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Color transparency and short-range correlations in exclusive pion photo- and
electroproduction from nuclei
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A relativistic and quantum mechanical framework to compute nuclear transparencies for pion photo-
and electroproduction reactions is presented. Final-state interactions for the ejected pions and nucleons are
implemented in a relativistic eikonal approach. At sufficiently large ejectile energies, a relativistic Glauber model
can be adopted. At lower energies, the framework possesses the flexibility to use relativistic optical potentials.
The proposed model can account for the color-transparency (CT) phenomenon and short-range correlations
(SRC) in the nucleus. Results are presented for kinematics corresponding to completed and planned experiments
at Jefferson Lab. The influence of CT and SRC on the nuclear transparency is studied. Both the SRC and CT
mechanisms increase the nuclear transparency. The two mechanisms can be clearly separated, though, as they
exhibit a completely different dependence on the hard-scale parameter. The nucleon and pion transparencies as
computed in the relativistic Glauber approach are compared with optical-potential and semiclassical calculations.
The similarities in the trends and magnitudes of the computed nuclear transparencies indicate that they are not
subject to strong model dependences.
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I. INTRODUCTION

A commonly used variable to map the transition from
hadronic to partonic degrees of freedom is the nuclear
transparency. For a given reaction process, it is defined as the
ratio of the cross section per target nucleon to the one from a
free nucleon. Accordingly, the nuclear transparency provides
a measure of the attenuation effects of the nuclear medium
on the hadrons produced in some reaction. A phenomenon
finding its roots in quantum chromodynamics (QCD) is color
transparency (CT). It predicts the reduction of final-state
interactions (FSI) of the produced hadron with the surrounding
nuclear medium at sufficiently high momentum transfer.
Thereby, the hadron is created in a pointlike configuration
(PLC) and propagates as a color singlet through the nucleus
before evolving to the normal hadron state. If CT effects were
to appear at a certain energy, the nuclear transparency would be
observed to overshoot the predictions from traditional nuclear
physics expectations.

Measurements of nuclear transparencies in search of CT
have been carried out with the A(p, 2p) [1–4] and A(e, e′p)
[5–10] reactions, ρ-meson production [11,12], and diffractive
dissociation of pions into di-jets [13]. Nuclear transparencies
for the pion photoproduction process γ n → π−p in 4He
have been measured in Hall A at Jefferson Laboratory
(JLab) [14]. A Hall C experiment has extracted the nuclear
transparency for the pion electroproduction process ep →
e′π+n in 2H, 12C, 27Al, 63Cu, and 197Au [15]. Reference [16]
reports calculations in a semiclassical model for the latter
electroproduction experiment. In Ref. [17], we introduced a
relativistic and quantum mechanical model for computing the
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nuclear transparencies for the pion photoproduction reaction
and compared its predictions to the 4He(γ, pπ−) data and
results from a semiclassical model developed by Gao, Holt,
and Pandharipande [18]. In this article, we outline the model
in more detail and extend it to electroproduction reactions. The
intranuclear attenuation that affects the ejectiles (nucleons and
pions) is modeled in terms of a relativistic eikonal approach.
The bound-state wave functions are obtained from a relativistic
mean-field model. At sufficiently small values for the de
Broglie wavelength, we use a relativistic version of Glauber
multiple-scattering theory. At wavelengths approaching the
range of the nucleon-nucleon and pion-nucleon interaction
length, the model offers the flexibility to use optical poten-
tials for modeling FSI mechanisms. Short-range correlations
(SRC) induce local fluctuations in the nuclear density. These
corrections beyond the mean-field approach influence the
intranuclear attenuation. The corresponding changes in the
nuclear transparencies have been studied in great depth within
the context of A(e, e′p) reactions [19–21]. In A(γ,Nπ )
and A(e, e′Nπ ) processes, both the emerging nucleons and
pions are subject to these density fluctuations. The SRC are
incorporated into our model through the introduction of a
well-chosen central correlation function that induces density
correlations into the final system. In our procedure, the proper
normalization of the wave functions is guaranteed.

Section II of the article presents the formalism used to
calculate the nuclear transparencies. A factorized expression
for the cross section is derived for A(γ,Nπ ) (II A) and
A(e, e′Nπ ) (II B). Next, in Sec. II C the framework for com-
puting the effects stemming from FSI are discussed. Thereby,
special attention is paid to a parametrization of the πN

scattering parameters that are required in Glauber calculations.
In Sec. II D the incorporation of the CT phenomenon and
SRC is discussed. The results of our numerical calculations
are presented in Sec. III. FSI effects are investigated and
transparency results are shown for the pion photo- and
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electroproduction reactions from various target nuclei. Our
conclusions are stated in Sec. IV.

II. FORMALISM

In this section, the formalism used to describe A(γ,Nπ )
and A(e, e′Nπ ) reactions is presented.

A. Pion photoproduction

We use the following notations for the four-momenta in the
laboratory frame: qµ(q, �q) for the photon, P

µ

A (EA, �pA = �0)
for the target nucleus, P

µ

A−1(EA−1, �pA−1) for the residual
nucleus, and P

µ

N (EN, �pN ) and P µ
π (Eπ, �pπ ) for the ejected

nucleon and pion. The missing momentum �pm is defined as
�pm ≡ − �pA−1 = �pN + �pπ − �q and the outgoing nucleon has
spin ms . The fivefold differential cross section in the laboratory
frame reads

d5σ

dEπd�πd�N

= MA−1mNpπpN

4(2π )5qEA

f −1
rec

∑
f i

∣∣M(γ,Nπ)
f i

∣∣2, (1)

where
∑

f i involves an averaging over the photon polarizations
and a summation over the spins of the final particles. The recoil
factor frec is given by

frec = EA−1

EA

∣∣∣∣1 + EN

EA−1

[
1 + ( �pπ − �q) · �pN

p2
N

]∣∣∣∣ , (2)

and M(γ,Nπ)
f i denotes the invariant matrix element:

M(γ,Nπ)
f i = 〈P µ

π , P
µ

N ms, P
µ

A−1JRMR|Ô|qµ, P
µ

A 0+〉, (3)

where JRMR are the quantum numbers of the residual nucleus.
We restrict ourselves to processes with an even-even target
nucleus A.

