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We introduce a new scenario for heavy ion collisions that could solve the lingering problems associated with
the so-called Hanbury Brown-Twiss (HBT) puzzle. We postulate that the system starts expansion as the perfect
quark-gluon fluid but close to freeze-out it splits into clusters, due to a sharp rise of bulk viscosity in the vicinity
of the hadronization transition. We then argue that the characteristic cluster size is determined by the viscosity
coefficient and the expansion rate. Typically it is much smaller and at most weakly dependent of the total system
volume (hence reaction energy and multiplicity). These clusters maintain the pre-existing outward-going flow,
as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We provide an ansatz for
converting the hydrodynamic output into clusters.
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I. INTRODUCTION

One of the most unexpected, and as yet unexplained,
experimental results found at the Relativistic Heavy Ion
Collider (RHIC) concerns the description of particle inter-
ferometry observables [1]. Before RHIC was turned on, it
was expected that the deconfined matter would be a highly
viscous, weakly interacting quark gluon plasma [2]. Thus,
ideal hydrodynamics would not provide a good description of
flow observables sensitive to the early stages of the collision,
such as azimuthal anisotropy [3] as viscous corrections to
these observables would be too large. Nevertheless, after data
was released, hydrodynamic simulations offered in fact very
successful interpretation of transverse momentum spectra and
their azimuthal anisotropy [4]. However, hydrodynamics also
lead to the prediction, that a clear signature for the phase
transition would be an increase of the “out” to “side” emission
radius ratio (referred to as Ro and Rs) due to longer lifetime of
the system, caused by the softening of the equation of state in
the transition/crossover region [5]. This prediction turned out
not to be true [6].

Measured parameters Ro and Rs are nearly identical. Their
(positive) difference R2

o − R2
s is thought to correspond—

somewhat simplified—to the duration of particle emission.
Hence, it looks like the fireball emits particles almost instan-
taneously and does not show any sign of phase transition
or crossover. Hydrodynamics, with “reasonable” freeze-out
condition (such as a critical temperature of 100 MeV or so)
cannot describe this even qualitatively.

*torrieri@fias.uni-frankfurt.de

There could be three possible approaches to the Hanbury
Brown–Twiss (HBT) puzzle. It could be that the system is
simply too complicated, and that once we include all pos-
sible improvements (full 3D calculation, viscosity, hadronic
kinetic afterburner, in-medium hadron modifications, etc.),
everything will fit. It could also be that we are drastically
misunderstanding the data, and the HBT puzzle is a symptom
of inapplicability of hydrodynamics to heavy ion collisions.
Finally, it could be that the hydrodynamic approach is basically
correct, but there is just one element of physics relevant to
freeze-out that is fundamentally misunderstood.

The second possibility is unlikely because, in some ways,
hydrodynamic prescription does fit HBT data. Scaling of HBT
radii with the multiplicity rapidity density (dN/dy)1/3, over
a large range of energies [7] is typical for an isentropically
expanding fluid that suddenly breaks apart. The very good
description, within parameters compatible with what is needed
to describe flow, of the azimuthal dependence of HBT radii
[8], also suggests that the hydrodynamic framework is a
good ansatz for describing the matter produced in heavy ion
collisions up to freeze-out.

The first possibility appears, however, also problematic:
successful models and/or parametrizations of the freeze-out
which describe HBT radii are found in the literature [9–13],
and they could provide a way to gain insights into what is
missing. However, we feel that successful description involves
a dynamical description from initial conditions plus a freeze-
out criterion, rather than a fit to data with assumptions put in
“by hand”. Such a description is so far lacking.1 Furthermore,

1Some kinetic models incorporating partonic interactions, such as
[29], manage to reproduce HBT data for certain values of the parton
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the most plausible refinements to hydrodynamics, namely
implementation of fully three-dimensional models [15] and
the addition of a kinetic theory afterburner [16] do not do
anything to solve the HBT discrepancy, but in fact make it
worse, suggesting that the problem is not refinements but rather
one large missed physical effect.

One such effect discussed so far in the literature within a
hydrodynamic context is spinodal clustering [17–20] driven by
a first order phase transition (some authors talk about explosive
freeze-out, within the same context [21–24]).

While clustering has been applied to describe HBT data
[25], such a description is yet to be made fully kinetic. One
reason why such an ansatz has not been accepted so far is that
lattice strongly indicates that the transition at RHIC energies
is not of first-order, but rather a smooth crossover, and the
critical point appears at a considerable chemical potential.
Considering the rather universal scaling [7,26,27] found in
soft observables, an alternative which is not dependent on the
assumption of first order phase transition is desirable.

In this paper, we propose such a possible alternative
freeze-out mechanism, where the dynamics explain why it
can lead to freeze-out considerably different from the usually
used typical energy density. We argue that it can, in fact, be
the basis of reconciling hydrodynamics and interferometry.
Instead of freeze-out happening at a critical temperature or
energy density, we speculate that the system breaks up into
fragments, as a result of the bulk viscosity sharply rising
close to the phase transition temperature. This explanation
has the virtue that it is connected to theoretical features of
QGP, namely its near-perfect conformal invariance at high
(perturbative) temperatures, and the existence of a conformal
anomaly in the nonperturbative regime.

II. THE BEHAVIOR OF BULK VISCOSITY NEAR Tc

The bulk viscosity of high temperature strongly interacting
matter has recently been calculated using perturbative QCD
[28], and found to be negligible, both in comparison to shear
viscosity and with respect to its effect on any reasonable
collective evolution of the system. This is not surprising: The
QCD Lagrangian, as long as no “heavy” quarks are present,
is nearly conformally invariant [28]. Since, within a fluid, the
violation of conformal symmetry is linearly proportional to
a bulk viscosity term [42], the near conformal invariance of
the QCD Lagrangian should guarantee that bulk viscosity is
nearly zero, in the perturbative regime.

In the hadron gas phase, of course, the numerous scales
associated with hadrons render conformal invariance a bad
symmetry, and hence it is natural to expect that bulk viscosity
is not negligible.

