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Coupled-channels analyses for large-angle quasi-elastic scattering in massive systems
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We discuss in detail the coupled-channels approach for large-angle quasi-elastic scattering in massive systems,
where many degrees of freedom may be involved in the reaction. We especially investigate the effects of single-,
double-, and triple-phonon excitations on the quasi-elastic scattering for 48Ti, 54Cr, 56Fe, 64Ni, and 70Zn+208Pb
systems, for which the experimental cross sections have been measured recently. We show that the present
coupled-channels calculations well account for the overall width of the experimental barrier distribution for these
systems. In particular, it is shown that the calculations taking into account single-quadrupole phonon excitation
in 48Ti and triple-octupole phonon excitations in 208Pb reasonably well reproduce the experimental quasi-elastic
cross section and barrier distribution for the 48Ti+208Pb reaction. However, 54Cr, 56Fe, 64Ni, and 70Zn+208Pb
systems seem to require the double-quadrupole phonon excitations in the projectiles to reproduce the experimental
data.
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I. INTRODUCTION

It is now well established that the internal structure of
colliding nuclei strongly influences heavy-ion collisions at
energies around the Coulomb barrier [1–4]. In particular, the
coupling to the collective excitations (rotation and vibrational
states) in the target and projectile nuclei participating in
the reaction significantly enhances the fusion cross sections
for intermediate mass systems. Such couplings give rise to
a distribution of the Coulomb barrier [1,2,5], which can
most easily be visualized for reactions involving a deformed
nucleus. In this case, the nucleus-nucleus potential depends on
the orientation angle of the deformed nucleus with respect to
the beam direction. Because the orientation angle distributes
isotropically at the initial stage of the reaction, so does the
potential barrier. The concept of barrier distribution can be
extended also to systems with a nondeformed target [5],
where the distribution originates from the coupling between
the relative motion and vibrational excitations in the colliding
nuclei and/or transfer processes. Notice that although this
concept is exact only when the excitation energy is zero, to
a good approximation it holds also for systems with a nonzero
excitation energy [6,7].

In Ref. [8], Rowley et al. argued that the barrier distribution
can be directly extracted from a measured fusion cross
section, σfus(E), by taking the second derivative of the product
Eσfus(E) with respect to the center-of-mass energy, E, that
is, Dfus = d2(Eσfus)/dE2. This method has stimulated many
high-precision measurements of the fusion excitation function
for medium-heavy mass systems [2,9]. The extracted barrier
distributions have revealed that the concept indeed holds and
the barrier distribution itself provides a powerful tool for
investigating the effects of channel coupling on heavy-ion
fusion reactions at sub-barrier energies. It has also been shown
recently that the concept of barrier distribution is still valid

even for relatively heavy systems, such as 100Mo+100Mo
[10].

A similar barrier distribution can also be extracted from
quasi-elastic scattering (a sum of elastic, inelastic, and transfer
processes) at backward angles [11,12], that is a good coun-
terpart of the fusion reaction [13]. In this case, the barrier
distribution is defined as the first derivative of the ratio of
quasi-elastic to the Rutherford cross sections, dσqel/dσR , with
respect to E, i.e., Dqel = −d(dσqel/dσR)/dE. Because the
fusion and the quasi-elastic scattering is related to each other
because of the flux conservation, similar information can be
obtained from those processes and the similarity between the
two representations for the barrier distribution has been shown
to hold for several intermediate mass systems [11,12,14].

Recently, the quasi-elastic barrier distribution has been
exploited to investigate the entrance channel dynamics for
fusion reactions to synthesize superheavy elements [15–18]. It
has been shown that the concept of barrier distribution remains
valid even for such very heavy systems once the deep-inelastic
cross sections are properly taken into account. As is expected,
the strong channel coupling effects on the barrier distribution
have been observed.

In this article, we carry out a detailed coupled-channels
analysis for large-angle quasi-elastic scattering data for 48Ti,
54Cr, 56Fe, 64Ni, and 70Zn+208Pb systems leading to super-
heavy elements Z = 104, 106, 108, 110, and 112, respectively
[17,18]. We especially study the role of multiphonon excita-
tions of the target and projectile nuclei, which has been shown
to play an important role in quasi-elastic scattering for the
86Kr+208Pb system [16].