The wave functions for the bound nucleons are constructed
in an independent particle model (IPM). We use relativistic
wave functions from the Hartree approximation to the Walecka
model with the W1 parametrization [22]. For the sake of
conciseness, only the spatial coordinates of the nucleons
are written throughout this work. The single-particle wave
functions φα adopt the following form for a spherically
symmetric nuclear potential [23]:

φα(�r) ≡ φnκm(�r, �σ ) =
[

i Gnκ (r)
r

Yκm(�, �σ )
−Fnκ (r)

r
Y−κm(�, �σ )

]
. (4)

Here, n is the principal quantum number and κ and m denote
the generalized angular momentum quantum numbers. The
spin spherical harmonics Y±κm are defined as:

Yκm(�, �σ ) =
∑
mlms

〈
lml

1

2
ms

∣∣∣∣ jm

〉
Ylml

(�)χ 1
2 ms

(�σ ),

(5)

Y−κm(�, �σ ) =
∑
mlms

〈
l̄ml

1

2
ms

∣∣∣∣ jm

〉
Yl̄ml

(�)χ 1
2 ms

(�σ ),

with

j = |κ| − 1
2 , l =

{
κ, κ > 0

−κ − 1, κ < 0
, l̄ =

{
κ − 1, κ > 0

−κ, κ < 0
.

The ground-state wave function of the target nucleus
|P µ

A 0+〉 ≡ ψ
g.s.
A (�r1, . . . , �rA) is obtained by fully antisym-

metrizing the product of the individual nucleon wave functions
φα . We model the pion photoproduction process by means of
a contact interaction: the initial nucleon, impinging photon,
and the ejected pion and nucleon join in a single space-time
vertex. As the process can take place on any of the nucleons
in the target nucleus, we get the following general expression
for the corresponding photoproduction operator:

Ô =
A∑

i=1

Oµ(�ri). (6)

We assume that Ô is exempted from medium effects. This is
a common assumption in nuclear and hadronic physics and is
usually referred to as the impulse or quasifree approximation
(IA). In the context of A(e, e′p) reaction, for example, the
impulse approximation provides a fair description of the
data [24]. It is also applied in the experimental analysis of
Ref. [15] and the model of Ref. [25]. The impinging photon
with polarization λ is represented by

Aµ(λ, �ri) = εµ(λ) ei �q·�ri . (7)

Here, εµ(λ) is the polarization four-vector of the photon. The
wave function of the ejected nucleon is written as∣∣P µ

N ms

〉 ≡ ψ
(+)
�pN ,ms

(�ri) = Ŝ†
N ′N (�ri ; �r1, . . . , �rj �=i , . . . , �rA)

× u( �pN,ms)e
i �pN ·�ri , (8)

which is the product of a positive-energy Dirac plane wave
φ �pN

(�ri) = u( �pN,ms)ei �pN ·�ri and an operator Ŝ†
N ′N . This oper-

ator describes the attenuation of the ejected nucleon through
soft final-state interactions with the other nucleons. The wave
function for the ejected pion adopts a similar form as the
nucleon one, i.e., a plane wave convoluted with a FSI factor
Ŝ†

πN :∣∣P µ
π

〉 ≡ 
(+)
�pπ

(�ri) = Ŝ†
πN (�ri ; �r1, . . . , �rj �=i , . . . , �rA)ei �pπ ·�ri . (9)

The final A-nucleon wave function is constructed by anti-
symmetrizing ψ

(+)
�pN ,ms

with the wave function for the residual

nucleus ψ
JR,mR

A−1 :∣∣P µ

N ms, P
µ

A−1JRMR

〉 ≡ ψ
�pN ,ms

A (�r1, . . . , �rA)

= Â
[
Ŝ†

N ′N (�r1; �r2, . . . , �rA)u( �pN,ms)e
i �pN ·�r1

×ψ
JR,mR

A−1 (�r2, . . . , �rA)
]
. (10)

As ψ
g.s.
A and ψ

�pN ,ms

A are fully antisymmetric, each term
of the operator (6) will yield the same contribution to the
matrix element (3) and we can restrict ourselves to the term
with coordinate �r1 and multiply it with A. With the above
expressions for the operator and the wave functions of the
hadrons involved in the reaction, we can write for the matrix
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FIG. 1. (Color online) Diagram included in computing the matrix
element of Eq. (11). The dashed lines denote the FSI of the
ejected pion (red) and nucleon (blue) with the spectator residual
nucleons. The diagram shown here is representative for the spectator
approximation: one active nucleon N and π are subject to soft
collisions with frozen spectator nucleons that occupy the single-
particle levels α2, α3, . . . , αA and are not subject to changes in their
quantum numbers.

element of Eq. (3) in coordinate space:

M(γ,Nπ)
f i = A

∫
d�r1

∫
d�r2 . . .

∫
d�rA

×
[
ψ

�pN ,ms

A (�r1, �r2, . . . , �rA)
]†

e−i �pπ ·�r1

×ŜπN (�r1; �r2, . . . , �rA)

×Oµ(�r1)εµ(λ)ei �q·�r1ψ
g.s.
A (�r1, �r2, . . . , �rA) . (11)

We assume that ŜN ′N and ŜπN are spin independent and that
only elastic and mildly inelastic collisions with the spectator
nucleons occur. The actual nuclear transparency measurements
select events whereby the undetected final state with (A − 1)
nucleons |P µ

A−1JRMR〉 is left with little excitation energy,
which makes these assumptions very plausible. In computing
the matrix element of Eq. (11) we consider processes of the
type displayed in Fig. 1. The following spectator approxima-
tion is assumed to be valid for a struck nucleon with quantum
numbers α1:∫

d�r1 . . .

∫
d�rA

{
φ �pN

[Pn(�r1)]

× Ŝ†
N ′N [Pn(�r1); Pn(�r2), . . . , Pn(�rA)]

×φα2 [Pn(�r2)] . . . φαA
[Pn(�rA)]

}†
e−i �pπ ·�r1

× ŜπN (�r1; �r2, . . . , �rA)Oµ(�r1)ei �q·�r1φα1 [Pm(�r1)]

×φα2 [Pm(�r2)] . . . φαA
[Pm(�rA)]

≈ δPn(�r2)Pm(�r2) . . . δPn(�rA)Pm(�rA)

×
∫

d�r1 . . .

∫
d�rAφ

†
�pN

(�r1)ŜN ′N [�r1; Pn(�r2), . . . , Pn(�rA)]

× e−i �pπ ·�r1 ŜπN (�r1; �r2, . . . , �rA)Oµ(�r1)ei �q·�r1

×φα1 [Pm(�r1)]
∣∣φα2 [Pm(�r2)]

∣∣2 . . .
∣∣φαA

[Pm(�rA)]
∣∣2, (12)

with Pm and Pn permutations of the set {�r1, . . . , �rA} occurring
in the antisymmetrization of the nucleon wave functions. Due

to the presence of the δ functions, the right-hand side of
Eq. (12) is nonvanishing under the condition that Pm(�r1) = �r1

and Pm(�ri) = Pn(�ri) for i = 2, . . . , A. This means that both
the bound wave function α1 and the ejected nucleon have
the same spatial coordinate as the operator, �r1. Moreover,
all (A − 1)! permutations of the subset {�r2, . . . , �rA} yield an
identical right-hand side.