This is, again, rooted in a fundamental feature of QCD: the
nonperturbative conformal anomaly, that manifests itself in the
scale (usually called �QCD) at which the QCD coupling con-
stant stops being small enough for the perturbative expansion

scattering cross-section. The interpretation of these results within a
collective picture is however not yet fully understood.

to make sense. This scale coincides with the scale at which
confining forces hold hadrons together.

This violation of conformal invariance is not seen
perturbatively, but should dominate over the perturbatively
calculated bulk viscosity as temperature drops close enough to
the QCD phase transition.

What happens to bulk viscosity in this regime, where
hadrons are not yet formed, presumably the matter is still
deconfined, but conformal symmetry is badly broken? While
we can not as yet calculate this rigorously, there are compelling
arguments [30,32,33] that bulk viscosity rises sharply, or even
diverges, close to the phase transition temperature.

Lattice simulations find that T µ
µ (=0 for a conformally

invariant system), increases rapidly close to Tc. Remembering
that the shear (η) and bulk (ζ ) viscosities roughly scale as
[36,37,39]

η ∼ τelasticT
4, (1)

ζ ∼ (
1
3 − vs

)2
τinelasticT

4, (2)

where τ(ine)elastic refers to the equilibration timescale of
(ine)elastic collisions. Assuming τinelastic ∼ 1/T allows to
extract the bulk viscosity from the lattice, and yields a sharp
rise close to Tc. This can be more formally seen from finite
temperature sum rules in conjunction with lattice data [32,33].

The rise is, in fact, likely to be considerably sharper than
[32] suggests. The dependence of τinelastic on temperature can
be guessed from the fact that, at Tc, the quark condensate 〈qq〉
acquires a finite value, and the gluon condensate 〈GµνG

µν〉
sharply increases at the phase transition. “Kinetically”, there-
fore, timescales of processes that create extra qq and GG

pairs should diverge close to the phase transition temperature,
by analogy with the divergence of the spin correlation length
in the Ising model close to the phase transition. Numerical
studies with viscous hydrodynamics and a chiral model [30]
seem to confirm that the second-order chiral phase transition
makes the viscosity diverge.

The sharp rise of bulk viscosity can also be understood
within string kinetics: confinement, microscopically, can be
thought of as a “string tension” appearing in the potential.
Given the small mass of light quarks (and hence ease of
creating qq pairs), the appearance of even small string tension
will lead to a small “preferred scale” at which strings break.
Hence, conformal symmetry should be quickly badly violated
right at the deconfinement phase transition. In particular, in a
regime where the momentum exchange of the average collision
is more than enough to break the string, the relevant degrees of
freedom are still quarks, not mesons, and the shear viscosity
is still low, a profound change happens: each previously
elastic collision, that before just diffused momentum, becomes
inelastic, where the final state has less kinetic energy than the
initial state. Even if this difference (the energy needed to break
the string) is low, over many collisions, the heat energy would
be converted into creating more slightly colder, less pressing
particles. That is exactly the kind of processes that contribute
most to bulk viscosity [37].

These arguments give evidence to the conjecture that,
close (from above) to Tc, bulk viscosity goes rapidly from a
negligible value to a value capable of dominating the collective
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FIG. 1. (Color online) Fragmentation of the fireball due to sharply increasing bulk viscosity as the temperature decreases. Matter which
expanded easily before we describe as oil. It suddenly becomes very rigid against expansion (described as honey in the figure) and breaks up
into fragments. Hadrons evaporate from these fragments.

evolution of the system. That this transition is sharp can be
seen by the sharpness of the lattice deconfinement transit from
lattice flavor correlations studies (such as 〈�B�S〉 [38]) seem
to confirm that, immediately above Tc, the relevant degrees of
freedom become quasiparticles similar to the asymptotically
free quarks. It is therefore likely that nonperturbative effects
(such as the conformal anomaly) go away soon above Tc.
Conversely, they should appear quite suddenly if T approaches
Tc from above, in an expanding cooling fluid.

In the next section, we will show how this picture could
yield a freeze-out scenario that has the potential to resolve the
HBT puzzle.

III. CLUSTERING AT THE VISCOSITY PEAK

It has been noted that bulk viscosity could be helpful in
making Ro and Rs agree with experiment [40]. Of course, too
large bulk viscosity, in the context of heavy ion collisions,
would just mean that the approximations on which hydrody-
namics is based are not accurate (the mean free path is not
negligible with respect to the system’s inhomogeneities) and
an approach not relying on assumed near-equilibrium might
be necessary [20,30].

One guess for the qualitative behavior of such a system
is illustrated in Fig. 1: one just needs to think what would
happen if a rapidly expanding compressible fluid suddenly
becomes rather rigid, sticky, and resistant to further expansion
and deformation.2 If the material spent a considerable amount
of time in the low viscosity phase there will be pre-existing

2It should be noted that QCD matter is different enough to
“ordinary” matter that concepts such as “solid”, “liquid”, “sticky”,
etc., are misleading, since these words carry tacit assumptions that are
valid in the “everyday” world but potentially badly broken in QCD.
In solid state physics, short-range potentials are usually dominated
by steep “walls” driven by the Pauli exclusion principle. Thus,
materials with small intermolecular distances, either small-viscosity

collective flow that is pushing the system outwards. The
inhomogeneities of this flow will rapidly generate strong
viscous forces, which will tend to decelerate and stop the
expansion. These forces, by causality, will not be able to
quickly overcome the pre-existing flow globally, but more than
enough to overcome it locally. If the appearance of viscosity
is sharp enough, these forces cannot overcome the inertia of
the system and it is natural to suppose that the system will be
rapidly broken apart into small fragments, each flowing with
pre-existing flow, with roughly QGP density.

It should be clearly stated that although this scenario shares
some superficial similarities with the more usual nucleation
picture analyzed, e.g., in [17,18,20,22], it is physically com-
pletely different.

In [20], hadronic bubbles form in a steady supercooled QGP
medium, and the role of viscosity is to dissipate the latent heat
during bubble growth. The nucleation examined here, on the
other hand, occurs due to the interplay of a suddenly appearing
viscosity with the pre-existing advective forces.

