverse plane is zero as set
by the initial conditions. By looking at the contours of constant
v/c one can see that a finite viscosity increases the transverse
velocity.
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FIG. 1. (Color online) Plot of the energy density per unit rapidity (left) and of the transverse velocity (right) at times of τ = 1, 3, 6, 9 fm/c
for η/s = 0.2 (solid red line) and for ideal hydrodynamics (dotted blue line).

Because we are interested in elliptic flow that originates
from the initial spatial anisotropy of the collision region it
is useful to see how the spatial and momentum anisotropy
develop in time. We therefore look at the following three
quantities [47]:

εx = 〈〈y2 − x2〉〉
〈〈y2 + x2〉〉 ,

εp = 〈〈T xx − T yy〉〉
〈〈T xx + T yy〉〉 , (3.1)

〈〈vT 〉〉 =
〈〈
γ
√

v2
x + v2

y

〉〉
〈〈γ 〉〉 ,

where the double angular bracket 〈〈· · ·〉〉 denote an energy-
density-weighted average. The spatial ellipticity (εx) is a

measure of the spatial anisotropy as a function of time. The
spatial anisotropy is what drives the momentum anisotropy
(εp). This quantity can be thought of as characterizing the
p2

T -weighted integrated elliptic flow [48]. The final quantity
〈〈vT 〉〉 is the average radial flow velocity. All three of these
quantities are plotted in Fig. 4 for η/s = 0.2, 0.05, and 10−6.

As already shown in the 1+1 dimensional case the finite
viscosity case does less longitudinal work. The longitudi-
nal pressure is reduced, whereas the transverse pressure is
uniformly increased in the radial direction, i.e., gives no
addition v2 component. This causes the transverse velocity
(as seen in 〈〈vT 〉〉 and Fig. 3) to grow more rapidly, whereas
εp lags behind the ideal case. Furthermore, the larger radial
symmetric transverse velocity causes a faster decrease in
the spatial anisotropy. This further frustrates the buildup of
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FIG. 2. (Color online) Contour plot of energy
density per unit rapidity in the transverse plane.
The contour values working outward are 15, 10,
5, 1, 0.1 for τ = 1 fm/c; 10, 5, 1, 0.1 for τ =
3 fm/c; 3, 2, 1, 0.5 for τ = 6 fm/c; and 0.5, 0.375,
0.25 for τ = 9 fm/c in units of GeV/fm2.
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FIG. 3. (Color online) Contour plot of trans-

verse velocity, v⊥ =
√

v2
x + v2

y . The innermost

contour is for v⊥ = 0.1 and increases in steps
of �v⊥ = 0.15.

the momentum anisotropy εp. We therefore expect to see a
decrease in the integrated v2 as the viscosity is increased. This
is indeed the case as will be shown. However, this effect is small
compared to the change in v2 from use of the off-equilibrium
distribution function.

IV. FREEZE-OUT

As discussed in the Introduction, ideal hydrodynamics
is applicable when λmfp � L, where L denotes the typical
system size. When dissipative corrections are included, one
must remember that the Navier-Stokes equations are derived
assuming that the relaxation time τR is much smaller than
the inverse expansion rate, τR∂µuµ � 1. Therefore, in the
simulations we determine the freeze-out surface by monitoring
the expansion rate relative to the relaxation time using a
generalization of the freeze-out criteria first proposed in
Refs. [49,50] and later in Ref. [51].

Specifically, freeze-out is signaled when1

η

p
∂µuµ ∼ 1

2
. (4.1)

This combination of parameters can be motivated from the
kinetic theory estimates [52]. The pressure is p ∼ ε〈v2

th〉 with
〈v2

th〉 the typical quasi-particle velocity and ε the energy
density. The viscosity is of order η ∼ ε〈v2

th〉τR with τR the
relaxation time. Thus the freeze-out condition is simply

η

p
∂µuµ ∼ τR∂µuµ ∼ 1

2
. (4.2)

1In actual simulations we take (η/p) ∂µuµ = 0.6 for most runs (see
below).

In the model we are considering η/p = ατ2 with α = 0.7 as
described in Sec. II B.

The value of 1
2 can be considered as a parameter chosen

to be smaller than 1. The point is that as the above quantity
becomes large the Navier-Stokes approximation is no longer
applicable and the simulation should freeze-out. At this point
one would need to include further higher-order corrections in
the gradients or switch to a kinetic approach.

It is also convenient to have a definition for an analogous
freeze-out surface in the case of ideal hydrodynamics. One can
think of keeping the freeze-out surface fixed as η/s is taken
to zero. Dividing the freeze-out criterion by η/s and using
s = (ε + p)/T ∼ 4p/T we define

χ = 4

T
∂µuµ, (4.3)

which involves only quantities in the ideal simulation. This is a
separate freeze-out parameter independent of the viscosity. We
should point out that the ideal freeze-out conditions becomes
more complicated in a hadronic resonance gas phase. For
example, the simple temperature dependence in χ is modified
due to the ρ resonance peak in the π -π cross section [53]. This
will be considered in more detail in a future work.

We show in Fig. 5 contour plots of the freeze-out surface for
fixed χ from both ideal (left plot) and viscous hydrodynamics
(right plot). For fixed χ the freeze-out surfaces remain
approximately the same in both cases. The freeze-out surface
from now on will be specified by χ to facilitate a comparison
between the ideal and viscous cases when comparing spectra.

We have typically chosen χ and η/s that η

p
∂µuµ = 0.6.