Thus, after expanding the wave functions in Eq. (11) and
employing Eq. (12), we arrive at

M(γ,Nπ)
f i ≈ A(A − 1)!

A!

∫
d�r1

∫
d�r2 . . .

∫
d�rA

×[|φα2 (�r2)|2 . . . |φαA
(�rA)|2u†( �pN,ms)

× ŜπN (�r1; �r2, . . . , �rA)ŜN ′N (�r1; �r2, . . . , �rA)εµ(λ)

×Oµ(�r1)e−i �pm·�r1φα1 (�r1)
]
. (13)

We now define the FSI factor FFSI(�r):

FFSI(�r) =
∫

d�r2 . . .

∫
d�rA

∣∣φα2 (�r2)
∣∣2 . . .

∣∣φαA
(�rA)

∣∣2
× ŜπN (�r; �r2, . . . , �rA)ŜN ′N (�r; �r2, . . . , �rA), (14)

and write

M(γ,Nπ)
f i ≈

∫
d�r1FFSI(�r1)u†( �pN,ms)

× εµ(λ)Oµ(�r1)e−i �pm·�r1φα1 (�r1). (15)

In what follows, we assume that the pion production operator
acts on a bound-state wave function as a scalar (factorization
assumption): Oµ(�r)φα1 (�r) ≡ Cµφα1 (�r). With

φD
α1

( �p) = 1

(2π )3/2

∫
d�re−i �p·�rφα1 (�r)FFSI(�r), (16)

we can write

M(γ,Nπ)
f i ≈ (2π )3/2u†( �pN,ms)ε

µ(λ)CµφD
α1

( �pm). (17)

When studying nuclear transparencies, it is convenient to
factorize the invariant matrix element such that it becomes
a convolution of a factor describing the elementary pion
photoproduction process and a factor modeling the combined
effect of all FSI mechanisms of the outgoing hadrons. To
reach this goal we relate the γ + A → (A − 1) + N + π

matrix element in Eq. (17) to the one for for free nucleons
γ + Ni → N + π[

M(γ,Nπ)
f i free

]
ms,m′

s

= u†( �pN,ms)ε
µ(λ)Cµu( �pm,ms ′ ), (18)

with ms ′ the spin of the initial nucleon. First, we consider the
situation with vanishing FSI, second the more realistic case
with inclusion of a FSI phase operator. When ignoring FSI, the
wave functions for the ejected hadrons reduce to plane waves
and FFSI(�r) ≡ 1, φD

α1
( �pm) ≡ φα1 ( �pm). After substituting in

Eq. (17) the completeness relation for Dirac spinors:∑
m′

s

[
u( �pm,m′

s)ū( �pm,m′
s) − v( �pm,m′

s)v̄( �pm,m′
s)
] = 1I4×4,

(19)
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one obtains[
M(γ,Nπ)

f i

]
RPWIA = (2π )3/2

∑
m′

s

[
M(γ,Nπ)

f i free

]
ms,m′

s

ū( �pm,m′
s)

×φα1 ( �pm) − negative energy terms, (20)

where the RPWIA denotes the relativistic plane-wave impulse
approximation. From this last expression it is clear that
even with vanishing FSI the presence of negative-energy
components makes factorization impossible. In what follows
we neglect those terms:[

M(γ,Nπ)
f i

]
RPWIA

≈ (2π )3/2
∑
m′

s

[
M(γ,Nπ)

f i free

]
ms,m′

s

ū( �pm,m′
s)φα1 ( �pm). (21)

The contraction of the Dirac spinor ū with the bound
nucleon wave function φα1 if negative-energy components are
neglected is given by

ū( �pm,m′
s)φα1 ( �pm)

= (−i)l
√

ENi
(pm) + mNi

2mNi

αnκ (pm)χ †
1
2 ,m′

s

× Yκm(�p, �σ ),

(22)

where mNi
is the free mass of the bound nucleon, ENi

(pm) =√
m2

Ni
+ p2

m and

αnκ (pm) = 2mNi

ENi
+ mNi

gnκ (pm). (23)

In this last equation gnκ is defined as

gnκ (p) = i

√
2

π

∫ ∞

0
r2dr

Gnκ(r)

r
jl(pr), (24)

with jl(pr) the spherical Bessel function of the first kind. After
squaring the matrix element and summing over the quantum
number m of the bound nucleon wave function, one can use
the following property of the spin spherical harmonics Yκm∑

m

Yκm(�p, �σ )Y†
κm(�p, �σ ) = (2j + 1)

8π
1 I2×2. (25)

Finally, by using χ
†
1
2 ,ms

χ 1
2 ,m′

s
= δmsm′

s
, the free pion production

process can be formally decoupled from the typical nuclear
effects:∑

f i

∣∣M(γ,Nπ)
f i

∣∣2 = 1

2

∑
λ,m,ms

∣∣M(γ,Nπ)
f i

∣∣2
≈ (2π )3 2j + 1

4π

ENi
(pm) + mNi

2mNi

|αnκ (pm)|2

× 1

4

∑
λ,ms,m′

s

∣∣[M(γ,Nπ)
f i free

]
ms,m′

s

∣∣2. (26)

The right-hand side of the above equation requires knowledge
about the off-shell extrapolation of the pion photoproduction
amplitude. For the on-shell situation, the matrix element for
the pion photoproduction process can be linked to the cross

section

1

4

∑
λ,ms,m′

s

∣∣[M(γ,Nπ)
f i free

]
ms,m′

s

∣∣2 ≈ 4π
(
s − m2

Ni

)2
mNi

mN

dσγπ

d|t | , (27)

with s = (pµ

N + pµ
π )2 and t = (qµ − pµ

π )2 the Mandelstam
variables of the free process. The off-shell extrapolation of
Eq. (27) involves a correction due to the Fermi motion and the
binding of the nucleon on which the photon is absorbed. This
can be done in several different ways and it is not yet clear
which of them are the most efficient and reliable. In this article,
we consider photon energies �1.5 GeV that make off-shell
corrections to s relatively small for typical nucleon momenta.
For this reason, we deem it a reasonable approximation to
adopt the Eq. (27) for sufficiently high photon energies.