The scenario in [20] requires a first-order phase transition,
our does not. The nucleation in [20] proceeds via creation

“good liquids” or large viscosity “solids”, are almost always highly
incompressible, because of the steep inter-molecular potential at
small average molecular separation. This incompressibility is usually
assumed in the definition of both “liquid” or “solid”. In QCD there
is no such short-range repulsive potential, the short-range EoS is the
conformally invariant ideal gas one, and lattice calculations show
that compressibility of QCD matter is never high even when the
bulk viscosity rises close to Tc. The highly viscous phase is thus
not a “solid” or a “glass”, since these materials are usually defined as
incompressible, while highly viscous QCD matter can be compressed
easily if done infinitely slowly. At finite compression/expansion speed,
on the other hand, the system becomes “solid-like” due to the
viscosity, an argument central to our subsequent reasoning. Such
characteristics are, to our knowledge, highly unusual in solid state
physics yet well motivated in QCD.
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of critical bubbles whose size is determined only by ther-
modynamical quantities, viscosity influences the dynamics of
bubble growth but not the critical size, and global collective
expansion plays no role. We require a robust pre-existing
global expansion, and a sharp peak of viscosity at the
critical temperature that forces the system to disintegrate into
fragments which, in principle, can depend on both local and
global system properties.

The bubbles in [20] are made of hadron gas. Ours are
evaporating droplets of hot quark gluon plasma (QGP). In [20],
clustering will entail an entropy increase, proportional to the
latent heat and explained by the different entropy density of the
two phases. In our approach, the formation of clusters should
quickly kill off ∂µuµ, so entropy generation [∼(∂µuµ)2] during
clustering should be negligible.

Thus, this work and pre-existing clustering [20] should
not be treated as complementary descriptions of the same
phenomena, but as competing scenarios to be differentiated
at the theoretical level (are the conditions for either scenario
relevant to heavy ion collisions?) or through experimental data
(since our clusters are very different from those examined
in [17,18,20,22]).

Relativistically, too high a viscosity indicates that the
system is too far from equilibrium for the Navier-Stokes
equations to be a good description. At best, higher order
corrections to hydrodynamics, e.g., [31] become dominant. At
worst (and more likely), the whole expansion in flow gradients
becomes divergent. The scenario considered here represents
a guess of how the system could evolve after hydrodynamics
breaks down as an appropriate physical description.

While this guess, with reasonable timescales/cluster sizes,
should not suffer from the causality violation pathologies that
affect first order viscous hydrodynamics, we do not at the
moment see a way to formally assess its likelihood from
transport theory arguments beyond deriving some quantitative
conditions for this scenario to be plausible. We shall do so in
the rest of this section.

The first condition is that forces due to bulk viscosity must
overwhelm advective forces

α1 = p

ζ∂µuµ
� 1, (3)

where p is the pressure and uµ velocity field. If bulk viscosity
diverges, as argued in this work and [32], the applicability of
this condition is assured. While an ab initio lattice extraction
involving pure gluons [34] does not have evidence for a
divergence, they estimate

0.5 <
ζ

s
(T = 1.02Tc) < 2 (4)

(s is entropy density.) Assuming an inviscid conformal Bjorken
[14] dynamics until the rise in bulk viscosity, we have

∂µuµ = τ−1, (5)

T

T0
=

(τ0

τ

)1/3
, (6)

ε

ε0
=

(τ0

τ

)4/3
, (7)

where ε stands for energy density.

We can then obtain an estimate for α1 in terms of the initial
temperature T0 and thermalization timescale τ0

α1 ∼ s

ζ

Tcτc

4
∼ s

ζ

T 3
0 τ0

4T 2
c

, (8)

where τc = τ (T = Tc). This might be less than unity even in
the “worst case scenario”, although, of course, the divergence
of ζ would make clustering much more plausible.

The second condition is that the appearance of the viscosity
divergence is sudden enough for it not to be dissipated by
hydrodynamic evolution. For a qualitative estimate,

1

ζ

dζ

dτ
� ∂µuµ ⇒ 1

ζ

dζ

dT
� dτ

τdT
(9)

or the onset of bulk viscosity will just be dissipated through
hydrodynamic evolution. Once again, a sharp divergence of ζ

will ensure that this condition is satisfied. Considering, as a toy
model, a Gaussian peak of the evolution of ζ w.r.t. temperature,
and assuming σζ to be the width of the peak, we get

1

ζ

dζ

dT
= 2(T − Tc)

2πσ 2
ζ

� 1

τ

dτ

dT
(10)

fitting a σζ to the output of [32] and comparing with a Bjorken
estimate for dT /dτ should convince us that this criterion is
very plausible as T approaches Tc from above.

The third condition is that terms in the second order
of the flow gradient are not relevant for the system under
consideration. The effect of these is the emergence of a time-
scale (the relaxation time, τ�), which delays the appearance
of viscous forces from the built-up of the flow gradient. If the
divergence in ζ is too sharp around Tc, or if the relaxation
time is too long, the singularity in ζ will have no effect on
the dynamics: by the time the viscous forces turn on, the
system has already been cooled to below Tc and viscosity
is not anymore singular. If �T is the width of the peak in ζ ,
this condition can be quantitatively estimated as

α2 = τ�

�T

dT

dτ
� 1. (11)

τ� is famously difficult to estimate from quantum field theory.
The estimate closest to strongly coupled QCD we have
is provided by calculations in supersymmetric Yang-Mills
theories3 [35]

τ� = 1 − log 2

6πT
. (12)

Estimating from [32] �T ∼ 0.1Tc, and assuming once again
a Bjorken-type evolution before the divergence, we find

α2 ∼ 10(1 − log 2)

18π

1

Tcτc

(13)

since in general, α2 � α1 the fulfillment of the second
condition is more likely than the first at all energies. The
introduction of multidimensional expansion (rather than the

3Note that this estimate is for a conformally invariant theory, so it
is in direct contradiction with our scenario, and hence particularly
unreliable. Still, nothing more realistic is available at the moment.
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1D case of [14]) will for sure increase ∂µuµ and dT /dτ ,
lowering α1 and raising α2 (since α2 � α1, this raises the
possibility for the presently considered scenario).

