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We discuss the derivation of an equivalent polarization potential independent of angular momentum l for use
in the optical Schrödinger equation that describes the elastic scattering of heavy ions. Three different methods
are used for this purpose. Application of our theory to the low energy scattering of light heavy-ion systems at
near-barrier energies is made. It is found that the notion of an l-independent polarization potential has some
validity but cannot be a good substitute for the l-dependent local equivalent Feshbach polarization potential.
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I. INTRODUCTION

The coupled-channels (CC) method is the most powerful
tool for studying nuclear reactions. However, it becomes
extremely complicated when it is necessary to include a large
number of channels in the calculation. In situations where one
is only interested in a detailed description of a single channel,
e.g., in elastic scattering, one can resort to the polarization
potential approach. It consists of deriving a potential, to be
added to the Hamiltonian of the elastic channel which leads
to the same elastic wave function as that obtained by solution
of the CC equations. The natural framework for deriving this
potential is the Feshbach formalism [1]. Although the exact
derivation of the polarization potential may be as difficult as
solving the CC problem, in some situations it is possible to
find good approximations for it.

Several authors have derived approximate polarization
potentials for collisions at near-barrier energies [2–4] and
energies well above the barrier [5]. A serious drawback of these
potentials is that they are nonlocal and dependent on both the
energy E and the angular momentum l. Although any nonlocal
potential can be replaced by a trivially equivalent local one,
the latter presents poles and has an artificial dependence on
the quantum numbers of the elastic wave function.

For practical purposes, it is convenient to have a local
polarization potential independent of l, so that it could be used
in standard computer codes. Several approaches have been
proposed to achieve this goal. In a recent paper, Lubian and
Nunes [6] tested the validity of the approach of Thompson
et al. [7], in the case of breakup coupling, which is very
important in collisions of weakly bound projectiles [8]. In
the present paper, we extend this study to other procedures to
derive l-independent potentials in the case of light heavy-ion
scattering at near-barrier energies. For simplicity, we represent

the continuum by an effective bound channel, restricting
ourselves to two channels. Although this is not an appropriate
description of the continuum, it is suitable for the qualitative
purposes of the present work, since this effective state also
leads to a long-range polarization potential.

This paper is organized as follows. In Sec. II we give a
brief description of the polarization potential, according to
the Feshbach formalism. In Sec. III we discuss different pre-
scriptions suggested to derive l-independent local potentials
without poles. In Sec. IV we apply these prescriptions to
11Li+12C scattering, taken to exemplify a case involving the
coupling of the elastic channel to a very low Q value “inelastic”
channel, and compare the results with the corresponding ones
obtained with the CC method. Finally, in Sec. V we summarize
the conclusions of this work.

II. FESHBACH’S FORMALISM FOR POLARIZATION
POTENTIALS

Let us consider a scattering situation described in terms of
the collision degrees of freedom (projectile-target separation
vector), designated as r, and a set of intrinsic degrees of
freedom, represented by ξ . The scattering wave function
�(+)(r, ξ ) satisfies a Schrödinger equation with the total
Hamiltonian

H = H + h + V.

Above, H depends only on the collision degrees of freedom,
h acts only on the intrinsic space, and V couples collision
with intrinsic degrees of freedom. It is convenient to perform
the channel expansion of the scattering state in terms of the
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eigenstates of h, which satisfy the equation

h |n) = εn |n) ,

in the form

|�(+)〉 =
n∑

α=0

|ψ (+)
α 〉|α). (1)

The intrinsic space can be divided into two complementary
parts by the action of the projectors

P = |0)(0|; Q =
n∑

α=1

|α)(α|. (2)

Above, |0) stands for the ground state of h, and we take ε0 = 0.
These projectors have the properties

P 2 = P, Q2 = Q, QP = PQ = 0, and P + Q = 1.