The article is organized as follows. We briefly explain
the coupled-channels formalism for quasi-elastic scattering in
Sec. II. We present the results of our systematic analysis in
Sec. III. We then summarize the article in Sec. IV.
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II. COUPLED-CHANNELS FORMALISM FOR
LARGE-ANGLE QUASI-ELASTIC SCATTERING

In this section, we briefly describe the coupled-channels
formalism for large-angle quasi-elastic scattering that includes
the effects of the vibrational excitations of the colliding nuclei.
The total Hamiltonian of the system is assumed to be

H = − h̄2

2µ
∇2 + V

(0)
N (r) + ZP ZT e2

r

+Hexct + Vcoup(r, ξP , ξT ), (1)

where r is the coordinate of the relative motion between the
target and the projectile nuclei, µ is the reduced mass, and
ξT and ξP represent the coordinate of the vibration in the
target and the projectile nuclei, respectively. ZP and ZT are
the atomic number of the projectile and the target, respectively,
and V

(0)
N is the bare nuclear potential, which we assume

to have a Woods-Saxon shape. It consists of the real and
imaginary parts, V (0)

N (r) = V0(r) + iW0(r). Hexct describes the
excitation spectra of the target and projectile nuclei, whereas
Vcoup(r, ξP , ξT ) is the potential for the coupling between the
relative motion and the vibrational motions of the target and
projectile nuclei.

In the isocentrifugal approximation [1,19,20], where the
angular momentum of the relative motion in each channel is
replaced with the total angular momentum J (in the literature,
this approximation is also referred to as the rotating frame
approximation or the no-Coriolis approximation), the coupled-
channels equations derived from the Hamiltonian (1) read[

− h̄2

2µ

d2

dr2
+ J (J + 1)h̄2

2µr2
+ V

(0)
N (r) + ZP ZT e2

r
− E + εn

]

× un(r) +
∑
n′

Vnn′ (r)un′(r) = 0, (2)

where εn is the eigenvalue of the operator Hexct for the n-
th channel. Vnn′ (r) is the matrix elements for the coupling
potential Vcoup.

In the calculations presented below, we use the method of
the computer code CCFULL [19] and replace the vibrational
coordinates ξP and ξT in the coupling potential Vcoup with
the dynamical excitation operators ÔP and ÔT . The coupling
potential is then represented as

Vcoup(r, ÔP , ÔT ) = VC(r, ÔP , ÔT ) + VN (r, ÔP , ÔT ), (3)

VC(r, ÔP , ÔT ) =
[

3R
λP

P ÔP

(2λP + 1)rλP
+ 3R

λT

T ÔT

(2λT + 1)rλT

]

× ZP ZT e2

r
, (4)

VN (r, ÔP , ÔT ) = −V0{
1 + exp

[
r−R0−(RP ÔP+RT ÔT )

a

]} − V
(0)
N (r).

(5)

Here, λP and λT denote the multipolarity of the vibrations
in the projectile and the target nuclei, respectively. We have
subtracted V

(0)
N (r) in Eq. (5) to avoid the double counting.

If we truncate the phonon space up to the triple-phonon
states (that is, n = 0, 1, 2, and 3), the matrix elements of the
excitation operator Ô in Eqs. (4) and (5) are given by

Onn′ = 1√
4π




0 β 0 0

β 0
√

2β 0

0
√

2β 0
√

3β

0 0
√

3β 0


 , (6)

where β is the deformation parameter that can be estimated
from a measured electric transition probability from the
single-phonon state (n = 1) to the ground state (n = 0). We
have assumed the harmonic oscillator model for the vibrations,
where εn in Eq. (2) is given by εn = nh̄ω.

The coupled-channels equations, Eq. (2), are solved with
the scattering boundary condition for un(r),

un(r) → i

2

[
H

(−)
J (knr)δn,ni

−
√

ki

kn

SJ
n H

(+)
J (knr)

]
,

(r → ∞) (7)

where SJ
n is the nuclear S matrix. H

(−)
J (kr) and H

(+)
J (kr)

are the incoming and the outgoing Coulomb wave functions,
respectively. The channel wave number kn is given by√

2µ (E − εn)/h̄2, and ki = kni
=

√
2µE/h̄2. The scattering

angular distribution for the channel n is then given by [20]

dσn

d	
= kn

ki

|fn(θ )|2 (8)

with

fn(θ ) =
∑

J

e[σJ (E)+σJ (E−εn)]

√
2J + 1

4π
YJ0(θ )

× −2iπ√
kikn

(
SJ

n − δn,ni

) + fC(θ )δn,ni
, (9)

where σJ (E) and fC(θ ) are the the Coulomb phase shift and the
Coulomb scattering amplitude, respectively. The differential
quasi-elastic cross section is then calculated to be

dσ qel

d	
=

∑
n

dσn

d	
. (10)

We will apply this formalism in the next section to analyze
the quasi-elastic scattering data of 48Ti, 54Cr, 56Fe, 64Ni, and
70Zn+208Pb systems.