The estimates here, given our very limited understanding of
some key parameters, should only be taken to understand that
clustering is not outright excluded. Our aim in the subsequent
sections of the paper is to try to quantitatively estimate some
phenomenological consequences of this scenario, and try to
connect it to experimental data.

IV. AN ESTIMATE FOR THE CLUSTER SIZE

The simplest argument is based on the assumption that
bulk viscosity diverges at the critical point and therefore
decouples from the problem. The relevant scales are set
by �QCD and Tc. Each fragment will have a typical size
Rc ∼ �−1

QCD (the preferred scale of the system) and move in
the direction determined by its pre-existing collective flow
field. The typical energy density in fragments is about aT 4

c

with a = π2νQGP/30, where νQGP ≈ 30 is effective number of
degrees of freedom in the quark-gluon plasma (QGP). For
our rough estimates we take the critical temperature Tc =
165 MeV and �QCD = 250 MeV. Then the typical fragment
mass is estimated as

M ∝ 4

3
πR3

c

π2

30
νQGPT

4
c ≈ 2 GeV. (14)

Such a cluster (droplet) will decay into about ten pions or a few
heavier hadrons. Note that this estimate is good for a cluster
containing no strangeness or baryon number. To handle these,
Eq. (14) needs to be updated to accommodate strangeness and
baryon content, perhaps using the methods outlined in [41].
Naively, the higher energy content of baryon and strangeness
rich QGP should increase Mcluster, so that clusters containing
baryons (strange and nonstrange) should also have the mass
of high-lying baryonic resonances and decay into several
particles. Note also that T might well be considerably larger
than the phase transition (let alone the chemical freeze-out)
temperature. It is simply the temperature at which the bulk
viscosity starts becoming strong enough to locally counteract
the built-up flow. The large bulk viscosity, collective manifes-
tation of the interparticle confining potential, will prevent these
fragments from expanding further. They should therefore be
considered Hagedorn-style “fireballs” rather than as expanding
fluid clumps. Cascading of these fireballs into the ground-state
hadrons produces the hadrons at “chemical freeze-out.”

The fact that the scale suggested here is similar to the
hadronic scale begs the question of whether this picture is
significantly different from the “usual” Cooper-Frye particle
emission picture. The difference is that within the Cooper-Frye
scenario, the mostly produced particle is the “massless” pion,
while in our scenario only systems having “hadronic” ∼�QCD

mass scale are created at hadronization. These systems,
furthermore, are not “particles” (zero temperature states) but
rather finite temperature fireballs, although it is reasonable for
them to transform into Hagedorn-type resonances and decay.

In the presence of collective expansion �QCD might
interplay with other scales of the problem set by expansion

velocity gradients. Let us use them in an estimate of the size
of fragments related to the dynamics of the expansion. In
order to do so it is useful to recall that the energy momentum
tensor, with vanishing shear viscosity but non-vanishing bulk
viscosity is

T µν = (ε + p)uµuν − pgµν + ζ∂ρu
ρ(gµν − uµuν). (15)

From energy-momentum conservation ∂µT µν = 0 we then
obtain the rate of energy density decrease

1

ε
uµ∂µε = ε + p − ζ∂ρu

ρ

ε
∂µuµ. (16)

Note that when ζ∂ρu
ρ ∼ p the energy density decreases at the

same rate as if no work was performed in case with vanishing
viscosity. For lower rates of the energy density decrease the
expansion even decelerates. Microscopically, this is mediated
by interparticle forces which hold the system together. It can
happen that the inertia of the bulk overcomes these forces and
the system thus fragments.

In order to obtain a more quantitative estimate of droplet
size, we determine it by the balance of deposited energy and
collective expansion energy. According to the definition of
viscosity, it determines the amount of energy deposited per
unit volume and unit time, i.e.,

Edis =
∫

dV

∫
dτζ (∂µuµ)2, (17)

where ζ is bulk viscosity and uµ collective four-velocity.
For simplicity let us assume again the Bjorken [14] picture.
Then ∂µuµ = 1/τ and the three-velocity is vz = z/t . If bulk
viscosity is indeed rapidly divergent at Tc, we can replace it
with the δ-function

ζ (τ ) = ζcTcδ (T (τ ) − Tc) = ζcTc

dτ

dT

∣∣∣∣
T =Tc

δ(τ − τ ′
c), (18)

where ζc is a model parameter which should be given by deeper
theoretical consideration. If we call τ ′

c = Tc
dτ
dT

|T =Tc
we get

Edis = SL
ζc

τ ′
c

, (19)

where S is the transverse area of the Bjorken cylinder and L

is the droplet longitudinal size. We consider a droplet whose
center of mass is located at z = 0 (though this assumption is
not really important due to the boost invariance of the system).

The kinetic energy of droplet’s expansion, which is in fact
dissipated due to viscosity, is in nonrelativistic limit

Ekin = 1

2

∫
dV ε(τ )v2

z , (20)

where ε(τ ) is the internal energy density of the fluid. It is of
course a function of time but the above expression contains
only volume integration. Let us evaluate the integral at the
critical point, when actual breakup happens, then

Ekin = Sεc

24t2
c

L3. (21)

Taking tc ≈ τ ′
c, we get finally

L2 = 24ζcτ
′
c

εc

. (22)

034903-5
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Notice that τ ′
c in the numerator is actually the inverse

expansion rate ∂µuµ. Thus the droplet size squared is inversely
proportional to the expansion rate. Within this scenario the
droplet size will grow with the lifetime of the hydrodynamic
stage (from the initial temperature T0 to Tc), but the growth
will generally be slower than linear. For our toy model example
where the system has a conformal equation of state and
Boost-invariance (dN/dy ∼ ε

3/4
0 ∼ τ ′

c), this growth will be
∼(dN/dy)1/2, but it is likely to be slower than that when
transverse expansion is considered.

Whether the cluster size is indeed only dependent on
the internal scale of the system �QCD [Eq. (14)] or on an
interplay between the internal and collective scales [Eq. (22)]
is difficult to determine from first principles, as it depends on a
quantitative understanding of the details of the nonequilibrium
evolution around Tc.