(3)

Acting with these projectors on the scattering state, one gets

P |�(+)〉 = |ψ (+)
0 〉 |0) ≡ |�P 〉, (4)

Q|�(+)〉 =
n∑

α=1

|ψ (+)
α 〉 |α) ≡ |�Q〉, (5)

|�(+)〉 = |�P 〉 + |�Q〉. (6)

Applying these projectors to the Schrödinger equation, using
Eq. (6) and rearranging the terms, one obtains

[E − H ]|�P 〉 = PVQ|�Q〉. (7)

[E − QHQ]|�Q〉 = QVP |�P 〉. (8)

Note that PHQ = QHP = 0.
Equation (7) can be used to define the polarization potential

operator, that is,

PVQ|�Q〉 = U pol|�P 〉. (9)

This is the basis of the calculations of Refs. [6,9], as they
employ a numerical solution of the CC equations and make use
of the above definition. To derive an explicit expression for the
polarization potential operator, one first derives an expression
for the projected state |�Q〉 by multiplying Eq. (8) from the
left with the Green’s function

G
(+)
QQ = 1

E − QHQ + iε
. (10)

The result is

|�Q〉 = G
(+)
QQQVP |�P 〉. (11)

Inserting this equation into Eq. (7), we get

[E − Heff]|�P 〉 = 0, (12)

where Heff is the effective Hamiltonian

Heff = PHP + PVQG
(+)
QQQVP. (13)

Taking the scalar product of Eq. (12) with (0|, using the explicit
form of P [Eq. (2)], and replacing (0|�(+)〉 = |ψ0〉, we obtain
the Schrödinger equation for the elastic wave function in the
space of the collision degree of freedom

(K + U opt + U pol)|ψ0〉 = E |ψ0〉. (14)

Above, K is the kinetic energy operation; and the optical and
polarization potentials, respectively, are

U opt = (0|H − K|0), (15)

U pol = (0|VQ G
(+)
QQ QV|0). (16)

The above form for the polarization potential is numerically
identical to the one defined by Eq. (9).

As a consequence of the analytical structure of Green’s
operator [the presence of iε in Eq. (10)], we can immediately
write

Im{G(+)
QQ} = −πδ(E − QHQ), (17)

while the real part is

Re{G(+)
QQ} = P

{
1

E − QHQ

}
. (18)

This last equation can be rewritten as

Re{G(+)
QQ} = −P

∫
dz

δ(z − QHQ)

z − E
,

which, with the help of Eq. (17), gives the desired result

Re{G(+)
QQ(E)} = 1

π
P

∫
dz

Im{G(+)
QQ(z)}

z − E
. (19)

When Eqs. (17) and (19) are used for Green’s function in
Eq. (10), we obtain the operator form of the dispersion relation,

Re{U pol(E)} = 1

π
P

∫
dz

Im{U (z)}
z − E

. (20)

One would expect the calculated polarization potential to
satisfy the above relation. Since one usually resorts to several
approximations to derive a local l-independent polarization
potential, the above relation may eventually be broken.
However, it does supply an important check on the numerical
evaluation of the polarization potential, just as unitarity and
the S matrix do.

For practical purposes, it is convenient to write Eq. (14)
in the coordinate representation. While the optical potential
is generally taken to be local and energy dependent (owing
to the effect of exchange nonlocality, removed to obtain a
nondispersive local equivalent potential [10]), the nonlocality
of G

(+)
QQ leads to a nonlocal polarization potential. One obtains

the equation

[K + U opt(r)]ψ0(r) +
∫

U pol(r, r′)ψ0(r′) d3r′ = Eψ0(r),

(21)

with

U pol(r, r′) = 〈r|[(0|VQ G
(+)
QQ QV|0)]|r′〉. (22)

For some applications, one replaces U pol(r, r′) by the
trivially equivalent local potential,

Ū pol(r) = 1

ψ0(r)

∫
d3r′U pol(r, r′)ψ0(r′). (23)

This potential has some undesirable features. First, it has
poles where ψ0(r) vanishes. Second, this procedure introduces
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artificial dependences on the quantum numbers of ψ0. These
points will be discussed in more detail in the next section.