After substituting Eqs. (26) and (27) in Eq. (1), the
differential cross section for γ + A → (A − 1) + N + π in
the RPWIA reads(

d5σ

dEπd�πd�N

)
RPWIA

≈ MA−1pπpN

(
s − m2

Ni

)2
4πmNi

qEA

f −1
rec

2j + 1

4π

×
[
ENi

(pm) + mNi

]
2mNi

|αnκ (pm)|2 dσγπ

d|t | . (28)

When FSI are included, the derivation outlined earlier is no
longer possible due to the presence ofFFSI(�r) in φD

α . We define
a distorted momentum distribution along the lines of Ref. [26]

ρD( �pm) =
∑
ms,m

∣∣ū( �pm,ms)φ
D
α1

( �pm)
∣∣2. (29)

When FSI and negative-energy contributions to φD
α1

are

neglected, Eq. (29) reduces to 2j+1
4π

ENi
(pm)+mNi

2mNi

|αnκ (pm)|2.
Based on this analogy, we write the differential cross section
with FSI as(

d5σ

dEπd�πd�N

)
D

≈ MA−1pπpN

(
s − m2

Ni

)2
4πmNi

qEA

f −1
rec ρD( �pm)

dσγπ

d|t | . (30)

B. Pion electroproduction

The four-momentum of the virtual photon γ ∗ is qµ(ω, �q)
and the z axis lies along �q. The incoming (scattered) electron
has four-momentum p

µ
e (Ee, �pe) [pµ

e′ (Ee′ , �pe′ )] and spin s

(s ′), θe denotes the electron scattering angle. With these
additional notations and conventions, the differential cross
section in the laboratory frame reads

d8σ

d�e′dEe′dEπd�πd�N

= m2
epe′

(2π )3pe

MA−1mNpπpN

2(2π )5EA

f −1
rec

∑
f i

∣∣M(e,e′Nπ)
f i

∣∣2, (31)
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with the recoil factor frec as in Eq. (2) and
∑

f i representing
the averaging over initial electron spins and summing over
the spins of the final particles. The invariant matrix element
M(e,e′Nπ)

f i can be written as

M(e,e′Nπ)
f i = 〈

P µ
π , P

µ

N ms, P
µ

A−1JRMR

∣∣jµ

e

Q2
Jµ
∣∣P µ

A 0+〉, (32)

with the electron current

jµ = ū( �pe′ , s ′)γµu( �pe, s), (33)

Q2 = −qµqµ and the hadron current Jµ. By defining an
auxiliary current

aµ ≡ jµ − j0

ω
qµ (34)

and using current conservation, the following identity can
readily be proved:

jµJµ = −aiJi = −aiδij Jj = −
∑

λ=(x,y,z)

aiei(λ)ej (λ)Jj ,

(35)

where �e(λ) is the unit vector along the axis λ = (x, y, z). After
defining the electron density matrix

ρλλ′ =
∑
ss ′

[�e(λ) · �a]† [�e(λ′) · �a] (36)

and the hadronic matrix elements

wλ = 〈
P µ

π , P
µ

N ms, P
µ

A−1JRMR

∣∣�e(λ) · �J ∣∣P µ

A 0+〉, (37)

we can write for the matrix element∑
ss ′

∣∣M(e,e′Nπ)
f i

∣∣2 = e2

Q4

∑
λλ′

ρλλ′w
†
λwλ′ . (38)

With the degree of transverse polarization defined as

ε =
(

1 + 2q2

Q2
tan2 θe

2

)−1

, (39)

the electron density matrix becomes [27]

ρλλ′ = Q2

m2
e

1

1 − ε

×


1
2 (1 + ε) 0 − 1

2

√
2Q2

ω2 ε(1 + ε)

0 1
2 (1 − ε) 0

− 1
2

√
2Q2

ω2 ε(1 + ε) 0 Q2

ω2 ε

 .

(40)

After substituting Eq. (40) in Eq. (38), one can factor out a
part containing all the variables related to the electrons in the
differential cross section:

d8σ

d�e′dEe′dEπd�πd�N

= �
d5σv

dEπd�πd�N

≡ �C
∑∣∣M(γ ∗,Nπ)

f i

∣∣2. (41)

Here, M(γ ∗,Nπ)
f i = 〈P µ

π , P
µ

N ms, P
µ

A−1JRMR|Ô|qµ, P
µ

A 0+〉,
C = MA−1mN pπ pN

4(2π)5Eγ EA
f −1

rec , and � = α
2π2

Ee′
Ee

Eγ

Q2
1

1−ε
is the electron

flux factor, with the virtual photon equivalent energy

Eγ = s−M2
A

2MA
, the fine-structure constant α, and s = (qµ + P

µ

A )2

the Mandelstam variable of the virtual photoproduction
process. The cross section can be cast in the following form

d5σv

dEπd�πd�N

≡ d5σT

dEπd�πd�N

+ ε
d5σL

dEπd�πd�N

+ ε
d5σT T

dEπd�πd�N

+
√

ε(ε + 1)
d5σT L

dEπd�πd�N

, (42)

with
d5σT

dEπd�πd�N

= C
2

∑
msMR

(|Jx |2 + |Jy |2),

d5σL

dEπd�πd�N

= CQ2

ω2

∑
msMR

|Jz|2,
(43)

d5σT T

dEπd�πd�N

= C
2

∑
msMR

(|Jx |2 − |Jy |2),

d5σT L

dEπd�πd�N

= −C
2

√
2Q2

ω2

∑
msMR

(J ∗
x Jz + J ∗

z Jx).

As for the photoproduction case, we wish to establish a relation
between the invariant matrix element for virtual-photon pion
production on a nucleus (M(γ ∗,Nπ)

f i ) and on a free nucleon

(M(γ ∗,Nπ)
f i,free ). In comparison with the real photoproduction

process, the virtual photon has an extra degree of polarization
and Q2 �= 0. This does not alter the derivation presented in
the previous subsection and after neglecting negative energy
contributions, one arrives at

M(γ ∗,Nπ)
f i ≈ (2π )3/2

∑
ms′

(
M(γ ∗,Nπ)

f i,free

)
λ,ms,ms′

ū( �pm,ms ′ )φD
α ( �pm).

(44)
The matrix element M(γ ∗,Nπ)

f i,free is related to the free electropro-
duction process by

d5σ eN

dEe′d�e′dφ∗
πd|t | = �′ m2

N

2(2π )2
(
s ′ − m2

N

)2∑∣∣M(γ ∗,Nπ)
f i,free

∣∣2,
(45)

where �′ = α
2π2

Ee′
Ee

K
Q2

1
1−ε

is the electron flux factor, with the

virtual photon equivalent energy K = s ′−m2
N

2mN
. Further, s ′ =

(pµ

N + pµ
π )2 and t = (qµ − pµ

π )2 are the Mandelstam variables
for the free process. Starred variables denote center-of-mass
values.

With ρD defined in Eq. (29) and by making use of Eqs. (44)
and (45), we arrive at the factorized form for the differential
A(e, e′Nπ ) cross section:(

d8σ

d�e′dEe′dEπd�πd�N

)
D

= �

�′
MA−1pNpπ

(
s ′ − m2

N

)2
2mNEγ EA

f −1
rec ρD

d5σ eN

dEe′d�e′d|t |dφ∗
π

.

(46)
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We wish to stress that the assumptions made to arrive at this
expression are essentially identical to those made for the real
photon case discussed in the previous subsection.