The main point argued in the last section, one that does
not depend on these details, is that the sharp rise of bulk
viscosity could force the system to break up into disconnected
fragments, of a scale and lifetime much smaller than the size
of the system [O(1 GeV)]. These clusters then flow apart with
pre-existing flow velocity and, presumably, decay by Hagedorn
cascading. In the next three sections we shall examine the effect
this kind of freeze-out has on heavy ion phenomenology.

V. PHENOMENOLOGY OF CLUSTERING

While the HBT puzzle is our main experimental motivation
for introducing a qualitatively new freeze-out scenario, several
observables, aside from particle interferometry, could imply
clustering. In this section, we point out a list of such
phenomena. In each of these, the evidence for clustering is
by no means overwhelming, and alternative explanations for
each of these phenomena exist. Nevertheless, it is worthwhile
to point these phenomena out individually as candidates for
contact between the model presented here and experimental
data.

(i) As pointed out in [46], a highly viscous but hydro-
dynamic evolution is constrained experimentally by
multiplicity measurements. The dependance of multi-
plicity on centrality has been shown to be well described
through exclusively initial conditions (Glauber model,
or, at high energies, the color glass condensate). Since
expansion of a viscous fluid generates entropy at the
rate [42]

∂µsµ ∼ ζ (∂µuµ)2 (23)

too much viscosity at any stage during the hydro-
dynamic evolution would spoil the agreement be-
tween experimentally observed multiplicity and ansatze
based on initial conditions. This is a potential prob-
lem of all attempts of solving the HBT puzzle
through viscous but hydrodynamic evolution [40,47].

Viscosity-driven clustering would not have this prob-
lem, since within the cluster all relative motion is
very quickly killed. Thus, while ζ might diverge,
∂µuµ would vanish. Since entropy production rate is
quadratically proportional to the latter, we would expect

the entropy content of the system to not be significantly
changed during the clustering and freeze-out phase.

(ii) The very fact that a “single freeze-out model” [9,43]
works much better than naively expected in describing
soft observables in heavy ion collisions suggest that
“something” is decreasing hadronic interactions after
chemical freeze-out below the expected rate. Clustering
of the system into smaller sub-systems that decay after
a finite time, during which they flow out with the pre-
existing flow, would have just such an effect.

(iii) The over-abundance of certain resonances (�∗,�,�∗)
with respect to even chemical freeze-out expectations
[48,49] could also be nicely explained in terms of
clustering. Clusters can be considered as highly excited
Hagedorn tower resonances. It is therefore natural
to suppose that they could decay through a cascade
down the Hagedorn “tower”, and hence through the
production of resonances. Hence, ratios such as �∗/�
and �∗/� would be correspondingly enhanced. Stable
particles should still be well described by the statistical
model: the final hadron abundance will be a collec-
tion of a large number of microcanonically decaying
fireballs, carrying grand-canonically distributed energy
and quantum numbers.

(iv) The scaling of pT fluctuations provides direct evidence
that particles are emitted from clusters, containing
a small (∼5) number of particles independently of
collision energy or centrality [50]. The underprediction,
by the equilibrium statistical model, of fluctuations of
ratios such as K/π [51] compounds this evidence,
since cluster emission would enhance fluctuations of
multiplicity yields and ratios. The forward-backward
multiplicity correlations [52] and angular correlations
in Cu+Cu collisions at RHIC [53] also indicate the
presence of clusters.

(v) Clustering into fragments of size about 1 GeV could
provide an explanation for the invariant mass systemat-
ics of the inverse slopes Teff observed at SPS and RHIC
energies, both for stable particles (Fig. 1 of [44]) and
electromagnetic resonance decays (ρ → µ+µ−, Fig. 1
left panel of [45]). All inverse slopes for particles
less massive than roughly 1 GeV seem to rise with
mass, as expected, approximately, for “blue-shifted”
thermal emission where the inverse slope combines
temperature and flow (Teff � T + 〈vT 〉M). For masses
larger than 1 GeV, however, Teff is nearly independent
of mass. Clustering, if all clusters have a mass of
about 1 GeV, could provide a natural explanation for
this observation: Below the invariant mass of 1 GeV,
particles are predominantly emitted from a single
cluster, and hence maintain the memory of that cluster’s
flow. Above a mass of 1 GeV, however, particles have to
be emitted either before cluster formation, or through
cluster fusion, and hence there is occasion for the flow
to be “forgotten”.

VI. LOOKING FOR CLUSTERS IN HBT

We start by noting [4,54] that, in the out-side-long coor-
dinate system, HBT radii are directly related to the system’s
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spacetime correlation tensor4

R2
s (K) = 〈(�xs)

2〉, (24)

R2
o(K) = 〈(�xo)2〉 − 2

kT

k0
〈�xo�t〉 +

(
kT

k0

)2

〈(�t)2〉 (25)

and, for pairs of particles having zero net longitudinal
momentum

R2
l (K) = 〈(�xl)

2〉, (26)

where the k vector is the sum of the two momenta (the first
element, k0, is �

√
m2 + 
k2). Averaging is done using the

emission function

〈A〉(K) =
∫
A(x)S(x,K)d4x∫

S(x,K)d4x
. (27)

Rl is straightforwardly related to the longitudinal length of
the fireball. A correct treatment of deviations from boost-
invariance should therefore also contribute to an improvement
of current discrepancy with experimental data.5

As remarked in [4], the Ro ∼ Rs result is not easy to
reconcile with naive hydrodynamics plus a straightforward
(critical temperature) emission because:

(i) The higher the energy, the longer the emission time,
the larger is the expected discrepancy between Ro and
Rs . If the system starts close to the mixed phase, the
timescale of freezing out should be longer still due to the
softest point in the equation of state. Hence, a generic
prediction from Eqs. (24) and (25) is that Ro/Rs > 1,
broadly increases with energy, and exhibits a peak when
the energy density is such that the system starts within,
or slightly above the mixed phase. This is in direct
contrast with experimental data, where Ro/Rs � 1 is a
feature at all reaction energies.