III. COMPARISON WITH EXPERIMENTAL DATA:
EFFECTS OF MULTIPHONON EXCITATIONS

In this section, we present the results of our detailed
coupled-channels analysis for quasi-elastic-scattering data of
48Ti, 54Cr, 56Fe, 64Ni, and 70Zn+208Pb systems [17,18]. The
calculations are performed with a version [21] of the coupled-
channels code CCFULL [19]. Notice that the isocentrifugal
approximation employed in this code works well for quasi-
elastic scattering at backward angles [12]. In the code, the
regular boundary condition is imposed at the origin instead
of the incoming wave boundary condition. We discuss the
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TABLE I. The depth parameter for the real
part of the nuclear potential for the 48Ti, 54Cr,
56Fe, 64Ni, and 70Zn+208Pb systems. The radius
and the diffuseness parameters are taken to be
r0 = 1.22 fm and a = 0.63 fm, respectively, for
all the systems. The resultant barrier height energy
VB is also listed.

System V0(MeV) VB (MeV)

48Ti+208Pb 88.90 190.50
54Cr+208Pb 91.70 205.50
56Fe+208Pb 92.85 222.50
64Ni+208Pb 95.10 236.25
70Zn+208Pb 108.2 249.30

stability of the numerical calculations for the massive systems
in Appendix.

The surface diffuseness of the real part of the nuclear
potential is taken to be a = 0.63 fm, as suggested by recent
studies on deep sub-barrier quasi-elastic and Mott scattering
[22–24], whereas the radius parameter to be r0 = 1.22 fm for
all the systems. Notice that a similar value for a has been used
also in the analysis of the recent experimental data for the
quasi-elastic scattering in the 86Kr+208Pb system [16]. The
depth parameter, V0, is adjusted to reproduce the experimental
quasi-elastic cross sections for each system. The optimum
values of the depth parameter and the resultant Coulomb
barrier height are summarized in Table I. As usually done,
we use a short range imaginary potential with W0 = 30 MeV,
rw = 1.0 fm, and aw = 0.3 fm to simulate the compound
nucleus formation. The results are insensitive to these param-
eters as long as the imaginary part of the potential is well
confined inside the Coulomb barrier. The excitation energy
and the corresponding deformation parameter for the single-
phonon excitation in each nucleus included in the calculations
are given in Table II. The latter quantity is taken from
Refs. [25,26]. The radius of the target and the projectile are
taken to be RT = 1.2A

1/3
T and RP = 1.2A

1/3
P , respectively, to

be consistent with the deformation parameters [25,26]. All
the calculations shown below are performed at the scattering
angle of θc.m. = 170◦. We plot the quasi-elastic cross sections

TABLE II. The properties of the single-phonon
states included in the present coupled-channels calcu-
lations. h̄ω and β are the excitation energy and the
dynamical deformation parameter, respectively.

Nucleus Iπ h̄ω (MeV) β

208Pb 3− 2.614 0.110a

48Ti 2+ 0.983 0.269b

54Cr 2+ 0.834 0.250b

56Fe 2+ 0.846 0.239b

64Ni 2+ 1.346 0.179b

70Zn 2+ 0.884 0.228b

aFrom Ref. [25].
bFrom Ref. [26].

and barrier distributions as a function of the effective energy
defined by [11,12]

Eeff = 2E
sin(θ/2)

1 + sin(θ/2)
, (11)

which takes into account the centrifugal energy. We calculate
the quasi-elastic barrier distributions from the cross sections in
a similar way as the one used to obtain the experimental barrier
distributions [18]. Namely, we use the point difference formula
with the energy step of �E = 0.25 MeV and then smooth the
resultant barrier distribution with the Gaussian function with
the full width at half maximum (FWHM) of 1.5 MeV. We
have checked that the shape of the barrier distribution does not
change significantly even if we use a larger energy step for the
point difference formula, e.g., �E = 0.5 MeV.

A. Effect of double-phonon excitations

Let us first discuss the effect of double-octupole phonon
excitations in the 208Pb target. Such excitations have been
shown to play a significant role in the sub-barrier fusion
reaction between 16O and 208Pb nuclei [27,28].