III. EXIT DOORWAY MODEL OF THE POLARIZATION
POTENTIAL

We should mention that our general expression for
U pol(r, r′) in Eq. (22) can account for the most general
coupled-channels situation. In particular, in the continuum
discretized coupled-channels (CDCC) calculation discussed
in Ref. [6], the breakup continuum is discretized into an
orthonormalized set of bins, which would then span the
Q space. The polarization potential for this case, after writing
for Q,

Q =
∑

b

|b)(b|, (24)

where |b) designates the bth bin, and assuming that the
coupling is local in the r space, becomes

U pol(r, r′) =
∑
bb′

Fb(r) G
(+)
bb′ (r, r′)Fb′ (r′), (25)

where

G
(+)
bb′ (r, r′) = 〈r|

[
(b| 1

E − QHQ + iε
|b′)

]
|r′〉, (26)

and

Fb(r) =(0|V(r)|b), (27)

with an analogous expression for Fb′ (r′). If we neglect
continuum-continuum coupling and the width of the bins,
Green’s function becomes diagonal, and Eq. (25) becomes

U pol(r, r′) =
∑

b

Fb(r) G
(+)
b (r, r′)Fb(r′). (28)

Clearly, both expressions for U pol above are highly nonlocal
by construction. In addition, the inclusion of continuum-
continuum couplings produces more nonlocal effects [6]. It
is easier to deal with a U pol having the form of Eq. (28). How
do we find an equivalent no-continuum-continuum-coupling
polarization potential? To answer this question, we rely on our
recent work on the excitation of giant resonances in heavy-ion
reactions. One usually excites a given state, which itself is
coupled to many other excited states. Using the exit doorway
idea [9], namely, the excitation of these other states from the
ground state proceeds from the exit doorway(s), one is bound
to attach a width to the exit doorways. Labeling the doorway
states by d, Green’s function takes the diagonal form

U pol(r, r′) =
∑

d

Fd (r) G
(+)
d (r, r′)Fd (r′). (29)

The energies

εd = (d|h|d)

appearing in

G
(+)
d = 1

E − εd − (d|H |d) + iε
(30)

are complex. The width of any given d state measures the
strength of the continuum-continuum coupling. The above
expression for U pol(r, r′) with complex εd should be a faithful
representation the full Green’s function with continuum-
continuum coupling. In the following, we consider a much
simpler two-channel case to discuss the notion of equivalent
l-independent polarization potential, and we leave the discus-
sion of the continuum-continuum case to a future publication.
We mention at this point that an example of the use of the
exit doorway is in the case of deuteron scattering. Such an
exit doorway treatment of the elastic breakup of the deuteron
has been reported earlier in Refs. [11,12], following a hitherto
not-so-well-known treatment of the photodisintegration of the
deuteron advanced by Schwinger [13]. In a future publication,
we will employ the formalism above to treat the breakup
coupling effect on the elastic scattering of loosely bound
nuclei. We only mention here that the most important new
feature which the exit doorway brings in is the complex Q

value and the complex form factor.

IV. LOCAL, l-INDEPENDENT POLARIZATION
POTENTIALS

One frequently performs angular momentum projections
in the Schrödinger equation. For the simple case of a scalar
Hamiltonian with scalar coupling, one makes the expansions

ψ
(+)
0 (r) =

∑
l

ul(kr)

r
Ylm(r̂), (31a)

U pol(r, r′) = 1

rr ′
∑

l

Ylm(r̂)U pol
l (r, r ′)Ylm(r̂′). (31b)

The angular momentum projected version of Eq. (23) is the
local equivalent polarization potential

U
pol
l (r) = 1

ul(kr)

∫
dr ′U pol

l (r, r ′)ul(kr ′). (32)

This potential should be included in the Hamiltonian for optical
model calculations of the elastic radial wave function ul(r). It
this way, one needs a different polarization potential for each
partial wave.