C. Final-state interactions

The Glauber approach can be justified when the wavelength
of the outgoing hadron is sufficiently small in comparison to
the typical interaction length with the residual nucleons. In
the context of A(e, e′p) reactions [28] it was shown that the
Glauber model represents a realistic approach to FSI for proton
kinetic energies down to about 300 MeV. This corresponds to
proton de Broglie wavelengths of the order of 1.5 fm. For pions
comparable wavelengths are reached for kinetic energies of the
order of 700 MeV.

A relativistic extension of the Glauber model, dubbed
the relativistic multiple-scattering Glauber approximation
(RMSGA), was introduced in Ref. [24]. In the RMSGA, the
wave function for the ejected nucleon and pion is a convolution
of a relativistic plane wave and an Glauber eikonal phase
operator that accounts for FSI mechanisms. In Glauber theory
the assumption is made that a fast-moving particle interacts
through elastic or mildly inelastic collisions with frozen point
scatterers in a target. Scattering angles are assumed small and
each of the point scatterers adds a phase to the wave function,
resulting in the following expression for the Glauber eikonal
phase:

ŜiN (�r, �r2, . . . , �rA) =
A∏

j=2

[1 − �iN (�b − �bj )θ (zj − z)]

(with i = π or N ′). (47)

Here, �rj (�bj , zj ) are the coordinates of the residual nucleons and
�r(�b, z) specifies the interaction point with the (virtual) photon.
In Eq. (47), the z axis lies along the path of the ejected particle
i (the proton or pion) and �b is perpendicular to this path. The
Heaviside step function θ guarantees that only nucleons in the
forward path of the outgoing particle contribute to the eikonal
phase.

Reflecting the diffractive nature of the nucleon-nucleon
(N ′N ) and pion-nucleon (πN ) collisions at intermediate
energies, the profile functions �N ′N and �πN in Eq. (47) are
parametrized as

�iN (�b)

= σ tot
iN (1 − iεiN )

4πβ2
iN

exp

(
−

�b2

2β2
iN

)
(with i = π or N ′).

(48)

Here, the parameters σ tot
iN (total cross section), βiN (slope

parameter), and εiN (ratio of the real to imaginary part of
the scattering amplitude) depend on the momentum of the
outgoing nucleon or pion i. For i = N ′, we determined the
parameters by performing a fit [24] to the N ′N −→ N ′N
databases from the Particle Data Group (PDG) [29]. For the
pion, σ tot

πN was fitted to data collected by PDG [29]. The
analysis of the slope parameter in Ref. [30] was used for
the βπN fits. Fits provided by SAID [31,32] and data from

 [GeV/c]πp

-110 1 10

 [
m

b]
p- πσ

10 Elastic

Total

 [GeV/c]πp

-110 1 10

 [
m

b]
p

+ πσ

10

210

Elastic

Total

FIG. 2. The pion lab-momentum dependence of the data [29] and
adopted fits for the total and elastic cross section for π−-p (upper
panel) and π+-p (lower panel) scattering.

PDG [29] were used in constructing the fits for επN . The fits
for σ tot

iN , βiN , and εiN of Figs. 2, 3, and 4 are the result of a χ2

minimization of the data against a a n-th degree polynomial
(with n � 10). An alternative way of determining βπN , is via

 [GeV/c]πp
1 10

]
-2

 [
(G

ev
/c

)
p- π2 β

0

5

10

15

20

 [GeV/c]πp
1 10

]
-2

 [
(G

ev
/c

)
p

+ π2 β

0

5

10

15

FIG. 3. The pion lab-momentum dependence of the data [30] and
fits for the β2

pπ parameter for π−-p (upper panel) and π+-p (lower
panel) scattering. Full curves are a χ 2 fit to the data, whereas the
dashed curves result from Eq. (49).
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p
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FIG. 4. The pion lab-momentum dependence of the ratio of the
real to imaginary part of the π−-p (upper panel) and π+-p (lower
panel) amplitudes. The diamonds represent an analysis of the data by
the George Washington University group [31,32], whereas the solid
circles are from PDG [29]. The solid line is the fit to the data that are
used in the numerical calculations.

the relation

β2
πN =

(
σ tot

πN

)2(
1 + ε2

πN

)
16πσ el

πN

, (49)

with σ el
πN the elastic cross section. Fits for σ el

πN to data from
PDG [29] are also presented in Fig. 2. The two sets for
the βπN parameter in Fig. 3 do not produce significantly
different results for the numerical calculations presented here.
We use the χ2 fit for βπN in all calculations presented in this
article.

The Glauber operator of Eq. (47) is an A-body operator.
As a consequence, it requires integrations over all spectator
nucleon coordinates in Eq. (14), which is computationally
very demanding, in particular for heavy target nuclei. In
γ (∗) + A → (A − 1) + N + π calculations, a product of two
Glauber phases is involved and the cylindrical symmetry of
the individual phases is lost. A Romberg algorithm is used
to perform the integrations over the spatial coordinates in
Eq. (14).

For nucleons with a kinetic energy lower than about
300 MeV, the approximations underlying the Glauber for-
malism are no longer applicable, and an alternative method
to model FSI is required. Under those circumstances our
framework provides the flexibility to adopt the relativistic
optical model eikonal approximation (ROMEA) [33]. In the
ROMEA approach, the wave function of a nucleon with energy
E =

√
p2

N + m2
N after scattering in a scalar [Vs(r)] and vector

[Vv(r)] spherical potential has the following form:

ψ
(+)
�pN ,ms

(�r)

=
√

E + mn

2mN

[
1

1
E+mN +Vs (r)−Vv (r) �σ · �̂p

]
ei �pN ·�reiŜN ′N (�r)χ 1

2 ms
,

(50)

with the eikonal phase determined by

iŜN ′N (�b, z) = −i
mN

K

∫ z

−∞
dz′{Vc(�b, z′) + Vso(�b, z′)

× [�σ · (�b �K) − iKz′]}. (51)

In this last equation, �K = 1
2 (�ki + �kf ) is the average of

the initial and final momentum of the scattering particle. In
the small angle approximation, �K ≈ �pN and points along the
z axis. The central and spin-orbit potentials Vc and Vso are
functions of Vs and Vv and their derivatives [33].

Additional approximations were used in the implemen-
tation of optical-potential FSI in this ROMEA model. The
dynamical enhancement of the lower components of the
scattering wave function (50) is ignored as at low momenta
the lower components are small compared to the upper
components due to �̂p and at higher momenta (Vs − Vv) is
small in comparison to (E + mN ). The operator �̂p was also
substituted by the asymptotic value �pN . Finally, as collisions
were assumed spin independent in Eq. (12), the spin-orbit
potential Vso in Eq. (51) is neglected. This yields the following
phase factor entering in Eq. (14):

ŜROMEA
N ′N (�r) = e

−i
mN
pN

∫ +∞
zN

dzVc(�bpN
,z)

. (52)

In contrast to the Glauber eikonal phase, the optical poten-
tial eikonal phase of Eq. (52) depends solely on the coordinate
�r that defines the interaction point. As a consequence, it can be
taken out of all the integrations in Eq. (14) and the cylindrical
symmetry of the pion Glauber eikonal factor is retained, hereby
considerably reducing the cost of computing the total FSI
factor FFSI. For the numerical evaluation of the ROMEA
phase factor, we made use of the optical potential of van Oers
et al. [34] for 4He and the global (S − V ) parametrization of
Cooper et al. [35] for heavier nuclei.