Thus in Table I for η/s = 0.2 we have χ = 3.0 and η

p
∂µuµ =

0.6. However, for η/s = 0.05 the freeze-out parameter is χ =
12, giving an unphysically large surface. This would normally
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TABLE I. Freeze-out parameters used throughout
this work. For a given η/s the most physical choice
of freeze-out parameter χ is selected such that
(η/p)∂µuµ ≈ 0.6. However, if the viscosity becomes
so small (such as for η/s = 0.05) that the volume
becomes unphysically large (see text for discussion)
we set χ = 4.5 as a maximum. These three physically
motivated parameter sets are in bold.

η/s
η

p
∂µuµ χ

0.05 0.6 12.0
0.05 0.225 4.5
0.05 0.15 3.0
0.2 0.9 4.5
0.2 0.6 3.0
0.133 0.6 4.5

not be the case in a more realistic model with a phase transition
present, because in the hadronic phase the viscosity goes like
η ∼ T

σ0
. The change in scaling with temperature would cause

the system to freeze-out soon after hadronization. We plan on
quantifying this statement in a future work. We therefore use
(η/p)∂µuµ = 0.225 when η/s = 0.05 giving χ = 4.5. The
thin solid curve in the right plot of Fig. 5 shows this particular
freeze-out contour. In Table I we summarize the freeze-out
parameters used throughout this work. For a given η/s the
most physical choice of freeze-out parameter χ is selected
such that (η/p)∂µuµ ≈ 0.6. However, if the viscosity becomes
so small that the volume becomes unphysically large (such as
for η/s = 0.05) we set χ = 4.5 as a maximum. These three
physically motivated parameter sets are given in bold in the
table.

We should stress that the freeze-out surface taken in this
work is different from the typical constant temperature surface
used in many hydrodynamic simulations. From Fig. 5, one can
see from the temperature map that the surface is not an isotherm
and actually spans a very wide range of temperatures. The
freeze-out surface is understood by examining the expansion
rate in Bjorken geometry

∂µuµ = ∂τu
τ + uτ

τ
+ ∂xu

x + ∂yu
y. (4.4)

The resulting surface is due to a competition between the first
two terms in Eq. (4.4) at early times and the last two terms at
later times.

V. SPECTRA

A. Anisotropy

Before computing the differential spectrum we will com-
pute the momentum anisotropy as a function of time. The
momentum anisotropy A2 (which differs from v2 by the
placement of averages) is defined as

A2 =
〈
p2

x

〉 − 〈
p2

y

〉
〈
p2

x

〉 + 〈
p2

y

〉 = S11 − S22

S11 + S22
, (5.1)
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FIG. 4. (Color online) Time evolution of the spatial ellipticity
εx , the momentum anisotropy εp , and the energy density weighted
transverse flow 〈〈v⊥〉〉, see Eq. (3.1).

where Sij is the sphericity tensor and can be related to the
hydrodynamics fields (i.e., uµ, πµν,�) and moments of the
ideal particle distribution function. The explicit form is given
in Appendix A and generalizes an appendix of Ollitrault [48]
to the viscous case. From a theoretical perspective, A2 is
preferred because it is almost independent of the details of
the particle content of the theory [48].

We plot A2 in the following manner. At a given proper
time we integrate over the surface of constant χ , which has
developed by time τ . The remaining part of the surface is
fixed by integrating over the matter that has not frozen out
(χ < χf.o.) at fixed proper time. This can be thought of as

034905-7



K. DUSLING AND D. TEANEY PHYSICAL REVIEW C 77, 034905 (2008)

FIG. 5. (Color online) Contour plot of various freeze-out surfaces for central Au-Au collisions. (Left) Surfaces from ideal hydrodynamics
where the freeze-out condition is set by the parameter χ = 1.5, 3 and 4.5. (Right) Corresponding viscous solution where η/s was fixed by the
condition η

p
∂µuµ = 0.6. The thin solid black curve shows the contour set by η

p
∂µuµ = 0.225 for comparison.

a freeze-out surface with a flat top at time τ . As time moves
forward eventually all of the matter is frozen out over a surface
set by constant χ yielding a constant A2.

Figure 6 shows A2 for four different freeze-out surfaces.
The figure on the left shows the results using only the ideal
contribution to the sphericity (regardless of if viscosity is
present). This will be analogous to using only the ideal
particle distribution function when generating the spectrum.
First look at the solid black curves that are generated using
ideal hydrodynamics and a specified χ . For a larger value
of χ a larger space-time region is evolved by hydrodynamics,
producing a larger elliptic flow or A2. The true ideal case where
hydrodynamics is universally applicable is given by χ = ∞.
We see that for χ = 4.5 most of the elliptic flow is reproduced.

To assess the role of viscosity we first look at the figure on
the left. The dashed curves show A2 for η/s = 0.05 and η/s =
0.2 without including viscous corrections to the distribution

function. (For clarity, these curves are shown only for χ =
3.0 and χ = 4.5.) Without the corrections to the distribution
function the viscous corrections to A2 are modest. The right
figure shows the analogous plot, this time including the viscous
corrections to the distribution function. The corrections are
much larger and we therefore expect the viscosity to decrease
the integrated elliptic flow.

B. Spectra

The thermal pT and differential v2 spectra of particles are
generated using the Cooper-Frye formula [54] given by

E
d3N

d3p
= g

2π3

∫
σ

f (pµuµ, T )pµdσµ. (5.2)
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FIG. 6. (Color online) A2 [defined in Eq. (5.1)] as a function of τ . The solid black lines show the ideal result for χ = 1.5, 3.0, 4.5, and ∞.
Also shown in the right and left figures, respectively, are the viscous results with and without including the viscous correction to the distribution
function, for χ = 3.0 and 4.5 and η/s = 0.2 (dashed green curve) and for η/s = 0.05 (dotted blue curve).
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FIG. 7. (Color online) Freeze-out surface for semicentral (b =
6.5) Au-Au collisions for η/s = 0.2 and χ = 3.0.