The polarization potential of Eq. (32) is not very useful,
since it requires the knowledge of the exact radial wave
function in the elastic channel, ul(kr). Determining ul(kr) is as
hard as solving the original CC equations. A rather widely used
approximation for the l-dependent local polarization potential
consists of replacing ul(kr) by the optical radial wave function,
wl(kr), which is the solution of the partial-wave projected
Schrödinger equation with the polarization potential switched
off. This potential, denoted by Ūl , is

Ūl(r) = 1

wl(kr)

∫
dr ′ U pol

l (r, r ′) wl(kr ′). (33)

A further inconvenience of trivially local equivalent poten-
tials is that they have poles wherever the radial wave function
vanishes. We next discuss three different prescriptions for
obtaining l-independent polarization potentials free of poles.
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A. Prescription of Thompson et al.

Thompson et al. [7] proposed the following definition of an
l-independent version of the polarization potential:

UT (r) =
∑

l(2l + 1)Tl|ul(kr)|2 U
pol
l (r)∑

l(2l + 1)Tl|ul(kr)|2 , (34)

where Tl is the transmission coefficient in the elastic channel
for the lth partial wave. The above definition of UT guarantees
that no poles remain in the polarization potential, which arise
from the presence of ul(r) in Eq. (34). Furthermore, owing to
the presence of Tl in the l sum, only values of l where Tl is
close to unity will contribute. Of course the probability density
|ul(r)|2 is small for small values of l because of absorption.
Thus, in the prescription of Thompson et al., Eq. (34) should
contain contributions of l in the vicinity of the grazing one.
We doubt that this is guaranteed always, since there are
interference effects in |ul(r)|2 that may end up allowing the
contribution of small l as well. This prescription was recently
used in Ref. [6] in the context of the CDCC calculation of
breakup and elastic scattering of 8B.

B. Modified form of the prescription of Thompson et al.

We now introduce a slightly modified version of the
Thompson prescription, by substituting Tl by its derivative
with respect to l, namely,

UMT(r) =
∑

l(2l + 1)(dTl/dl)|ul(kr)|2 U
pol
l (r)∑

l(2l + 1)(dTl/dl)|ul(kr)|2 . (35)

This modified Thompson prescription (MT) guarantees the
contribution of the l values around the grazing one, regardless
of the behavior of |ul(r)|2. One physical motivation for
choosing dTl/dl instead of Tl is that the distorted-wave
Born approximation amplitudes of nonelastic processes in
the adiabatic limit do behave as the l derivative of the
elastic S-matrix elements, which enters into the definition of
Tl = 1 − |Sl|2.

C. Semiclassical prescription

This prescription relies on the semiclassical idea that the
orbital angular momentum, if treated classically, should be
related to r and energy E through the definition of the classical
turning point rt , namely,

h̄2

2µ r2
t

l(l + 1) + U (rt ) = E, (36)

where U is the real part of the optical potential containing the
nuclear and Coulomb pieces. It is clear that for a given collision
energy, rt ≡ rt (l) is a function of l. The prescription consists
of identifying r ≡ rt (l) in order to build the l-independent
polarization potential,

USC(r) = Ū
pol
l (rt (l)). (37)

Using Eq. (37), one gets the potential USC at a discrete set of r

values (one for each partial wave); and interpolating between
these points, one obtains a continuous function.

All three l-independent potentials discussed above contain
a further energy dependence besides the one that arises from
Green’s function in the polarization potential. This extra
energy dependence is nondispersive and thus could render the
applicability of the dispersion relation questionable. We shall
verify this point in the following section.