(ii) Generally in a hydrodynamic model the 〈�x�t〉 cor-
relation is negative, since particles on the outer side
are the first to freeze-out. This increases Ro/Rs further
[cf. Eq. (25)]. Time dilation due to transverse flow does
not help enough, as calculations show.

It is immediately apparent that clustering can help solving
both of these problems.

(i) Cluster size, density and decay timescale, is ap-
proximately independent of either reaction energy or
centrality, as can be deduced from Eq. (22). Hence, the
near energy independence of the (comparatively short)
emission timescale, and hence of Ro/Rs , should be
recovered.

(ii) If the decay products do not interact (or do not interact
much) after cluster decay, it can also be seen that
〈�x�t〉 can indeed be positive: outward clusters are
moving faster, resulting in time dilation. This effect can

4Here l (“long”) is the z direction (parallel to the beam), o (“out”)
is the direction of the pair momentum, and s (“side”) is the cross
product of the previous two.

5Please refer to [4], on the current status of hydro-experiment HBT
comparisons.

be offset by time dilation of cluster decay by increasing
the temperature at which clusters form, or by increasing
cluster size.

Recovering the linear scaling of the radii with
(dN/dy)1/3(∼Nclusters) [7], while maintaining the correct
Ro/Rs is also possible if the clusters decay when their distance
with respect to each other is still comparable to their intrinsic
size.

Quantitative calculations are necessary before determining
whether these constraints can be satisfied. The technical details
of how to perform such calculations, from a hydrodynamic
code output with a critical temperature and cluster size, are
outlined in the Appendix. Hydrodynamics output is needed
to specify the cluster flow array u

µ

i and emission array �i
µ,

[defined in Eq. (A3)].
The bulk-viscosity-driven freeze-out adds another param-

eter to ab initio HBT calculations: in addition to critical
temperature/energy density, we now have the cluster size. To
see whether this helps solving the HBT problem, output from
hydrodynamics with a high (T ∼ Tc) freeze-out temperature
should be fragmented into clusters with a certain distribution in
size, which then produce hadrons according to the prescription
in the Appendix.

If this ansatz, and a reasonable mean/variance do reproduce
the observed Ro,Rs from a realistic hydrodynamics output, it
would provide a strong motivation for looking for clusters
in event-by-event physics. Cluster-driven symmetry breaking
should also lead to distinctive signatures in the multipole
expansion of the correlation function [55].

VII. DISCUSSION AND CONCLUSIONS

We have described a mechanism to generate fragments that
is solidly grounded in QCD, and does not require a first order
phase transition. Hence, it is possible that hadronization is
governed by this mechanism in all regimes where an approxi-
mately locally thermalized deconfined system is produced.

Potentially, this mechanism can solve the HBT problem by
adding a further “free parameter” to the system: the cluster
size. Using the methods described in Sec. VI, it is possible
to see whether a given cluster distribution, matched to the
hydrodynamic output with the freeze-out criterion tuned to
cluster formation, could reproduce the measured HBT radii.

Future work in this direction includes both a quantitative
comparison between HBT data and the model (with a proper
hydro input), as well as signatures for clustering in event-by-
event physics.
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APPENDIX: EMISSION FUNCTION FOR CLUSTERS

The HBT emission function of a fluid breaking up into
identical clusters which then decay should be given by a sum
of cluster emission functions

S(x, p) =
∑

i

Si

(
x − xi

0, p
)
. (A1)

At the cluster rest frame we suppose, in accordance with the
ansatz described in Sec. III, that Si is a simple Gaussian with
no further structure or flow. This cluster decays, also via a
Gaussian function after a time τ ∼ �−1

QCD after formation, a
scale also similar to its radius. Normalizing to the number of
particles per cluster, and in the Boltzmann approximation

Si(x
′, p′) = 1

(2π )3

1

τ
e−E′/T e−(t ′2+x ′2+y ′2+z′2)/(2τ 2). (A2)

Collective (cluster) velocity and the hypersurface
on which clusters are generated are expressed

as

u
µ

i =




cosh yLi cosh yT i

sinh yT i cos θi

sinh yT i sin θi

sinh yLi cosh yT i


 �

µ

i =




tf i cosh yLi

rf i cos θi

rf i sin θi

tf i sinh yLi


 . (A3)

Note that � here is used in a somewhat different way than in the
context of hydrodynamics. In hydrodynamics, �µ is defined
as the space-time locus of particle emission. In the clustering
scenario, it describes the space-time locus of cluster formation.
Note, in this respect, that u

µ

i and �
µ

i are not fields, but rather
arrays of four-vectors, incorporating a finite set of cluster flow
velocities and emission coordinates.

Putting everything together, in the laboratory frame

Si(x
′, p′) = 1

(2π )3

1

τ
e−E′/T e−(x ′α−xα

0i )(x
′
β−x0iβ )�µ

α �
β
µ/(2τ 2),

(A4)

where
x

µ

0i = �
µ

i + τu
µ

i (A5)

and the Lorentz matrix is

�µ
ν =




γT cosh yL γT vT cosh yL cos θ γT vT cosh yL sin θ γT sinh yL

γT vT cosh yL cos θ 1 + v2
T cos2 θ

v2
T +tanh2 yL

β
v2

T cos θ sin θ

v2
T +tanh2 yL

β
vT cos θ tanh yL

v2
T +tanh2 yL

β

γT vT cosh yL sin θ
v2

T cos θ sin θ

v2
T +tanh2 yL

β 1 + v2
T sin2 θ

v2
T +tanh2 yL

β
vT sin θ tanh yL

v2
T +tanh2 yL

β

γT sinh yL
vT cosh θ tanh yL

v2
T +tanh2 yL

β
vT cos θ tanh yL

v2
T +tanh2 yL

β 1 + tanh2 yL

v2
T +tanh2 yL

β




(A6)

and

β = γT cosh yL − 1

and of course

E′ = cosh yLγT (E − pT vT cos (�θ ) − pL tanh yL), (A7)

where �θ is the relative angle between the direction of the
emitted particle and the motion of the cluster.