The dotted line in Fig. 1 shows the result of the coupled-
channels calculations for the 48Ti+208Pb system obtained by
taking into account the coupling to the single-octupole phonon
state in the target nucleus, 208Pb, and the single-quadrupole
phonon state in the projectile nucleus, 48Ti. The mutual
excitations in the projectile and the target nuclei are fully
taken into account in this calculation as well as in all the
other calculations presented in this article. Figures 1(a) and
1(b) show the ratio of the quasi-elastic to the Rutherford cross
sections, dσqel/dσR , and the quasi-elastic barrier distribution,
Dqel, respectively. Although the overall width of the barrier
distribution is reproduced reasonably well with this calcu-
lation, the detailed structure is somewhat inconsistent with
the experimental data. The situation is similar even when
we include the double-quadrupole phonon states in the pro-
jectile while keeping the single-octupole phonon coupling in
the target nucleus (not shown). We then investigate the effect
of the double-octupole phonon couplings in the target nucleus.
The solid and the dashed lines in Fig. 1 show the results with the
single- and the double-quadrupole phonon excitations in the
projectile, respectively, where as the double-octupole phonon
couplings in the target is included in both the calculations.
The former calculation reproduces both the cross sections and
the barrier distribution reasonably well, although the latter
calculation somehow worsens the agreement. This clearly
suggests that the double-octupole phonon excitations in the
target nucleus is important in the quasi-elastic 48Ti+208Pb
scattering. We summarize the χ2 value of our calculations
in Table III.

Because the coupling to the one-quadrupole phonon state in
the projectile and the two-octupole phonon states in the target
reasonably well reproduce the experimental quasi-elastic
scattering data for the 48Ti+208Pb system, one may expect that
the same coupling scheme accounts for the experimental data
for the other systems, 54Cr, 56Fe, 64Ni, and 70Zn+208Pb. The
results of the coupled-channels calculations with this coupling
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TABLE III. The value of χ 2 for the quasi-elastic
cross sections for the 48Ti+208Pb system obtained with
the coupled-channels calculations with various coupling
schemes. The coupling schemes are denoted as [n2, n3],
where n2 is the number of quadrupole phonon excitation
in the projectile nucleus, whereas n3 is the number of
octupole phonon in the target nucleus.

System [1,1] [1,2] [1,3] [2,2]

48Ti+208Pb 19.15 9.82 7.12 37.12

scheme is shown by the dashed line in Fig. 2. Figures 2(a),
2(c), 2(e), and 2(g) are for the quasi-elastic cross sections for
the 54Cr, 56Fe, 64Ni, and 70Zn+208Pb systems, respectively,
whereas Figs. 2(b), 2(d), 2(f), and 2(h) are for the quasi-elastic
barrier distributions. One can clearly see that these calculations
underestimate the experimental cross sections at high energies,
although the experimental barrier distributions themselves are
reproduced reasonably well. We repeat the same calculations
by including the coupling up to the double-quadrupole phonon
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FIG. 1. Effects of multiphonon excitations on the quasi-elastic
scattering cross section (upper panel) and on the quasi-elastic barrier
distribution (lower panel) for the 48Ti+208Pb system. The dotted line
is the result of the coupled-channels calculations, including coupling
to the one-quadrupole phonon state in the projectile and the one-
octupole phonon states in the target nucleus, whereas the solid line
is obtained by including the coupling in addition to the two-octupole
phonon state in the target nucleus. The dashed line is the result of
double-quadrupole phonon couplings in the projectile and the double-
octupole phonon couplings in the target nucleus. The experimental
data are taken from Ref. [18].

TABLE IV. Same as in Table III but for the 54Cr, 56Fe,
64Ni and 70Zn+208Pb systems.

System [1,2] [1,3] [2,2] [2,3]

54Cr+208Pb 52.47 49.80 20.61 11.78
56Fe+208Pb 28.46 28.36 10.44 10.28
64Ni+208Pb 57.45 61.43 32.21 30.64
70Zn+208Pb 26.52 24.81 11.36 6.87

states in the projectile, in addition to the double-octupole
phonon states in the target nucleus. These results are shown by
the solid in Fig. 2. The agreement with the experimental data
is considerably improved, especially for the quasi-elastic cross
sections. See Table IV for the χ2 values. It is thus evident that
the coupling to the double-quadrupole phonon states in the
projectile is needed to explain the experimental data for the
54Cr, 56Fe, 64Ni, and 70Zn+208Pb reactions.

The reason why the double-quadrupole phonon coupling
is not necessary for the 48Ti projectile, whereas it is for
the heavier projectiles, is not clear at this moment. This
might reflect some ambiguity of the Monte Carlo reaction
simulation code LINDA [29], which was used to subtract the
deep-inelastic component from the experimental yields at
backward angles [18]. Clearly, a further investigation is still
necessary concerning the effect of deep inelastic scattering on
quasi-elastic scattering in massive systems [15–18].