In all these prescriptions, the starting point is the trivially
equivalent local potential obtained from angular momentum
projected versions of Eqs. (22) and (23) or from the solution of
the CC equations used in Eq. (9). This will be shown in detail
in the next section.

V. APPLICATION TO LIGHT HEAVY-ION SCATTERING
WITH LOW Q VALUE

We have chosen the system 11Li+12C to test the different
local approximations for the polarization potential discussed
in the previous sections. We have decided not to consider the
coupling to the continuum explicitly, but rather to consider
the coupling to a single bound effective channel with a very
small Q value. The justification for considering this schematic
application is that our purpose in this paper is to compare
different approximations for the polarization potential and not
to perform quantitative calculations of elastic or fusion cross
sections.

The two CC equations used in our calculation can be
easily read out from Eqs. (7) and (8). We denote the two
intrinsic states by |0) (ground state) and |1) (excited state).
For simplicity, the numerical calculations are performed in
the sudden limit. In this limit, the excitation energy of the
continuum states are neglected (ε0 = ε1 = 0). The projectors
are P = |0)(0| and Q = |1)(1| and, after taking the optical
potentials in the two channels to be the same, Eqs. (7) and (8)
become

[E − K − U opt(r)]�0(r) = F(r)�1(r), (38)

[E − K − U opt(r)]�1(r) = F(r)�0(r). (39)

Above, F(r) is the complex and symmetric form factor

F(r) =
∫

d3x ϕ0(x) V(r, x) ϕ1(x), (40)

evaluated with the coupling interaction

V(r, x) = Uf1T (rf1T ) + Uf2T (rf2T ) − U opt(r).

Since the intrinsic states are orthogonal and U opt(r) does not
depend on x, Eq. (40) reduces to

F(r) =
∫

d3 xϕ0(x)
[
Uf1T (rf1T ) + Uf2T (rf2T )

]
ϕ1(x). (41)

For the present application, we assume that 11Li breaks up
into two fragments. The first, f1, corresponds to a neutron
pair, which we treat as a single particle (dineutron). The other,
f2, is the 9Li core. In this way, the coordinates appearing in
Eqs. (40) and (41) are

rf1T = r + γ 1x, γ1 = 9
11 ,

rf2T = r + γ 2x, γ2 = − 2
11 ,
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and the projectile-target separation vector r. Uf1T (rf1T ),
Uf2T (rf2T ), and U opt(r) are the corresponding interactions. Of
course F(r) can be evaluated exactly numerically once these
potentials are given, and the single-particle wave functions
of the halo neutron in the ground and in the excited state,
ϕ0(x) = (x|0) and ϕ1(x) = (x|1), are used to evaluate the
integral in Eq. (40). For our purposes, we parametrize
F(r) as [14]

F(r) = F0 exp

[
− r

γ1α

]
, (42)

with

α = h̄√
2µ1−2B

. (43)

Above, µ1−2 is the reduced mass of the fragments inside the
projectile and B is the breakup threshold. For 11Li, µ1−2 =
18m0/11, B = 0.376 MeV, and one gets α = 5.83 fm. For the
purpose of simplicity, we take F0 to be real. We also ignore
the Coulomb coupling altogether. A qualitative justification
for the approximation of Eq. (42) is given in the Appendix.

The optical potentials can be written as

U opt(r) = UC(r) + UN (r),

where

UC(r) =
{

ZP ZT e2

2Rc

(
3 − r2

R2
c

)
, for r < Rc,

ZP ZT e2

r
, for r � Rc,

and

UN (r) = −V0

1 + exp[(r − Rr )/ar ]
+ −W0

1 + exp[(r − Ri)/ai]
.

Above, RC = r0C(A1/3
P + A

1/3
T ), Rr = r0r (A1/3

P + A
1/3
T ), and

Ri = r0i(A
1/3
P + A

1/3
T ). In the above equations, we use typical

values for the parameters:

F0 = 3.0 MeV, r0C = 1.4 fm,

V0 = 60 MeV, W0 = 60 MeV,
(44)

r0r = 1.25 fm, r0i = 1.00 fm,

ar = 0.60 fm, ai = 0.60 fm.