The thermal distribution function used in the Cooper-Frye
formula above also needs to include corrections due to finite
viscosity. We therefore write f = fo + δf , where fo is the
ideal particle distribution and δf is the viscous correction that
has been derived in Appendix B and is given by

δf = 1

2(e + p)T 2
fo(1 + fo)pµpν

(
πµν + 2

5
��µν

)
. (5.3)

For Boltzmann statistics fo(1 + fo) is replaced by fo. The
elliptic flow is defined as the weighted average of the yields

with cos(2φ):

v2(pT ) = 〈cos(2φ)〉pT
=

∫ π

−π
dφ cos(2φ) dN

dypT dpT dφ∫ π

−π
dφ dN

dypT dpT dφ

, (5.4)

where φ is the angle between the decaying particle’s momen-
tum (pT ) and the azimuthal angle of the collision region.

A typical freeze-out surface for χ = 3 at an impact
parameter b = 6.5 is shown in Fig. 7. Color gradients show
the temperature profile on the freeze-out surface and as noted
before the surface is not necessarily an isotherm.

Differential pT spectra for massless particles are shown in
Fig. 8 for two different freeze-out surfaces: χ = 3.0 (left) and
χ = 4.5 (right). In both plots the ideal case is shown by the
solid red line. First we discuss changes to the spectra brought
about by modifications to the equations of motion by looking
at the spectra generated with the ideal particle distribution
(fo only). For both values of viscosity and both freeze-out
choices a hardening of the spectra is observed. This is expected
because viscosity tends to increase the transverse velocity.

The effect from the viscous corrections to the distribution
function are more subtle. At earlier times the transverse flow
has not fully developed and the longitudinal pressure is reduced
while the transverse pressure is increased [21]. This is a
consequence of the fact that the shear tensor is traceless.
The increase in transverse pressure leads to a hardening of
the spectrum after integration over the space-time freeze-out
surface. This is the case for χ = 3 even though the corrections
are small. At later times the larger transverse flow alleviates
some of the longitudinal shear. When the hydro is finally in
a full 3D expansion, the viscous correction tends to reduce
the transverse pressure. This changes the sign of the viscous
correction term. This is seen for χ = 4.5 where the viscous
corrections soften the spectrum slightly.

As discussed above, any observable created by using the
auxiliary variable cµν should agree with the results using
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FIG. 8. (Color online) Differential transverse-momentum spectra for Au-Au collisions at b = 6.5 fm. The left plot is for freeze-out parameter
χ = 3 and the right for χ = 4.5. In both plots the ideal case is shown by the solid red curve. Then the viscous case is shown without including
the viscous corrections to the distribution function and is denoted by fo. The addition of the viscous correction to the distribution function is
generated in two different ways. δfπ is calculated using the auxiliary tensor cµν , whereas δfG is calculated using the physical gradients, i.e.,
πµν = −η〈∂µ∂ν〉.
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FIG. 9. (Color online) Differential v2 spectra for Au-Au collisions at b = 6.5 fm. The resulting curves are generated in the same way as
described for the pT spectra in the caption to Fig. 8.

the physical velocity fields. Therefore we also show the
viscous corrections calculated using the physical gradients
(denoted by δfG), i.e., in the local rest frame the πij is
approximated by

πij = −η
(
∂iuj + ∂jui − 2

3δij ∂lu
l
)
, (5.5)

when computing δf .
Overall, the corrections to the spectra are small so it is

hard to see any differences between the two calculations. This
will not be the case for the differential elliptic flow where this
comparison will be more important.

Figure 9 shows the differential elliptic flow using the same
parameter set from the pT spectrum. The solid red curves
shows the ideal spectrum and, as expected, a larger elliptic
flow is generated for χ = 4.5 compared to χ = 3 because
a larger fraction of the space-time volume is described by
hydrodynamics.

The viscous correction to the equations of motion causes
only a small change in the elliptic flow as seen by comparing
the results at finite viscosity using fo only with the ideal
case. For χ = 3 the change is almost negligible. For χ = 4.5
deviations are on the order of 2% at pT = 2 GeV.

Including the viscous corrections to the distribution func-
tion can bring about large changes in the elliptic flow. We
show the corrections due to the auxiliary variable by δfπ and
those from the gradients by δfG and we expect the two results
to agree. When the two results start to diverge the gradient
expansion is no longer valid and a kinetic description is really
required.

Based on our discussion in Sec. IV the viscosity is what
sets the freeze-out surface. For η/s = 0.2 we find that χ = 3
(figure on left). In this case the viscous corrections are large
but can only be trusted up to pT ≈ 1 GeV. We also show for
comparison the spectra for η/s = 0.05 which can be trusted
past 2 GeV. For η/s = 0.05 we take χ = 4.5 for reasons
discussed in Sec. IV. Again, the viscous correction decreases
the elliptic flow as a function of pT . Also shown are the spectra

for η/s = 0.2 and the corrections are larger. In both cases the
spectra can be trusted past pT = 2 GeV.

VI. DISCUSSION AND COMPARISON WITH OTHER
WORKS

A. Discussion

In summary we now make several conclusions regarding
the effects of shear viscosity on heavy-ion collisions.

We first recall the setup. The article is restricted to an ideal
gas equation of state p = 1

3ε and sets the initial nonequilibrium
fields to the value expected from the Navier-Stokes equations
πij = −η〈∂iuj 〉. The initial distribution of entropy density
follows the distribution of participants. (This could be changed
to a color glass condensate model initial conditions [55].)
The article simulates a fluid model based on Ref. [30] that
is similar but differs from that of Israel and Stewart. However,
all models should ultimately agree on the magnitude of viscous
corrections provided the viscosity is sufficiently small.