B. Effect of triple-phonon excitations

In the previous subsection, we showed that the double-
octupole phonon excitations in the 208Pb target play an
important role in the quasi-elastic scattering for the systems
considered in this article. However, the calculated quasi-elastic
barrier distributions have a much more prominent peak than
the experimental distribution at high energies. Because it has
been shown in Refs. [15,16] that the triple-octupole phonon
excitations of the 208Pb play a significant role in the large-angle
quasi-elastic scattering between 86Kr and 208Pb nuclei, it is
intriguing to investigate such effects in the present systems as
well.

The results of the coupled-channels calculations, including
the coupling to the triple-octupole phonon states in 208Pb for
the 48Ti+208Pb reaction, is presented in Fig. 3. The dashed
line is the same as the solid line in Fig. 1, that is, the result
of the single phonon in 48Ti and double phonons in 208Pb. The
solid line denotes the results of the triple-phonon coupling in
the target in addition to the single phonon in the projectile. By
including the triple-octupole phonons in the target nucleus,
the quasi-elastic cross sections are improved slightly (see
also Table III). However, one can see that the agreement for
the barrier distribution with the experimental data is much
improved by the triple-phonon coupling.

The results for the other systems, the 54Cr, 56Fe, 64Ni, and
70Zn+208Pb reactions, are shown in Fig. 4. Figures 4(a), 4(c),
4(e), and 4(g) show the quasi-elastic cross sections, whereas
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FIG. 2. The quasi-elastic scattering
cross sections [(a), (c), (e), and (g)]
and the quasi-elastic barrier distributions
[(b), (d), (f), and (h)] for the 54Cr, 56Fe,
64Ni, and 70Zn+208Pb systems obtained
with two coupling schemes as indicated
in the insets. The dashed line is ob-
tained by including the one-quadrupole
phonon state in the projectile nuclei,
whereas the solid line is obtained with the
double-phonon couplings. The double-
octupole phonon excitations in the target
nucleus is included in all the calculations.
The experimental data are taken from
Ref. [18].

Figs. 4(b), 4(d), 4(f) and 4(h) show the quasi-elastic barrier
distributions. Let us first discuss the calculations with the
single-phonon excitation in the projectile. The dotted line in
the figures is obtained by taking the coupling to the single-
phonon state in the projectile and the triple-octupole phonon
excitations in the target. This calculation underestimates the
quasi-elastic cross sections at high energies and the obtained

barrier distribution is inconsistent with the experimental data.
Therefore, the previous results shown in Fig. 2 are not
improved even if the triple-phonon excitations in the target are
taken into account as long as only the single-phonon excitation
is considered for the projectile nucleus. The results with
the double-phonon couplings in the projectile together with the
triple-phonon excitations in the target are then shown by the
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FIG. 3. Effects of triple-phonon excitations on the quasi-elastic
scattering cross section (upper panel) and on the quasi-elastic barrier
distribution (lower panel) for the 48Ti+208Pb system. The dashed
line is the result of the coupled-channels calculations taking into
account the coupling to the one-phonon state in the projectile and the
two-phonon states in the target nuclei. The solid line is obtained by
including the coupling to the one-phonon state in the projectile and
the three-phonon states in the target. The experimental data are taken
from Ref. [18].

solid line in the figure. For comparison, we also show with
the dashed line the results of the double-phonon excitations in
both the projectile and the target nuclei, which is the same as
the solid line in Fig. 2. One can observe that the inclusion of
the triple-octupole phonon excitations in the 208Pb somewhat
improves the agreement between the calculations and the
experimental data for both the quasi-elastic cross sections and
the barrier distributions (see also Table IV).

In Ref. [16], Ntshangase et al. reduced the coupling strength
of (3−) → (3−)2 states in 208Pb by a factor of (0.6) and
that of (3−)2 → (3−)3 by (0.6)2 to explain the experimental
barrier distribution for the 86Kr + 208Pb reaction. To see
whether such reduction of the coupling strengths improves
the agreement between the coupled-channels calculations and
the experimental data for the present systems, we repeat the
calculations by including those effects for the 70Zn+208Pb
system. The results are shown in Fig. 5. The solid line is
obtained by reducing the coupling strengths as Ntshangase
et al. did, whereas the dashed line is the same as the solid
line in Figs. 4(g) and 4(h), that is, obtained by assuming
the harmonic limit. In both cases, we take into account the
coupling to the double-quadrupole phonon excitations in the
projectile nucleus. One can see that the harmonic model leads

to a better agreement with the experimental data both for the
cross sections and the barrier distribution, as compared to the
anharmonic calculations. The difference between Ref. [16] and
the present calculations concerning the role of anharmonicity
may originate from the fact that Ref. [16] used a smaller value
for RT (= 1.06A

1/3
T fm) and thus a larger value for β3(= 0.16).