The reduction of these equations to obtain the polarization
potential proceeds as in the previous section, and we get for
the Schrödinger equation for ψ0(r) the following:

[E − K − U opt(r) − U pol(r)]ψ0(r) = 0, (45)

with

U pol(r, r′) = F(r) G
(+)
1 (r, r′)F(r′). (46)

To perform numerical calculations, it is convenient to carry
out the usual partial-wave expansions. Since we are using
scalar form factors, the partial-wave projected polarization
potential is given by

U
pol
l (r, r ′) = F(r) g

(+)
1,l (r, r ′)F(r ′). (47)

The partial-wave projected optical Green’s function in channel
1 can be written as [15]

g
(+)
1,l (r, r ′) = − 2µ

h̄2k1
e−iδl wl(k1r<)H(+)

l (k1r>). (48)

Above, µ is the reduced mass of the projectile-target system,
k1 = √

2µE1/h̄, r<(r>) is the smaller (larger) of the radial
separations r and r ′, wl(k1r) is the regular solution of the
optical Schrödinger equation [partial-wave projected Eq. (39)
setting F(r) = 0] with the asymptotic form

wl(k1r → ∞) = i

2
[H (−)

l (k1r) − S̄lH
(−)
l (k1r)], (49)

and δl is the nuclear phase shift. Here, H
(−)
l (H (+)

l ) is the
Coulomb wave function with ingoing (outgoing) boundary
condition, and S̄l = exp(2iδl) is the nuclear S matrix at the lth
partial wave. In Eq. (48), H(+)

l (k1r) is the solution of the same
optical Schrödinger equation, but with a different asymptotic
behavior. At large separations, it is the outgoing wave

H(+)
1 (k1r → ∞) = eiδl H

(+)
1 (k1r∞).

To determine H(+)
1 at finite projectile-target separations, the

radial equation must be numerically integrated inward, starting
from a large r value where the above asymptotic form is valid.
This can be easily achieved using a negative mesh step in any
conventional code for numerical integration.

The dispersion relation is clearly satisfied by Eq. (47). But
is it satisfied by the l-dependent potential Ūl [inserting Eq. (47)
into Eq. (32)]? We recall that the expression used to find Ūl

is Eq. (33). One would expect the dispersion relation to be
satisfied by Ūl only if ul(kr) is real, which is certainly not
the case. However, a remnant of the dispersion relation should
still be seen in Ūl as has been shown over and over again
in the study of the threshold anomaly [16]. Not withstanding
the above reservations, we will give below an account of our
calculation of the equivalent l-independent potential.

In Fig. 1 we show polarization potentials at three collision
energies: (a) E = 2 MeV, (b) E = 4 MeV, and (c) E =
6 MeV. We present results obtained using the Thompson (T)
prescription [Eq. (34)], the modified Thompson (MT) one
[Eq. (35)], and the semiclassical (SC) prescription [Eq. (37)].
In the cases of the T and the MT potentials, we evaluate
the radial wave functions and the transmission coefficients
solving the CC equations and then carry out the l − averages
of Eqs. (34) and (35). Also shown are the approximate
l-dependent potential Ūl (Eq. (33)) for l = 0 and l = 10 and
the optical potential employed in our two coupled channels.
The singularities of Ūl , arising from the nodes of the radial
wave functions, are treated by the technique developed in Ref.
[17]. We see clearly that whereas the Ūl=0 is quite oscillatory,
the T, MT and SC ones seem to behave smoothly in so far as the
real part of the potential is concerned. Oscillations in Ūl occur
near the nodes of wl . Since this wave function is complex and
their real and imaginary parts do not vanish simultaneously,
the polarization potential remains finite.