Several technical notes warrant discussion here. An al-
gorithm for a reliable solution of the viscous model was
developed by Pareschi [45] and is presented in Appendix D
that achieves uniform numerical accuracy across a wide
range of relaxation times. For small-enough relaxation times
the auxiliary fields πij should relax to the form expected
from the Navier-Stokes equation πij � −η〈∂iuj 〉. To see this
good/reasonable convergence for small/modest viscosities, see
Appendix D2. Generically, relaxation models for viscosity
have long-time parameters (the shear viscosity η in this case)
and short-time parameters. In the model considered here, α

(see Appendix C) is the short-time parameter, whereas in
the Israel-Stewart theory this short time parameter is η/[(ε +
p)τπ ]. These short-time parameters can be constrained by the
f -sum rule [56–58] and is discussed further in Appendix C.
In general the results should not depend on these short-time
parameters.

We now summarize our physical results. The integrated
viscous corrections to the flow are small. This was seen
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in both the hydrodynamic fields and also in the differential
and integrated elliptic flow when the thermal distribution
function was restricted to the ideal form. (The remainder of
this paragraph discusses only results with this restriction.) For
the integrated v2 this is seen in the left plot of Fig. 6 where A2

is shown for ideal runs and viscous runs at η/s = 0.05 and 0.2.
Corrections due to the modified flow pattern are also small in
the differential v2 spectrum as seen in Fig. 9 by comparing the
ideal and viscous runs (again with fo only.) Although there
is the possibility for the elliptic flow to be modified from
variations in the freeze-out surface across different runs this
was minimized by freezing out on contours of constant χ . One
can see from Fig. 5 that the space-time freeze-out contours are
about the same at zero and finite viscosity. The fact that only
small changes in the fields are seen when including viscosity
is not surprising. The time scale of any heavy-ion collision is
much shorter than the time needed for dissipative effects to
integrate and become large.

Even though viscosity does not modify the flow strongly
we have shown that there are still large corrections to the
particle spectra due to off-equilibrium corrections to the ideal
particle-distribution function. Any bounds for the viscosity
(at least from this article) would have to come from the v2

spectra. As Lindblom [32] and earlier work by others [56]
has clarified, any observable computed from the auxiliary
fields πij must agree with the same observable generated
by the physical gradients −η〈∂iuj 〉. When deviations are
seen the viscous corrections can no longer be trusted. For
a freeze-out surface set by χ = 4.5 the viscous corrections
agree with gradients up to 2 GeV for viscosities as large as
η/s = 0.2 as seen in Fig. 9. It is therefore safe to use only the
auxiliary variable when generating spectra for this particular
parameter set. In Fig. 10 we show a summary plot of the
differential elliptic flow. We now show one additional curve
for η/s = 0.133 yielding (η/p)∂µuµ = 0.6 for this particular
choice of freeze-out surface. We believe that this choice of
parameters is the closest physical scenario. The right plot
of Fig. 10 shows the measured elliptic flow as measured by

the STAR Collaboration [59]. We do not intend to make a
comparison but simply would like to keep the data in mind.
Nevertheless because this simulation was performed with a
massless gas that has the largest elliptic flow, it seems difficult
to imagine that the η/s >∼ 0.35 will ever fit the data even if the
initial conditions are modified along the lines of Ref. [55].

Before a realistic comparison with data can be made the
QGP/hadronic phase transition must be taken into account. In
the vicinity of the phase transition it is possible that the shear
viscosity may become very large. Also, a more realistic model
for the hadronic gas would be the hard sphere model, where
η ∼ T

σ0
. This would adjust at what point the simulation freezes

out and would therefore effect spectrum. There is most likely
a finite bulk viscosity due to the fluctuations of the QGP and
hadron concentrations in the mixed phase or from chemical
off-equilibrium in the hadronic phase [44]. A final issue that
should be taken into consideration is that particles of different
mass could possibly freeze-out on different surfaces. These
issues will be addressed in a future work.

B. Comparison

We now compare our results to some other groups, first with
the recent results of Song and Heinz [22] where they computed
differential v2 spectrum in Cu-Cu collisions.

One conclusion they found is that varying the initial
conditions does not change the end result, even in the extreme
condition when the equilibrium stress tensor is set to zero
πµν(τ0) = 0. This insensitivity is similar to the insensitivity to
the short-time parameter α indicated in Appendix C1.

Song and Heinz also found that the viscosity substantially
changes the flow. Their differential v2 spectra changes dramat-
ically when viscosity is included, even if the particles freeze
out using an ideal distribution. In our case there is almost
no change in v2 when viscosity is present when freezing out
with fo only, whereas in their case they see v2 decrease by
a factor of 2 at 3 GeV due to changes in the flow alone (see
their Fig. 4). It is possible that this difference is due to their
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FIG. 10. (Color online) (Left) Summary plot showing v2 for massless particles for simulations using ideal hydro and η/s = 0.05, 0.2.
(Right) Charged hadron v2 data using the standard reaction plane method as measured in Au-Au collisions at

√
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selection of 10 to 20% [59].

034905-11



K. DUSLING AND D. TEANEY PHYSICAL REVIEW C 77, 034905 (2008)

inclusion of a phase transition in their equation of state. Once
the plasma phase reaches the phase transition the momentum
anisotropy (εp) stalls in their model staying constant for the
entire mixed phase (and only growing slightly in the hadronic
phase). Therefore after freezing out the elliptic flow is in some
sense probing earlier times where viscous corrections to the
flow may be larger. Actually, if one looks at our εp in Fig. 4
the largest differences between the ideal and viscous cases is
for earlier times. This explanation should be verified.