To clarify the role of anharmonicity of multiphonon excitations
in quasi-elastic scattering in massive systems, it would be
required to take into account also the reorientation terms
[14,30,31]. It is beyond the scope of this article, and we will
leave it for a future study.

C. Surface diffuseness of the nuclear potential

We next discuss the dependence of the quasi-elastic
scattering on the surface diffuseness parameter of the nuclear
potential. The standard value for the diffuseness parameter
is around 0.63 fm [32–34]. Recently, systematic studies on
quasi-elastic scattering as well as Mott scattering at deep
sub-barrier energies have revealed that the surface region of
the nuclear potential is indeed consistent with the standard
value of the surface diffuseness parameter [22–24]. However,
it has been known for some time that the recent high-precision
data of sub-barrier fusion cross sections require a larger value
of surface diffuseness parameter, ranging between 0.75 and
1.5 fm [35]. Because the large-angle quasi-elastic scattering
around the Coulomb barrier may probe both the surface
region and the inner part of the nuclear potential, it is
interesting to study the sensitivity of the quasi-elastic cross
sections and barrier distributions to the surface diffuseness
parameter.

For this purpose, as an example, we repeat the coupled-
channels calculations for the 64Ni + 208Pb reaction using the
nuclear potential with a = 1.0 fm. We readjust the depth
and the radius parameters to be V0 = 160.70 MeV and r0 =
1.10 fm, respectively, so that the barrier height remains the
same as the one listed in Table I. We include the coupling up to
the double-phonon states in the projectile and the triple-phonon
states in the target. Figure 6 compares the results with a =
0.63 fm (the solid line) to the one with a = 1.0 fm (the
dashed line). One sees that the calculations with a = 1.0 fm
underestimate the quasi-elastic cross section, although the
shape of barrier distribution itself is similar to the one obtained
with a = 0.63 fm. The dotted line is obtained with the same
value of surface diffuseness parameter a = 1.0 fm as the one
for the dashed line, but by changing the depth parameter V0

so that the resultant barrier height is higher by 2.4 MeV.
This calculation now reproduces the experimental quasi-elastic
cross sections at energies larger than Ec.m. = 230 MeV
reasonably well, but below this energy the cross sections are
underestimated. Therefore, it seems difficult to reproduce the
experimental quasi-elastic cross sections with the diffuseness
parameter of a = 1.0 fm at energies below and above the
Coulomb barrier simultaneously. We have checked that the
situation is similar for the other systems, 48Ti, 54Cr, 56Fe,
and 70Zn+208Pb. This result clearly indicates that the standard
value of surface diffuseness, a = 0.63 fm, is preferred by
the experimental quasi-elastic scattering data for the systems
studied in this article.
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FIG. 4. Effects of triple-phonon ex-
citations on the quasi-elastic cross sec-
tions [(a), (c), (e), and (g)] and on the
quasi-elastic barrier distributions [(b),
(d), (f), and (h)] for the 54Cr, 56Fe, 64Ni,
and 70Zn+208Pb systems. The dashed
line is the same as the solid line in
Fig. 2, whereas the dotted line is the
results of the calculations taking the
coupling to the triple-octupole phonon
in the target and the one-quadrupole
phonon state in the projectile nucleus
into account. The solid line is obtained
by including the coupling to the double-
quadrupole phonon states in the projec-
tile and the triple-otcupole phonon states
in the target nucleus. The experimental
data are taken from Ref. [18].

D. Comparison between quasi-elastic and fusion barrier
distributions

An interesting question is how well the quasi-elastic barrier
distributions studied in this article can be compared with
the corresponding fusion barrier distributions. Such study has
been carried out for medium-heavy systems [11,12,14], which

showed that the fusion and quasi-elastic barrier distributions
behave similar to each other within the same coupling scheme
considered, although the latter is somewhat more smeared. In
this subsection, we discuss to which extent this finding remains
the same in the massive systems, where the coupling is stronger
and more degrees of freedom are involved.
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FIG. 5. Effect of anharmonic octupole phonon excitations in
208Pb on (a) the quasi-elastic cross section and (b) the quasi-elastic
barrier distribution for the 70Zn+208Pb reaction. The solid line is
the coupled-channels calculations obtained by reducing the coupling
strengths to multiphonon states, whereas the dashed line denotes the
results in the harmonic limit. The experimental data are taken from
Ref. [18].