D. Color transparency and short-range correlations

We implement color transparency effects in the usual
fashion by replacing the total cross sections σ tot

iN in the profile
functions of Eq. (48) with effective ones [36]. The latter induce
some reduced pion-nucleon and nucleon-nucleon interaction
over a typical length scale lh corresponding with the hadron
formation length (i = πorN ′)

σ eff
iN

σ tot
iN

=
{[Z

lh
+
〈
n2k2

t

〉
H

(
1 − Z

lh

)]
θ (lh − Z) + θ (Z − lh)

}
.

(53)

Here, n is the number of elementary fields (2 for the pion, 3
for the nucleon), kt = 0.350 GeV/c is the average transverse
momentum of a quark inside a hadron, Z is the distance
from the interaction point, and lh � 2p/�M2 is the hadronic
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Z [fm]
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t

iN
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f

iNσ

0.5

1

FIG. 5. Comparison of the CT effect on the total effective cross
section σ eff

iN for nucleon-nucleon (full) and pion-nucleon (dashed)
interactions. We consider the situation whereby the ejectile possesses
a lab momentum of 2.5 GeV/c. For the hard-scale parameter we adopt
H = 1.8 (GeV/c)2.

expansion length, with p the momentum of the final hadron and
�M2 the mass squared difference between the intermediate
prehadron and the final hadron state. We adopt the values
�M2 = 1 GeV2 for the proton and �M2 = 0.7 GeV2 for the
pion. H is the hard-scale parameter that governs the CT effect.
It equals the momentum transfer t = (qµ − pµ

π )2 (pion CT)
or u = (qµ − p

µ

N )2 (nucleon CT) for pion photoproduction
and Q2 for pion electroproduction. Figure 5 illustrates the
predicted difference of the CT effect on the pion-nucleon and
nucleon-nucleon effective interaction. Reflecting its mesonic
nature, the pion has a longer formation length and during
its formation its interaction cross section with the residual
nucleons is more strongly reduced than for a nucleon.

We now proceed with introducing a method that allows
us to implement the effect of SRC in the relativistic Glauber
calculations. The proposed method adopts the thickness ap-
proximation as a starting point. In the thickness approximation,
the density |φαi

(�ri)|2 of the individual nucleons in Eq. (14) is
replaced by an averaged density ρ

[1]
A (�r) defined as

ρ
[1]
A (�r) = A

∫
d�r2 . . .

∫
d�rA

[
ψ

g.s.
A (�r, �r2, . . . , �rA)

]†
×ψ

g.s.
A (�r, �r2, . . . , �rA). (54)

In terms of ρ
[1]
A (�r) the FSI factor of Eq. (14) can be

approximated by

F thick
FSI (�r) = 1

AA−1

∫
d�r2 . . .

∫
d�rAρ

[1]
A (�r2)ρ[1]

A (�r3) . . . ρ
[1]
A (�rA)

×ŜπN (�r; �r2, . . . , �rA)ŜN ′N (�r; �r2, . . . , �rA). (55)

In combination with the operators of Eq. (47) the expression
can be further simplified to

F thick
FSI (�r)

=
{∫

d�r2
ρ

[1]
A (�r2)

A
[1 − �N ′p(�bN ′ − �bN ′2)θ (zN ′2 − zN ′)]

× [1 − �πp(�bπ − �bπ2)θ (zπ2 − zπ )]

}Z− τz+1
2

×
{∫

d�r3
ρ

[1]
A (�r3)

A
[1 − �N ′n(�bN ′ − �bN ′3)θ (zN ′3 − zN ′)]

× θ [1 − �πn(�bπ − �bπ3)(zπ3 − zπ )]

}N+ τz−1
2

, (56)

where τz is the isospin (1 for protons and −1 for neutrons)
of the nucleon on which the initial absorption took place. The
zN ′ (zπ ) axis lies along the ejected nucleon (pion). The above
expression is derived within the context of the IPM. It is clear
that the nucleus has a fluid nature and that the IPM can only
be considered as a first-order approximation. In computing the
FSI effects by means of the Eq. (56) one fails to give proper
attention to one important piece of information: namely that
one considers the density distribution of nucleons given that
there is one present at the photointeraction point �r .

The two-body density ρ
[2]
A (�r1, �r2) is related to the probabil-

ity to find a nucleon at position �r2 given that there is one at a
position �r1. We adopt the following normalization convention
for ρ

[2]
A ∫

d�r1

∫
d�r2ρ

[2]
A (�r1, �r2) = A(A − 1). (57)

In the IPM on has [ρ[2]
A (�r1, �r2)]IPM ≡ A−1

A
ρ

[1]
A (�r1)ρ[1]

A (�r2). The
nucleus has a granular structure as the nucleons have a finite
size. This gives rise to strong nucleon-nucleon repulsions at
short internucleon distances that reflect themselves in SRC at
the nuclear scale. One can correct [ρ[2]

A (�r1, �r2)] for the presence
of the SRC by adopting the following functional form [37]

ρ
[2]
A (�r1, �r2) ≡ γ (�r1)

[
ρ

[2]
A (�r1, �r2)

]
IPMγ (�r2)g(r12)

= A − 1

A
γ (�r1)ρ[1]

A (�r1)ρ[1]
A (�r2)γ (�r2)g(r12), (58)

with g(r12) the so-called Jastrow correlation function and γ (�r)
a function that imposes the normalization condition of Eq. (57)
on ρ

[2]
A (�r1, �r2). The function γ (�r) is a solution to the following

integral equation

γ (�r1)
∫

d�r2ρ
[1]
A (�r2)g(r12)γ (�r2) = A, (59)

which can be solved numerically. The Glauber phase factor of
Eq. (56) can now be corrected for SRC through the following
substitution

ρ
[1]
A (�r2) → A

A − 1

ρ
[2]
A (�r2, �r)

ρ
[1]
A (�r)

= γ (�r2)ρ[1]
A (�r2)γ (�r)g(|�r2 − �r|)

≡ ρeff
A (�r2, �r) , (60)

whereby ρ
[2]
A (�r2, �r) adopts the expression (58). These manipu-

lations amount to the following final expression for the Glauber
FSI factor including SRC:

FSRC
FSI (�r) =

{∫
d�r2

γ (�r2)ρ[1]
A (�r2)γ (�r)g(|�r2 − �r|)

A

× [1 − �N ′p(�bN ′ − �bN ′2)θ (zN ′2 − zN ′)]

× [1 − �πp(�bπ − �bπ2)θ (zπ2 − zπ )]

}Z− τz+1
2
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FIG. 6. (Color online) The effective
nuclear density ρeff

A (�r2, �r) at z2 = 0 for
He (left) and Fe (right) before (upper)
and after (lower panel) the inclusion of
SRC effects. The effective nuclear den-
sities here refer to the situation whereby
the (virtual) photon is absorbed at the
origin (x = 0, y = 0, z = 0).