When the viscous corrections to the distribution function are
added we both see qualitatively the same behavior. The viscous
correction gets larger with transverse momentum eventually
driving the elliptic flow below zero. It is impossible to make
quantitative comparisons until we include a phase transition
and run simulations with smaller systems sizes, which we plan
on doing in a future work.

We now compare our work with that of Baier and
Romatschke [60,61] for the flow and pT spectrum in central
collisions. They also find that the viscosity does not integrate to
significantly modify the ideal flow. We both find qualitatively
the same behavior confirming even earlier works [35,46].
Finite viscosity causes the temperature to drop slowly at earlier
times and more quickly at later times compared to the ideal
case. This effect was already discussed in Sec. III.

Although the freeze-out conditions in this work differ from
those of Baier and Romatschke, we find qualitatively the same
behavior when comparing pT spectra, i.e., a hardening of
spectra at large pT .

In comparison with the differential v2 results by
Romatschke and Romatschke [23] we see qualitatively the
same behavior. In this case the comparison is more direct be-
cause both simulations were performed using Au-Au collisions
at the same

√
s. Comparing our results for χ = 4.5, we see

that our v2 drops by ≈ 50% at pT = 2 GeV. This is on the
same order as seen in Fig. 3 of Ref. [23]. However, they do
not show contributions from flow and the distribution function
separately so it is hard to make any definitive comparisons.

VII. CONCLUSIONS

In this work we outlined the equations of motion necessary
for a casual description of viscous relativistic hydrodynamics
and showed results using initial conditions tuned to Au-Au
collisions at

√
s ≈ 200 GeV. The results indicate that the

viscous correction to the ideal equations of motion are small.
The goal of this work was to calculate the viscous correction to
differential v2 spectra. Even though modifications to v2 from
the flow are small the effect of the off-equilibrium distribution
function can bring about large changes in v2(pT ). By requiring
observables calculated with the auxiliary fields to agree with
those calculated with the physical gradients one can identify
where a hydrodynamic description is reliable.
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APPENDIX A: SPHERICITY

In this appendix we show (following Ref. [48]) how the
momentum anisotropy, expressed through A2, can be related
to hydrodynamic quantities. As discussed in the text A2 is
defined as

A2 = S11 − S22

S11 + S22
=

〈
p2

x

〉 − 〈
p2

y

〉
〈
p2

x

〉 + 〈
p2

y

〉 . (A1)

The sphericity tensor Sij is calculated from the third moment
of the momentum distribution function

Sij =
∫

σ

dσµSµνρ, (A2)

where dσµ is a differential element of the freeze-out surface
and the third-rank tensor, Sµνρ is defined as

Sµνρ =
∫

pµpνpρf (p)
d3p

(2π )3Ep

. (A3)

To relate the sphericity tensor to hydrodynamic quantities
we follow the same steps as was done in Ref. [48] but also
include the additional terms coming from viscous corrections.
First one substitutes the expression for the momentum distri-
bution function with the appropriate viscous correction term
into the above equation for the third-rank sphericity tensor

Sµνρ = S
µνρ

I + S
µνρ

V . (A4)

The subscripts I and V correspond to the ideal and viscous
contributions, respectively, and are defined as

S
µνρ

I =
∫

pµpνpρfo(p)
d3p

(2π )3Ep
, (A5)

S
µνρ

V = 1

2sT 3

(
παβ + 2

5
��αβ

)
S

µνραβ

5 , (A6)

where we have defined the fifth-rank tensor

S
µνραβ

5 =
∫

pµpνpρpαpβfo(p)
d3p

(2π )3Ep
. (A7)

Lorentz invariance sets the form of both SI and S5 as
follows

S
µνρ

I = Auµuνuρ + B(gµνuρ + permutations), (A8)

S
µνραβ

5 = Cuµuνuρuαuβ + D(uµuνuρgαβ + permutations)

+E(uµgνρgαβ + permutations). (A9)

The coefficients A..E can be found in the same manner as
was done previously in Ref. [48]. Quoting the result:

A = n(2〈〈E2〉〉 − m2), (A10)

B = n
〈〈E2〉〉 − m2

3
, (A11)

C = n(16〈〈E4〉〉 − 16m2〈〈E2〉〉 + 3m4)/3, (A12)

D = −n(8〈〈E4〉〉 − 11m2〈〈E2〉〉 + 3m4)/15, (A13)

E = n(〈〈E4〉〉 − 2m2〈〈E2〉〉 + m4)/15. (A14)
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The results for S11
I and S22

I can be expressed in terms of
hydrodynamic quantities:

S11
I =

∫
σ

(
Au2

x + B
)
uµdσµ + 2B

∫
σ

uxdσx,

(A15)

S22
I =

∫
σ

(
Au2

y + B
)
uµdσµ + 2B

∫
σ

uydσy.

The result for S11
V and S22

V can be found making use of the
following three identities:

uαπαβ = 0,

gαβπαβ = 0, (A16)

uα�αβ = 0.