Figure 7 compares the quasi-elastic (the solid line) with the
fusion (the dashed line) barrier distributions for the 48Ti+208Pb
system. The coupling scheme included in the calculations
is the same as in Fig. 3, i.e., the single-quadrupole phonon
in the projectile as well as the triple-octupole phonon in
the target. The comparision for the other systems, 54Cr,
56Fe, 64Ni, and 70Zn+208Pb, are shown in Fig. 8, where
the double-quadrupole phonon excitations in the projectile
together with the triple-octupole phonon excitations in the
target are considered. To compare the two barrier distributions,
we plot the quasi-elastic barrier distribution as a function of
effective energy defined by Eq. (11). This scaling maps the
quasi-elastic barrier distribution obtained at a finite value of
angular momentum onto that for the s-wave scattering (i.e.,
for θ = π ). Notice that a fusion barrier distribution represents
a distribution of barrier heights for the s wave [2]. Moreover,
we smear the fusion barrier distribution in the same way as
for the quasi-elastic barrier distribution and normalize them to
unit area.

From these figures, it is evident that even for the massive
systems the quasi-elastic and fusion barrier distributions are
rather similar to each other, although the former has more
smooth peaks [12]. The peak positions are slightly shifted
between the two distributions because of the low-energy tails in
the quasi-elastic barrier distributions [12]. These behaviors are
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FIG. 6. Comparison of the experimental data with the coupled-
channels calculations obtained using different values of the surface
diffuseness of the nuclear potential for 64Ni + 208Pb reaction for
(a) the quasi-elastic cross section and (b) the quasi-elastic barrier
distribution. The solid and the dashed lines are obtained using the
surface diffuseness of the nuclear potential a = 0.63 fm and a =
1.0 fm, respectively. The dotted line is the results obtained by shifting
the barrier height by around +2.40 MeV for the calculations using
a = 1.0 fm. Experimental data is taken from Ref. [18].
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FIG. 7. Comparison of the calculated quasi-elastic (solid line)
with fusion (dashed line) barrier distributions for the 48Ti+208Pb
reaction. The quasi-elastic barrier distribution is plotted as a function
of effective energy Eeff defined by Eq. (11) with θ = 170◦, whereas
the fusion barrier distribution as a function of the center-of-mass
(c.m.) energy E. They are normalized to unit area in the energy
interval between E = 170 and 210 MeV. The single-quadrupole
phonon excitation in the projectile and the triple-octupole phonon
excitation in the target are taken into account.
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FIG. 8. Same as described in the
caption to Fig. 7, but for (a) 54Cr+208Pb,
(b) 56Fe+208Pb, (c) 64Ni+208Pb, and
(c) 70Zn+208Pb systems. The double-
quadrupole phonon excitation in the
projectile as well as the triple-octupole
phonon excitation in the target are taken
into account.

similar to the ones found in the previous studies for medium-
heavy mass systems [14].

IV. SUMMARY

We performed a detailed coupled-channels analysis for
large-angle quasi-elastic scattering of the 48Ti, 54Cr, 56Fe, 64Ni,
and 70Zn+208Pb systems, where their experimental barrier dis-
tributions have been extracted recently. Our coupled-channels
calculations with multiphonon excitations in the colliding
nuclei reproduce the experimental quasi-elastic cross sections
as well as the barrier distributions, indicating clearly that
the coupled-channels approach still works even for massive
systems [10]. It was crucial to subtract properly the deep-
inelastic components from the total backward-angle cross
sections to reach these agreements between the calculations
and the experimental data.

In more details, the calculation with the single-quadrupole
phonon excitation in 48Ti and the triple-octupole phonon
excitations in 208Pb reproduces reasonably well the exper-
imental data for the 48Ti+208Pb system. However, for the
54Cr, 56Fe, 64Ni, and 70Zn+208Pb systems, we found that
the coupling to the double-quadrupole phonon excitations
in the projectile nucleus in addition to the coupling to the
triple-octupole phonon states in the target nucleus seems to be
needed to fit the experimental data. These results suggest that
the triple-octupole phonon excitations in the 208Pb nucleus
plays an important role in describing the experimental data
for the quasi-elastic cross section and the quasi-elastic barrier

distribution for the present massive systems. This is consistent
with the previous finding for the 86Kr+208Pb system [16].