In Fig. 2 we show the results for the elastic scattering
angular distributions at E = 2, 4, and 6 MeV. The coupled-
channels results are shown as the full circles. None of the
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FIG. 1. Real and imaginary parts of the polarization potentials (in MeV) at three collision energies for the system 11Li+12C. Results were
calculated using the Thompson (T), modified Thompson (MT), and semiclassical (SC) recipes, and the l-dependent potentials for l = 0 and
l = 10. The coupling strength F0 was taken to be 3 MeV.
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FIG. 2. Ratio of the elastic angular distribution to Rutherford calculated with CC (coupled channels), OM (optical model, no coupling),
and with the l-dependent polarization potential, Ūl . The other symbols are the same as in Fig. 1.
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FIG. 3. Fusion excitation function for the same cases as in Fig. 2.

l-independent polarization potentials seem to work very well.
However, the T potential is better then the others. It is close
to the CC results, except for the collision energy of 6 MeV. In
that case, the angular distribution obtained with this potential
oscillates out of phase with respect to the corresponding
CC results. On the other hand, the approximate l-dependent
potential Ūl reproduces accurately the CC results at the three
collision energies.

In Fig. 3 we show our results for the fusion cross section
excitation function, obtained by the relation

σF (E) = k

E
〈ψ0| − Im{U opt}|ψ0〉.

The wave function ψ0 was calculated solving the Schrödinger
equation for the elastic channel, including the optical and
each of the above-discussed polarization potentials. Here, both
the Ūl and T potentials seem to work rather well over the
energy range considered. The SC overshoots in the barrier
region, but otherwise it reproduces the CC calculation. The MT
seems to be quite off; however, on the average it works well
too.

Finally, to be sure about the consistency of our calculation,
we checked the dispersion relation. We fixed r = 12 fm and
plotted in Fig. 4 the resulting behavior of the real and imaginary
parts of the polarization potential vs E. It is clear that the
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FIG. 4. Energy dependence of the real and imaginary parts of the
polarization potential (in MeV), indicating the trend dictated by the
dispersion relation.

Ūl for l = 0 shows the general trend of what one would
expect from the dispersion relation: maxima in the real part
accompanied by sharp variations in the imaginary part. Similar
behavior is found for the T potential. Note the unphysical sharp
oscillations of the SC potentials. They arise from the fact that
this potential can only be evaluated over a sparse mesh of r

values, corresponding to the turning points at each angular
momentum. Thus the T and Ūl potentials exhibit the threshold
anomaly [16]. In particular, the T potential shows a maximum
in the imaginary part at E = 3.9 MeV, whereas the real part
shows a maximum at E = 3.5 MeV. This behavior of the T
potential is in line with the breakup threshold anomaly of
Ref. [18].

VI. CONCLUSIONS

In this work, we have investigated l-independent po-
larization potentials in a schematic two-channel model, in
which the range of the polarization potentials is equivalent
to that associated with the breakup channel. We used several
prescriptions to derive the l-independent polarization poten-
tial and found that none could reproduce satisfactorily the
results of coupled-channels calculations. This conclusion is
consistent with that of realistic CDCC calculations [6] using
the Thompson prescription. On the other hand, we have
shown that an approximate l-dependent potential, obtained
using the unperturbed Green’s function in Feshbach theory,
gave reasonable descriptions of elastic angular distribution at
energies above the barrier.
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APPENDIX

We give below, a qualitative justification of the adopted
parametrization of F(r). Since the diffusivity of the potentials
is very small as compared to α,R1, and R2, we set ar � 0.
In this way, the Woods-Saxon potentials take the forms of the
step functions,

Uf T (rf T ) � −V0
(|r + γ x| − RT ), (A1)

where f = f1 or f2, and γ = γ1 or γ2.
At large projectile-target separations, that is, r > RP + RT ,

only x > RP contributes to the integral of Eq. (41). Since
we are neglecting angular momenta, the ground state wave
function in this range depends only on the radial and has an
exponential form. That is,