×
{∫

d�r3
γ (�r3)ρ[1]

A (�r3)γ (�r)g(|�r3 − �r|)
A

× [1 − �N ′n(�bN ′ − �bN ′3)θ (zN ′3 − zN ′ )]

× [1 − �πn(�bπ − �bπ3)θ (zπ3 − zπ )]

}N+ τz−1
2

.

(61)

The effective density of Eq. (60) accounts for the fact that the
motion of each nucleon does depend on the presence of the
other ones. In Fig. 6 we display the effective nuclear density
as it would be observed by a nucleon or a pion created after
photoabsorption on a nucleon at the center of the nucleus.
The figure shows the density for Fe as computed in the
IPM [ρ[1]

A (x, y, z ≡ 0)] and with the expression based on the
substitution of Eq. (60)

γ (x, y, z ≡ 0)ρ[1]
A (x, y, z ≡ 0)γ (x ≡ 0, y ≡ 0, z ≡ 0)g(|�r|).

In Fig. 6 and all forthcoming numerical calculations we use a
correlation function g(|�r|) from Ref. [38]. It is characterized
by a (Gaussian) hard core of about 0.8 fm and a second
bump that extends to internucleon distances r of about 2 fm
and reaches its maximum for r12 ≈ 1.3 fm. This correlation
function provided a fair description of the SRC contributions to
12C(e, e′pp) [39] and 16O(e, e′pp) [40]. It is clear that the SRC
lead to a local reduction—with size of the nucleon radius—of
the density around the nucleon struck by the (virtual) photon.

To preserve the proper normalization, this reduction amounts
to some enhanced density at distances of about twice the
nucleon radius. With regard to the intranuclear attenuation,
the reduction of the density in the proximity of the struck
nucleon will result in some enhanced transparency close to the
photointeraction point �r . The enhanced density at positions of
about twice the nucleon radius from the struck nucleon, can
be expected to have the opposite effect.

III. NUMERICAL RESULTS

A. The FSI factor

In this subsection we present a selected number of results
of the numerical calculations of the RMSGA FSI factor of
Eq. (14). We consider the 12C(γ, pπ−) reaction in a reference
frame with the z axis along the momentum �pN of the ejected
nucleon and the y axis along �pπ × �pN (with �pπ in the lower
hemisphere). In what follows, θNπ stands for the angle of
the pion relative to the nucleon. It has a negative value in
all calculations considered in this section. The coordinate �r
denotes the interaction point with the external photon. We
present the FSI factor versus the spherical coordinates in this
frame.

In Fig. 7, we present the calculated norm and phase of the
FSI factor in the scattering plane (φ = 0) for pN ≈ 2.6 GeV
and pπ ≈ 2.3 GeV, which are conditions for which Jefferson
Lab collected data. We present the FSI factor for the proton

034602-9
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FIG. 7. (Color online) Radial and
polar-angle dependence of the norm (left)
and phase (right) of the FSI factor FFSI

in the scattering plane (φ = 0◦) for the
12C(γ, pπ−) reaction from the 1s1/2 level.
For the upper (middle) panels, solely the
FSI effects on the ejected proton (pion) are
considered. The lower panels include the
net effect of both the pion and nucleon
FSI effect. The results are obtained for
pN = 2638 MeV, pπ = 2291 MeV, and
θNπ = −65.19◦.

and the pion separately as well as the combined effect when
the two are detected in coincidence.

When looking at the θ dependence, it becomes clear from
Fig. 7 that the norm is smallest in the direction opposite the mo-
mentum of the particle (being 180◦ for the nucleon and 180◦ +
θNπ for the pion). For these directions and large r , the nucleon
or pion is created close to the surface of the nucleus on the op-
posite side of its asymptotic direction and has to travel through
a thick layer of nuclear medium before it reaches a free status.
As for the r dependence, we see for the nucleon a reduction of
the FSI effects for rising r at angles in the neighborhood of θ =
0◦ and, respectively, an increment for rising r at θ = 180◦. This
is again due to the fact that the outgoing nucleon traverses less,
respectively; more nuclear matter on its way out of the nucleus.
The same observations apply for the pion, albeit at the angles
θNπ and 180◦ + θNπ . The total FSI factor combines the in-
tranuclear attenuation effects on the nucleon and pion. Hence,
the norm shows the largest reduction at θ around 180◦ and
180◦ + θNπ . The phase of the FSI factor exhibits similar be-
havior, with the largest phase shifts occurring at the discussed
angles.

Figure 8 teaches us a couple things about the φ dependence
of the FSI factor. As the outgoing nucleon lies along the z axis
there is no dependence on the azimuthal angle because of the
cylindrical symmetry. Again, we can see that the absorption
is largest when large amounts of nuclear matter need to be
traversed (i.e., large θ ). Looking at the pion we see the largest
attenuation occurs in the upper hemisphere (cos φ � 0) as a
pion that is created in this region has to traverse the inner core
of the nucleus. The combined effect of the pion and nucleon
contributions is contained in the bottom panel. As the reaction
takes place in the xz plane, the total FSI factor retains the
following symmetry: FFSI(r, θ, φ) = FFSI(r, θ, 2π − φ).