Although our calculations well reproduce the gross features
of the experimental barrier distributions, higher-precision data
are still required to study the detailed structure of the barrier
distributions, especially the role of multioctupole phonon
states in 208Pb. From the theoretical side, a further detailed
investigation will also be necessary, taking into account the
anharmonicity of the multiphonon excitations.
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APPENDIX: NUMERICAL STABILIZATION OF
COUPLED-CHANNELS CALCULATION

In this Appendix, we discuss the problem of numerical in-
stability of coupled-channels calculations and the stabilization
methods that we employ in the present calculations.

The coupled-channels equations (2) form a set of N second-
order coupled linear differential equations, where N is the
dimension of the coupled-channels equations. These equations
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can be solved by generating N linearly independent solutions
and taking a linear combination of these N solutions so that
the asymptotic boundary condition, (7), as well as the regular
boundary condition at the origin, are satisfied. The linearly
independent solutions can be obtained by taking N different
sets of initial conditions at r = 0. We denote these solutions
by φnni

(r), where n refers to the channels, whereas ni refers to
a particular choice of the initial conditions. A simple choice
for the N initial conditions is to impose

φnm(r) → crJ+1δn,m, for r → 0, (A1)

where c is an arbitrary number and J is the total angular
momentum. With these boundary condition, the coupled-
channels equations for φnm(r) given by[

− h̄2

2µ

d2

dr2
+ J (J + 1)h̄2

2µr2
+ V

(0)
N (r) + ZP ZT e2

r
− E + εn

]

×φnm(r) +
∑
n′

Vnn′ (r)φn′m(r) = 0, (A2)

are solved outwards up to a matching radius Rmax. The wave
functions un(r) in Eq. (2) are then obtained as

un(r) =
∑
m

Cmφnm(r), (A3)

where the coefficients Cm are determined so that the asymp-
totic boundary condition (7) is fulfilled.

In the classical forbidden region, the scattering wave
functions exponentially damp as the coordinate r decreases.
For the smaller energy, the damping is stronger. Therefore,
when the excitation energy εn is finite, the absolute value of
the wave functions for each channel differs by an order of
magnitude in the classical forbidden region, and thus the wave
functions tend to be dominated by that of the channel that has
the smallest excitation energy. This easily destroys the linear
independence of the N numerical solutions φnm and causes
the numerical instability. This is a serious problem especially
when the coupling is strong, as in the massive systems which
we discuss in this article.

Several methods have been proposed to stabilize the
numerical solution of the coupled-channels equations [36–39].
In the present calculations, we stabilize the solutions by

diagonalizing the wave function matrix φnm at several points
of r to recover the linear independence. That is, at some radius
rs , we compute the inverse of the matrix Anm = φnm(rs) and
define the new set of wave functions,

φ̃nm(r) =
∑

k

φnk(r)(A−1)km. (A4)

The new wave functions φ̃ obey similar coupled-channels
equations as Eq. (A2), with the boundary conditions
given by

φ̃nm(rs − h) =
∑

k

φnk(r − h)(A−1)km, (A5)

φ̃nm(rs) = δn,m. (A6)

Here, h is the step for the discretization of the radial coordinate,
r . These coupled-channels equations are solved outwards from
rs . The solutions φ can then be constructed as φ = Aφ̃.
We impose this stabilization procedure up to r = 15 fm
with an interval of 1 fm. Although this method is similar
to those in Refs. [38,39], our method is much simpler to
implement.

This method is sufficient for intermediate heavy systems,
such as 16O+144Sm. For massive systems, however, we still
encounter a small numerical instability [40]. To cure this
problem, in addition to the stabilization method (A4), we also
adopt two other methods, which are used in the computer
code FRESCO [41]. That is, we introduce two radii, Rmin and
Rcut. Rmin is the radius from which the coupled-channels
equations (A2) are solved, i.e., these equations are solved
from r = Rmin instead of r = 0, by setting φnm(r) = 0 for
r � Rmin. Rcut is a cut-off radius for the coupling matrix, i.e.,
the off-diagonal components of the coupling matrix Vnn′ (r) are
set to be zero for r � Rcut. Both the procedures are justified
when the absorption is strong inside the Coulomb barrier,
as in heavy-ion systems, and the results are insensitive to
the particular choice of Rmin and Rcut as long as they are
inside the Coulomb barrier. Typically, we take Rmin = 6 fm
and Rcut = 10 fm to obtain reasonable results for the present
systems (notice that the pocket and the barrier appear at, e.g.,
11.3 and 13.2 fm, respectively, for the 64Ni+208Pb system with
the nuclear potential given in Table I).
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