Therefore, the viscous correction to the sphericity tensor is
given as

S11
V = 1

2sT 3

∫
σ

2E(πxxuµdσµ + 2uxπxµdσµ)

+ �

5sT 3

∫
σ

[
3Du2

xu
µdσµ

+E
(
5uµdσµ + 10uxdσx − 6u2

xu
µdσµ

)]
(A17)

and

S22
V = 1

2sT 3

∫
σ

2E(πyyuµdσµ + 2uyπyµdσµ)

+ �

5sT 3

∫
σ

[
3Du2

yu
µdσµ

+E
(
5uµdσµ + 10uydσy − 6u2

yu
µdσµ

)]
. (A18)

APPENDIX B: VISCOUS CORRECTION TO THE
DISTRIBUTION FUNCTION

The thermal pT and differential v2 spectra of particles are
generated using the Cooper-Frye formula [54]

E
d3N

d3p
= g

2π3

∫
σ

f (pµuµ, T )pµdσµ, (B1)

where dσµ is the normal vector to the freeze-out surface set
by the condition of constant χ . For the geometry we are
considering here we have

pµuµ = mT u0 cosh(ηs) − p1u
1 − p2u

2, (B2)

pµdσµ = τ (mT cosh(ηs)dσ0 + p1dσ1 + p2dσ2). (B3)

Following Refs. [21,62] we will make a second moment ansatz
for the thermal distribution function. We first write the stress
tensor as

T µν = εuµuν + (p + �)�µν + πµν, (B4)

where πµν is symmetric traceless and satisfies πµνuν =
0. Then we subsequently make an ansatz for the thermal
distribution f → fo + δf

δf = 1

(e + p)T 2
fo(1 + fo)pµpν

[
C1

2
πµν + C2

5
��µν

]
,

(B5)

where C1 and C2 are constants and the factor 1/[(e + p)T 2] has
been inserted for later convenience. To determine the constants
we demand that

T µν =
∫

d3p

(2π )3

pµpν

Ep
f. (B6)

Working in the local rest frame this becomes a condition that

�δij + πij =
[

1

(e + p)T 2

∫
d3p

(2π )3

pipjplpm

Ep
fo(1 + fo)

]

×
(

C1

2
πlm + C2

5
�δlm

)
. (B7)

The integral over the three-momentum in curly braces can be
expressed as

I (δij δlm + δilδjm + δimδjl), (B8)

where

I = 1

15(e + p)T 2

∫
d3p

(2π )3

|p|4
Ep

fo(1 + fo). (B9)

Inserting Eq. (B8) into Eq. (B7) we see that

C1 = C2 = 1

I
. (B10)

We record two limiting cases of this integral. In the
massless limit with zero chemical potential the integral is
easily performed and yields

I = 90ζ (5)

π4
≈ 0.958. (B11)

In the classical limit the factor fo(1 + fo) is replaced by

fo(1 + fo) → fo = e−(Ep−µ)/T , (B12)

and the integral is easily performed using the integral repre-
sentation of the modified Bessel functions

I = 1

(e + p)T 2

[
m3T 3

2π2
eµ/T K3(m/T )

]
= 1. (B13)

APPENDIX C: RELAXATION TIME

It was shown in Refs. [57,58] that for a weakly interacting
theory the transport time scale τR is much longer than the
inverse temperature. This separation of time scales is seen
in the spectral density which will have a sharp peak at small
frequencies ω ∼ 1/τR � T . In Refs. [57,58] a sum rule for this
peak was derived relating the small time (t � τR) behavior of
hydrodynamic correlators to the microscopic time scale. The
statement of this sum rule can be written as:

T

k2
∂tχ

L
gg(k, t)|t∼1/� ≈ T (ε + p)

〈
3

5
v2

p

〉
,

(C1)
T

k2
∂tχ

T
gg(k, t)|t∼1/� ≈ T (ε + p)

〈
v2

p

5

〉
,

where vp is p/E and � is a cutoff such that 1/τR � � � T .
χgg is the retarded correlator of T 0i and can be found in the
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FIG. 11. (Color online) Differential v2 spectrum for Au-Au collisions at b = 6.5 fm. (Left) η/s = 0.05; (right) η/s = 0.2. Each figure
shows spectrum calculated with the default small-time parameter α = 0.7 and half of this value, α = 0.35.

framework of linear response theory. A small velocity field is
turned on with a perturbing Hamiltonian

H = H0 −
∫

d3xvi(x, t)T 0i(x, t), (C2)

and suddenly switched off at t = 0: vi(x, t) = eεt θ (−t)vi
0(x).

In the framework of linear response this yields

∂t 〈T 0i(k, t)〉 = −χij
gg(k, t)vi

0(k). (C3)

The stress tensor can be expressed as the equilibrium stress
tensor plus small corrections:

〈T 00〉 = e + ε(x, t) (C4)

〈T 0i〉 = 0 + gi(x, t), (C5)

where g ≡ v(e + p). The linearized hydrodynamic equations
are

∂tε + ∂ig
i = 0, (C6)

∂tg
j + ∂iτ

ij = 0, (C7)

where

τ ij = δijp − η
(
∂iuj + ∂jui − 2

3δij ∂lu
l
) − δij ζ ∂lu

l, (C8)

in the Navier-Stokes limit. However, because we are interested
in relating the short-time parameters of the theory used in this
work to microscopic quantities, we take τ ij from the second-
order equations

τ ij = p(δij − αcij ). (C9)

We now have all the pieces needed to evaluate the left-hand
side of Eq. (C1). First, for small c the evolution equation
simplifies to

∂tc
ij − (∂iuj + ∂jui) = 1

τ0
cl
l δ

ij + 1

τ2

(
cij − 1

3
cl
l δ

ij

)
.

(C10)

We can now differentiate Eq. (C7) with respect to time,
substitute in the evolution equation, and immediately take the
t → 0 limit to obtain

∂2
t gj |t=0 = −c2

s ∂j ∂t ε − αp∂i[∂
iuj + ∂jui]. (C11)

We now make use of the first linearized hydrodynamic
equation, ∂tε = −(ε + p)∂iv

i , which can be substituted into
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FIG. 12. (Color online) Scatter plot of the energy density per unit rapidity (left) and of the transverse velocity (right).
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FIG. 13. (Color online) Comparison of viscous stress tensor πµν (crosses) versus its explicit calculation from the gradient of the velocity
fields (open circles) for η/s = 10−6 for τ = 2 (red), τ = 4 (green), and τ = 6 (blue). All quantities are scaled by η/s and were generated from
a slice at 30◦ in the transverse plane for Au-Au collisions at b = 6.5 fm.