We note that the emission function of each cluster is in the
Gaussian form

Si(x, p) ∼ exp

[
− 1

2τ 2

(
xµ − x

µ

0

)
Bν

µ(xν − x0ν)

]
, (A8)

where

Bν
µ = �α

µ�ν
α. (A9)

We also need a “map” of clusters, giving us the flow and
freeze-out time of cluster i. Assuming boost invariance and
“global” azimuthal symmetry, as well as small cluster size
with respect to system size, and even distribution of clusters,

we get

∑
l

Si(x, p)

=
Nr∑
k=1

Nk
θ∑

l=1

Ny∑
m=−Ny

Si

(
u

µ

i = u
µ

nkl, x0i = �
µ

nkl + τu
µ

nkl

)

=
Nr∑
k=1

Nk
θ∑

l=1

Ny∑
m=−Ny

Si(tf (τk, ym), xf (rk, θl), yf (rk, θl),

× zf (τk, ym), βT (rk)), (A10)

where

rk = rmax
k

Nr

, (A11)

θl = 2πl

Nr
θ

, (A12)

ym = −ymax + 2mymax, (A13)
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and the parameters βT (rk) and tf (rk) need to be obtained by
“freezing out” a hydrodynamic simulation with the appropriate
temperature (the temperature, in the QCD phase, where bulk
viscosity becomes dominant).

We can estimate the number of clusters in each direction
by requiring each “side” of the cluster to be approximately of
length τ (note that Nθ depends on k)

Nr = rmax

τ
, (A14)

Nk
θ = 2πrk

τ
, (A15)

Ny = τk

sinh(2ymax)

τ
. (A16)

We note that the number of clusters times the number of
particles per cluster is equal to the total multiplicity so

Ncl ∼ r2
maxτmax sinh(2y)τ−3, (A17)

〈N〉i = Ncl

4π

(2π )3
τ 3m2T K2

(m

T

)
(A18)

as expected from the statistical model.
To parametrize tf , βT,L = tanh(yT,L) we use the usual

tf = τk cosh ym, (A19)

xf = rk cos(θl), (A20)

yf = rk sin(θl), (A21)

zf = τk sinh ym. (A22)

βT and τk can be obtained through a hydrodynamic calculation,
assuming freeze-out occurs when T ∼ Tc.

Throughout, we shall use the usual “out-side-long” coor-
dinate system, where the x axis points “outwards,” the y axis
“sideways” and the z axis “longitudinally”

In the mass-shell projection (kµqµ = 0)

qµ =




ko

k0
qo + kl

k0
ql

qo

qs

ql


 kµ =




k0

ko

0
kl


 , (A23)

uµkµ = cosh yL cosh yT k0 − sinh yT cos θko

− sinh yL cosh yT kL, (A24)

uµqµ =
(

cosh yL cosh yT

ko

k0
− sinh yT cos θ

)
qo

− sinh yT sin θqs +
(

cosh yL cosh yT

kl

k0

− sinh yL cosh yT

)
qL, (A25)

and, finally

uµx
µ

0 = τ + tf cosh yT − r sinh yT , (A26)

qµx
µ

0 = qµ�µ + τqµuµ, (A27)

qµ�µ =
(

ko

k0
qo + kl

k0
qL

)
tf cosh(yL) − rqo cos(θ )

− rqs sin(θ ) − qLtf sinh(yL). (A28)

A. A Gaussian approximation estimate

We use cylindrical symmetry of the emitting function and
define θ = 0 to be in the direction of k (the average particle
pair momentum). We immediately remember the standard
Gaussian integration formula

�l(k) =
∫

d4xSl(x, k) = e−u
µ

l kµ/T (2π )2√
−|Bµν

l |
. (A29)

It is not difficult to prove that

∫
xµS(x, q)d4x =

∑
l

x
µ

0l

∫
Sl(x, q)d4x =

∑
l

x
µ

0l�l(k),

(A30)∫
d4xxµxνS(x, q) =

∑
l

(
−2τ 2 ∂�l(q)

∂B
µν

l

+ x
µ

0lx
ν
0l�l(k)

)
,

(A31)

−2τ 2 ∂�l(q)

∂B
µν

l

= −τ 2 e−kβu
β

l /T

B
µν

l

√
− ∣∣Bµν

l

∣∣ = −τ 2 �l(k)

B
µν

l

.

(A32)

Putting everything together we have

〈�xµ�xν〉 =
∑

l

( − τ 2 �l (k)
B

µν

l

+ x
µ

0lx
ν
0l�l(k)

)
∑

l �l

−
∑

lm x
µ

0lx
ν
0m�l(k)�m(k)∑

lm �l(k)�m(k)
, (A33)

which can be used in conjunction with Eqs. (25), (24), (26) to
calculate Ro,s,l . Note that because of clustering the emission
function cannot be either cylindrically symmetric or boost-
invariant, and acquires off-diagonal terms [8,54]:

R2
os = 〈�x1�x2〉 − ko

k0
〈�x0�x2〉, (A34)

R2
sl = 〈�x2�x3〉 − kL

k0
〈�x0�x3〉, (A35)

R2
lo = 〈�x0�x3〉 − kL

k0
〈�x1�x3〉 − ko

k0
〈�x0�x1〉

+ kokL

k2
0

〈�x0�x0〉 (A36)

while in the cylindrically symmetric case Ros = Rsl =
Rol = 0.
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Explicitly, the determinant of Bµν is given by [54]

∣∣Bµν

∣∣ = cosh(yT )4(−10 − 2 cosh(2yL) + cosh(2 (yL − yT )) + 2 cosh(2yT ) + cosh(2 (yL + yT )))2

64
(A37)

and

B00 = cosh(yT )2 (cosh(yL)2 cosh(yT )2 + sinh(yL)2), (A38)

B01 = 2 cos(θ ) cosh(yL)2 cosh(yT )2 sinh(yT ), (A39)

B11 = cos(θ )2 cosh(yL)2 cosh(yT )2 sinh(yT )2 + cos(θ )2 cosh(yL)2 sinh(yL)2 sinh(yT )2