ϕ0(x) ∝ exp
(
−x

α

)
,
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with α given by Eq. (43). Since we are adopting the sudden
approximation, the wave number of the state ϕ1 is supposed to
be vanishingly small. Therefore, this wave function is constant
within the integral. The contribution from the potential to the
form factor takes the form

F(r) ∝
∫ ∞

0
dx exp

(
−x

α

) ∫ 1

−1

(|r + γ x| − RT ) dt, (A2)

where t stands for the cosine of the angle between the x and
r vectors. The main contributions to this integral comes from
γ x antiparallel to r. We then replace


(|r + γ x| − RT ) → 
(r − |γ |x − RT )

and assume that the integration over t does not depend strongly
on r , leading only to a renormalization of the strength of the
form factor. The integral of Eq. (A2) then becomes

F(r) ∝
∫ ∞

(r−RT )/|γ |
dx exp

(
−x

α

)
∝ exp

[
− r

|γ |α
]

.

Of course, the form factor will be dominated by the contribu-
tion from the dineutron, which has a longer range (|γ1||γ2|).
Denoting by F0 the constant of proportionality, we can write

F(r) � F0 exp

(
− r

γ1α

)
,

which is adopted in the present calculation.

[1] H. Feshbach, Ann. Phys. (NY) 19, 287 (1962); 5, 357
(1958).

[2] W. G. Love, T. Terasawa, and G. R. Satchler, Phys. Rev. Lett.
39, 6 (1977); Nucl. Phys. A291, 183 (1977); A. J. Baltz, S. K.
Kauffmann, N. K. Glendenning, and K. Pruess, Phys. Rev. Lett.
40, 20 (1998); R. Donangelo, L. F. Canto, and M. S. Hussein,
Nucl. Phys. A320, 422 (1979).

[3] M. V. Andres, J. Gomez-Camacho, and M. A. Nagarajan, Nucl.
Phys. A579, 273 (1994).

[4] L. F. Canto, R. Donangelo, P. Lotti, and M. S. Hussein, Nucl.
Phys. A589, 117 (1995).

[5] R. D. Amado, Adv. Nucl. Phys. 15, 1 (1985); B. Abu-Ibrahim
and Y. Suzuki, Phys. Rev. C 70, 011603(R) (2004).

[6] J. Lubian and F. Nunes, J. Phys. G 34, 513 (2007).
[7] I. J. Thompson, M. A. Nagarajan, J. S. Lilley, and M. J. Smithson,

Nucl. Phys. A505, 84 (1989).
[8] L. F. Canto, P. R. S. Gomes, M. S. Hussein, and R. Donangelo,

Phys. Rep. 424, 1 (2006).

[9] L. F. Canto, A. Romanelli, M. S. Hussein, and A. F. R. de Toledo
Piza, Phys. Rev. Lett. 72, 2147 (1994).

[10] L. C. Chamon, D. Pereira, M. S. Hussein, M. A. Candido Ribeiro,
and D. Galetti, Phys. Rev. Lett. 79, 5218 (1997).

[11] M. S. Hussein, C.-Y. Lin, and A. F. R. de Toledo Piza, Z. Phys.
A 355, 165 (1996).

[12] L. F. Canto, R. Donangelo, A. Romanelli, M. S. Hussein, and
A. F. R. de Toledo Piza, Phys. Rev. C 55, R570 (1997).

[13] J. Schwinger, Lectures given at Harvard, Spring Term, 1947
(reproduced at Boston University, 1955) (unpublished).

[14] G. R. Satchler, K. McVoy, and M. S. Hussein, Nucl. Phys. A522,
621 (1991).

[15] G. R. Satchler, Direct Nuclear Reactions (Oxford University,
New York, 1983).

[16] G. R. Satchler, Phys. Rep. 199, 147 (1991).
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