Eq. (C11). After taking a spatial Fourier transform we get:

∂2
t gj |t=0 = −c2

s (ε + p)kjkiv
i − pα[k2vj + kikj vi]. (C12)

This equation can be decomposed into its transverse and longi-
tudinal pieces by defining gj = gjT + kj

k
gL, where kjgjT =

0. Because we are interested only in the shear viscosity we can
simply look at the transverse component

∂2
t gjT = −pαk2vj , (C13)

and when substituted into the sum rule, Eq. (C1), we obtain
the result

α = 4
5 . (C14)

A similar analysis can be done for the Israel-Stewart
equations [26] as well:

τ ij = pδij + πij , (C15)

∂tπ
ij = 1

τπ

[−η〈∂ivj 〉 − πij ], (C16)

with the result

τπ = 5η

4p
. (C17)

A. Dependence on small-time parameter

It was discussed throughout the article that the results
should not depend on the small time parameter. To test this we
have generated v2 spectrum with a value of α = 0.35 compared
to the default value of α = 0.7 used throughout this work.
This is shown in Fig. 11 for η/s = 0.5 (left) and η/s = 0.2
(right) for a fixed freeze-out surface parameter χ = 3. The
ideal curves are also shown for reference.

The deviations between the results using two different
values of α are small. The flow is hardly changed as seen
by comparing the spectrum generated using only the ideal
distribution function, fo. In this case, for both values of η/s,
the results differ by less than 1%. When including the viscous
correction to the spectrum the results still agree reasonably
well.

APPENDIX D: ALGORITHM

In this appendix the algorithm used to solve Eqs. (2.19)–
(2.25) is outlined. The numerical evaluation of the above
system of hyperbolic equations is difficult because one would
like to achieve uniform numerical accuracy across a range
of relaxation times. To achieve this we use a discretization

034905-15
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FIG. 14. (Color online) Same as in Fig. 13 except for η/s = 0.05.

method first proposed by Pareschi [45] that can numerically
solve the above equations in both the stiff and unstiff regions.

We use notation such that the term xn
i,j refers to the value

of x at discrete time tn and grid point (x, y) = (xi, yj ) with i

and j always referring to the x and y grid coordinates. Any
variable absent of an index represents a continuous variable
not yet specified at a given point. At times we use a simplified
notation for the discretized fields such that u(xi, yj , t

n) = un
i,j .

For completeness we outline the integration routine devel-
oped by Ref. [45]. Our goal is to solve equations of the form

ut (x, y, t) + fx(u) + hy(u) = g(u), (D1)

where u, f, h, and g are arbitrary functions. We use the
standard notation that for a finite volume element the value
of a field at the point (xi+ 1

2
, yj+ 1

2
) and at a time t = tn is given

by:

un

i+ 1
2 ,j+ 1

2
= 1

�x�y

∫ xi+1

xi

∫ yj+1

yj

u(x, y, tn)dxdy.

(D2)

We then integrate Eq. (D1) over the region [xi, xi+1] ×
[yj , yj+1] × [tn, tn+1], yielding:

un+1
i+ 1

2 ,j+ 1
2

= 1

�x�y

{ ∫ xi+1

xi

∫ yj+1

yj

u(x, y, tn)dxdy

+
∫ yj+1

yj

∫ tn+1

tn
[f (xi+1, y, t) − f (xi, y, t)] dydt

+
∫ xi+1

xi

∫ tn+1

tn
[h(x, yj+1, t) − h(x, yj , t)]dxdt

+
∫ xi+1

xi

∫ yj+1

yj

∫ tn+1

tn
g(x, y, t)dxdydt

}
. (D3)

The first integral over the field u in the above Eq. (D3) can be
discretized by constructing a piecewise linear approximation
of u(x, y, t) over the integration region:

∫ yj+1

yj

u(x, y, tn)dy

=
∫ y

j+ 1
2

yj

[u(x, yj , t
n) + (y − yj )uy(x, yj , t

n)]dy

+
∫ yj+1

y
j+ 1

2

[u(x, yj+1, t
n)

+ (y − yj+1)uy(x, yj+1, t
n)]dy. (D4)

Using the corresponding linear approximation for the
integration over (x, xi+1) and performing the elementary
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FIG. 15. (Color online) Same as in Fig. 13 except for η/s = 0.2.

integration over x and y the following discretization is found:

1

�x�y

∫ xi+1

xi

∫ yj+1

yj

u(x, y, tn)dxdy

= 1

4

(
un

i,j + un
i+1,j + un

i,j+1 + un
i+1,j+1

)
+ �x

16
∂x

(
un

i,j − un
i+1,j + un

i,j+1 − un
i+1,j+1

)
+ �y

16
∂y

(
un

i,j + un
i+1,j − un

i,j+1 − un
i+1,j+1

)
. (D5)

For the time integrals over the fluxes [second and third
terms in Eq. (D3)] a general trapezoidal rule is used:

1

�t

∫ tn+1

tn
f (x, y, t)dt ≈ µf (x, y, tn+α) + νf (x, y, tn) (D6)

where f n+α will be given explicitly by a predictor step to be
defined later. The time integrals over the source term [last term
in Eq. (D3) will also be given by a general trapezoidal rule],
which will result in an implicit equation between the sources
and charges:

1

�t

∫ tn+1

tn
g(x, y, t)dt ≈ ζg(x, y, tn+1) + ηg(x, y, tn). (D7)

To ensure second-order accuracy in space the second and
third integrals over the fluxes in Eq. (D3) are evaluated after
the time integrations using the standard midpoint rule and
trapezoidal rule depending on the time:

for t = tn+1 :
1

�x

∫ xi+1

xi

h(x, y, t)dx ≈ h
(
xi+ 1

2
, y, t

)
(D8)

for

t ∈ [tn, tn+1] :
1

�x

∫ xi+1

xi

h(x, y, t)dx

≈ 1

2
[h(xi+1, y, t) + h(xi, y, t)]. (D9)

After evaluating all the integrals in Eq. (D3) using the above
rules for discretization the final result for un+1

i+ 1
2 ,j+ 1

2
is:

un+1
i+ 1

2 ,j+ 1
2

= 1

4

(
un

i,j + un
i+1,j + un

i,j+1 + un
i+1,j+1

)
+ �x

16
∂x

(
un

i,j − un
i+1,j + un

i,j+1 − un
i+1,j+1

)
+ �y

16
∂y

(
un

i,j + un
i+1,j − un

i,j+1 − un
i+1,j+1

)
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+ �t

2�x

[
µ

(
f n

i,j + f n
i,j+1 − f n

i+1,j − f n
i+1,j+1

)
+ ν

(
f n+α

i,j + f n+α
i,j+1 − f n+α

i+1,j − f n+α
i+1,j+1

)]
+ �t

2�y

[
µ

(
hn

i,j + hn
i+1,j − hn

i,j+1 − hn
i+1,j+1

)
+ ν

(
hn+α

i,j + hn+α
i+1,j − hn+α

i,j+1 − hn+α
i+1,j+1

)]
+�t

[
ξ

4

(
gn+α

i,j + gn+α
i+1,j + gn+α

i,j+1 + gn+α
i+1,j+1

)
+ ηgn+1

i+ 1
2 ,j+ 1

2

]
. (D10)

The terms at time tn+α are taken from the solution of the
predictor step:

un+α
i,j = un

i,j − �tα
(
∂xf

n
i,j + ∂yh

n
i,j − gn+α

i,j

)
. (D11)

As shown in Ref. [45], second-order accuracy conditions give
the weights used in the discretization as a function of α.
We choose α = 1/3 with weights given by µ = −1/2, ν =
3/2, ξ = 3/4, and η = 1/4. We can therefore rewrite the
solution, Eq. (D10), in operator splitting form as:

u
(1)
i,j = un

i,j − �tα
(
∂xf

n
i,j + ∂yh

n
i,j

)
un+α

i,j = u
(1)
i,j + �tαgn+α

i,j

u
(2)
i+ 1

2 ,j+ 1
2

= 1

4

(
un

i,j + un
i+1,j + un

i,j+1 + un
i+1,j+1

)

+ �x

16
∂x

(
un

i,j − un
i+1,j + un

i,j+1 − un
i+1,j+1

)

+ �y

16
∂y

(
un

i,j + un
i+1,j − un

i,j+1 − un
i+1,j+1

)

+ �t

2�x

[
µ

(
f n

i,j + f n
i,j+1 − f n

i+1,j − f n
i+1,j+1

)
+ ν

(
f n+α

i,j + f n+α
i,j+1 − f n+α

i+1,j − f n+α
i+1,j+1

)]
+ �t

2�y

[
µ

(
hn

i,j + hn
i+1,j − hn

i,j+1 − hn
i+1,j+1

)
+ ν

(
hn+α

i,j + hn+α
i+1,j − hn+α

i,j+1 − hn+α
i+1,j+1

)]

un+1
i+ 1

2 ,j+ 1
2

= u
(2)
i+ 1

2 ,j+ 1
2

+�t

[
ξ

4

(
gn+α

i,j + gn+α
i+1,j + gn+α

i,j+1 + gn+α
i+1,j+1

)

+ ηgn+1
i+ 1

2 ,j+ 1
2

]
. (D12)

The solution of Eqs. (2.19)–(2.25) are a coupled set of
seven equations of the form of Eq. (D1). At each time step the
following steps are performed: update the charges according
to the first line of Eq. (D12) for u(1) at each point on the grid
and then solve implicitly for un+α where the source terms
are possibly functions of the additional six field equations.
Next, update the charges according to u(2) at each grid point.
Last, do a final implicit solve for un+1

i+ 1
2 ,j+ 1

2
according

to the final equation in (D12).

A. ID versus 2D

To demonstrate the robustness of the above algorithm in
two dimensions we compare the results from the 2D numerical
solution for central collisions with the corresponding 1D result.
In Fig. 12 the solid red line shows the result of the energy
density per unit rapidity from the 1D case using η/s = 0.2.
For reference the ideal result is shown by the dotted blue line.
The black points plotted on top of the red curve shows the
corresponding result for the 2D case. The difference between
the two cases is small as expected. The scatter in the black
points gives a qualitative idea of the error due to the use of a
rectangular grid. Figure 12 shows the analogous figure for the
transverse velocity.

B. Gradients

It was discussed in the text that Lindblom [32] found an
important result regarding the form of the auxillary tensor. In
a large class of causal dissipative theories the physical fluid
states must relax to a state that is indistinguishable from the
Navier-Stokes form. The time scale in which this occurs is on
the order of the microscopic particle interaction time.

We therefore should check that the viscous stress tensor
πµν as computed from the auxiliary tensor cµν agrees with the
stress tensor computed from the gradients of the velocity field.
This is shown for various components of πµν from simulations
with viscosity of η/s = 10−6, 0.05, 0.2 in Figs. 13–15.
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