(1 + cosh(yL) cosh(yT ))2 + cos(θ )2 cosh(yL)4 sin(θ )2 sinh(yT )4

(1 + cosh(yL) cosh(yT ))2

+
(

1 + cos(θ )2 (−1 + cosh(yL) cosh(yT )) sinh(yT )2

sinh(yT )2 + tanh(yL)2

)2

, (A40)

B22 = cosh(yL)2 cosh(yT )2 sin(θ )2 sinh(yT )2 + cosh(yL)2 sin(θ )2 sinh(yL)2 sinh(yT )2

(1 + cosh(yL) cosh(yT ))2 + cos(θ )2 cosh(yL)4 sin(θ )2 sinh(yT )4

(1 + cosh(yL) cosh(yT ))2

+
(

1 + (−1 + cosh(yL) cosh(yT )) sin(θ )2 sinh(yT )2

sinh(yT )2 + tanh(yL)2

)2

, (A41)

B33 = 2 + 6 cosh(2 yL) + cosh(2 (yL − yT )) − 2 cosh(2 yT ) + cosh(2 (yL + yT ))

8
, (A42)

B02 = 2 cosh(yL)2 cosh(yT )2 sin(θ ) sinh(yT ), (A43)

B03 = cosh(yT )2 sinh(2 yL), (A44)

B12 = cosh(yL)2 (3 + cosh(2 yT )) sin(2 θ ) sinh(yT )2

4
, (A45)

B13 = cos(θ ) (3 + cosh(2 yT )) sinh(2 yL) sinh(yT )

4
, (A46)

B23 = sin(θ ) (3 + cosh(2 yT )) sinh(2 yL) sinh(yT )

4
. (A47)

B. Calculation of the full correlation function

The full correlation function is given by [54]

C(k, q) = 1 +
∣∣∑

i S̃i(k, q)
∣∣2

[∑
i �i

(
k − 1

2q
)] [∑

j �j

(
k + 1

2q
)] . (A48)

We can again use the standard formulas regarding Fourier
transforms of Gaussians, where

S̃l(q, p) = �(kµ)eiqαxα
0lGl(q

µ)

= e−kµu
µ

l /T (2π )2√
−∣∣Bl

µν

∣∣eiqαxα
0l Gl(q

µ), (A49)

where

G(qµ) = exp

[
−τ 2

2
qµ

(
Bl

µν

)−1
qν

]
. (A50)

Note that, as a result of interference between clusters, the
correlation coefficient will pick up an interference pattern
(which will disappear if the spatial size τ varies considerably
from cluster to cluster). The FT of the whole system is, up to
a factor of 2τ (2π )4 (that cancels),∣∣∣∣∣

∑
l

S̃l(k, q)

∣∣∣∣∣
2

=
∑

l

e−2u
µ

l kµ/T∣∣Bl
µν

∣∣ G2
l (qµ)

+
∑
l �=m

e−((uµ

l +u
µ
m)kµ/T√∣∣Bl

µν

∣∣∣∣Bm
µν

∣∣ cos
(
qµ

(
x

µ

0l − x
µ

0m

))

×Gl(q
µ)Gm(qµ) (A51)

the bottom of the correlation is, up to the same factor,[∑
i

�i

(
k − 1

2
q

)] 
∑

j

�j

(
k + 1

2
q

)


=
∑

l

e−2u
µ

l kµ/T∣∣Bl
µν

∣∣ +
∑
l �=m

e−(uµ

l +u
µ
m)kµ cosh

((
u

µ

l −u
µ
m

)
qµ

2T

)
√∣∣Bl

µν

∣∣∣∣Bm
µν

∣∣ .

(A52)

If clusters all have the same size, the cosine term would give
a characteristic oscillating pattern. However, for a general
cluster distribution such terms should in general interfere
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destructively. Still, the form of the tail should be considerably
different from the Gaussian approximation, especially in the
high qo,l tail.

The explicit form of the exponent in the Fourier trans-
form, qµ(Bl

µν)−1qν , which goes into Eq. (A50) is of
course a closed formula, but too long to be included
here.

Generalizing this formalism to noncentral, non boost-
invariant collisions is straightforward. It is also possible to
generalize this approach to a distribution of cluster sizes,
by updating Eq. (A2) with τ → τi and Eq. (A1) with∑

Si → ∑
f (τi)Si , where f (τi) is the cluster probability

distribution. For realistic cluster distributions, however, Monte
Carlo methods might prove necessary.

[1] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Annu. Rev.
Nucl. Part. Sci. 55, 357 (2005).

[2] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31, 53 (1985).
[3] H. Heiselberg and A. M. Levy, Phys. Rev. C 59, 2716 (1999).
[4] P. F. Kolb and U. W. Heinz, in Quark-Gluon Plasma 3, edited

by R. Hwa and X.-N. Wang (World Scientific, Singapore, 2004),
pp. 634–714, arXiv:nucl-th/0305084.

[5] D. H. Rischke and M. Gyulassy, Nucl. Phys. A608, 479
(1996).

[6] U. W. Heinz and P. F. Kolb, in Proceedings of the 18th
Winter Workshop on Nuclear Dynamics, edited by R. Bellwied,
J. Harris, and W. Bauer (EP Systema, Debrecen, Hungary, 2002),
pp. 205–216, arXiv:hep-ph/0204061.

[7] M. Lisa, AIP Conf. Proc. 828, 226 (2006).
[8] P. F. Kolb and U. W. Heinz, Nucl. Phys. A715, 653 (2003).
[9] A. Baran, W. Broniowski, and W. Florkowski, Acta Phys. Polon.

B 35, 779 (2004) [arXiv:nucl-th/0305075].
[10] S. V. Akkelin and Yu. M. Sinyukov, Nucl. Phys. A774, 647

(2006).
[11] M. Csanad, T. Csorgo, B. Lorstad, and A. Ster, Nucl. Phys.

A774, 535 (2006), arXiv:nucl-th/0509106.
[12] J. G. Cramer, G. A. Miller, J. M. S. Wu, and J. H. S. Yoon, Phys.

Rev. Lett. 94, 102302 (2005).
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