B. Pion photoproduction

The experiment E94-104 at Jefferson Lab extracted nuclear
transparencies for γ +4He → p + π− +3He. The measure-
ments were performed for photon energies 1.6 � q � 4.2 GeV
and for θc.m. = 70◦ and 90◦, with θc.m. the center-of-mass
angle between the photon and pion. In total, the nuclear
transparencies were measured for eight kinematical settings.
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TABLE I. Central values for the photon energy (MeV), proton
momentum pN (MeV), proton angle θN , pion momentum pπ (MeV),
and pion angle θπ for θc.m. = 70◦, 90◦. Angles are measured relative
to the incoming photon momentum.

q θc.m. pN θN pπ θπ

1648 70◦ 989 47.39◦ 1238 −36.02◦

1648 90◦ 1277 37.37◦ 1015 −47.73◦

2486 70◦ 1322 44.37◦ 1794 −31.02◦

2486 90◦ 1740 34.45◦ 1438 −43.18◦

3324 70◦ 1642 41.74◦ 2363 −27.56◦

3324 90◦ 2195 32.01◦ 1866 −38.57◦

4157 70◦ 1949 39.51◦ 2929 −25.05◦

4157 90◦ 2638 30.01◦ 2291 −35.18◦

4327 70◦ 2011 39.1◦ 3044 −24.6◦

4327 90◦ 2727 29.6◦ 2377 −34.6◦

5160 70◦ 2307 37.3◦ 3606 −22.8◦

5160 90◦ 3161 28.0◦ 2797 −32.1◦

6059 70◦ 2622 35.6◦ 4211 −21.2◦

6059 90◦ 3625 26.6◦ 3250 −29.9◦

7025 70◦ 2956 33.9◦ 4861 −19.8◦

7025 90◦ 4120 25.2◦ 3735 −28.0◦

8057 70◦ 3309 32.4◦ 5555 −18.6◦

8057 90◦ 4646 24.0◦ 4253 −26.3◦

9156 70◦ 3683 31.0◦ 6294 −17.6◦

9156 90◦ 5204 22.8◦ 4805 −24.8◦

10322 70◦ 4077 29.7◦ 7077 −16.6◦

10322 90◦ 5794 21.8◦ 5389 −23.5◦

In a proposal for a follow-up experiment, seven additional
kinematics are suggested for measurements at higher photon
energies and θc.m. = 90◦ [41]. We have performed calculations
for the completed and planned experiments. Table I provides
a list of the kinematics.

We aim at performing calculations that match the kinematic
conditions of the experiment as closely as possible. We use the
following definition for the transparency:

T =
∑

α

∫
dqY (q)

∫
d �pm

(
d5σ

dEπi
d�πi

d�Ni

)
RMSGA∑

α

∫
dqY (q)

∫
d �pm

(
d5σ

dEπi
d�πi

d�Ni

)
RPWIA

. (62)

The integrations
∫
dq
∫
d �pm in Eq. (62) were evaluated with

a random integration algorithm. To this end, random events
within the photon beam energy range, detector acceptances,
and applied cuts for each data point were generated for the
calculation of the transparency until convergence of the order
of 5% was reached. Typically, this involves about 1000 events
for each data point. In Eq. (62),

∑
α extends over all occupied

single-particle states in the target nucleus. All cross sections
are computed in the laboratory frame. Y (q) provides the
weight factor for the generated events. It includes the yield
of the reconstructed experimental photon beam spectrum [14]
for the photon energy of the generated event. We assume
that the elementary γ + n → π− + p cross section dσγπ

d|t | in
Eqs. (28) and (30) remains constant over the kinematical
ranges

∫
dq
∫
d �pm that define a particular data point. With this

assumption the cross section dσγπ

d|t | cancels out of the ratio (62).
For all kinematic conditions of Table I, the pion and nucleon
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FIG. 8. (Color online) Polar- and azimuthal-angle dependence of
the norm of the FSI factor FFSI at a distance r = 3 fm from the center
of the nucleus for the 12C(γ, pπ−) reaction from the 1s1/2 level.
Separate contributions from the nucleon (upper panel) and the pion
(middle panel), as well as their combined effect (bottom panel), are
shown. Kinematics as in Fig. 7.

momenta are sufficiently high for the RMSGA method to be a
valid approach for describing the FSI mechanism.

For a discussion of the computed results compared to the
experimental data and a semi-classical model we refer the
reader to Ref. [17]. In Fig. 9 the separated transparencies for the
outgoing proton and pion are displayed next to the full result. It
is clear from this figure that the rise of the transparency at low
|t | can be attributed to the proton contribution. This rise can be
attributed to the local minimum in the total nucleon-nucleon
cross section for nucleon momenta of about 1 GeV.

Figure 9 also shows that the 4He nucleus is more transparent
for pion emission than for proton emission. This can be
partially attributed to the lower pion total cross sections.
As pointed out in Fig. 5 the larger formation length and
corresponding bigger reduction of the effective cross section
make that the CT effect is larger for pions than for protons.
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FIG. 9. Contributions of the pion (dashed-dotted) and nucleon
(dashed) to the total nuclear transparency (full) extracted from
4He(γ, pπ−) versus |t | at θc.m. = 70◦. All calculations include CT.

In Fig. 10 the computed increase in the nuclear transparency
caused by CT and SRC mechanisms is shown as a function
of |t |. One observes that SRC mechanisms increase the nuclear
transparency by about 5%. As there is no direct dependence on
the hard scale, the increase is almost independent of |t |. The
CT phenomenon, however, shows a linear rise from almost 0
to over 20% at the largest values of |t |. For −t � 2.5 GeV2

the predicted effect of SRC is larger than the increase induced
by the CT mechanism. The SRC decrease the slope in the −t

dependence of the CT phenomenon. Indeed, the SRC induces
holes in the nuclear density in the direct neighborhood of the
interaction point (see Fig. 6) where the CT effects are largest.
At high |t | the short-range correlations have a modest impact
on the magnitude of the CT effects. Our investigations show
that by studying the hard-scale dependence of the transparency
the CT-related mechanisms can be clearly separated from the
SRC ones.

In the search of phenomena like CT in transparency studies,
it is of the utmost importance to possess robust and ad-
vanced calculations based on concepts from traditional nuclear
physics. Thereby, one of the major sources of uncertainty
stem from the description of FSI mechanisms. In our eikonal
model, we can either use optical potentials (ROMEA) or
a Glauber framework (RMSGA). In kinematic regions of
moderate hadron momenta both approaches can be used [28].
As they adopt very different underlying assumptions, we

TABLE II. Central values of Q2 (GeV2), incoming elec-
tron energy Ee (MeV), electron scattering angle θe (degrees),
scattered electron energy Ee′ (MeV), ejected pion momentum
pπ (MeV), and ejected pion angle (degrees) for the kinematics
of the Jefferson Laboratory experiment E01-107. Angles are
measured relative to the incoming electron beam.

Q2 Ee θe Ee′ pπ θπ

1.10 4021 27.76◦ 1190 2793 10.58◦

2.15 5012 28.85◦ 1730 3187 13.44◦

3.00 5012 37.77◦ 1430 3418 12.74◦

3.91 5767 40.38◦ 1423 4077 11.53◦

4.69 5767 52.67◦ 1034 4412 9.09◦

consider a comparison between the predictions of the two
approaches as a profound test of the trustworthiness of either
approach. We computed the transparency of the 4He(γ, pπ−)
reaction for kinematics at θc.m. = 70◦ and 90◦ with ejected
proton momenta ranging from 500 MeV/c to 1 GeV/c. As
can be appreciated from Fig. 11, both descriptions yield a
similar shape, but the RMSGA calculations are consistently
larger by about 5%. At higher nucleon momenta, however,
the difference between the predictions for the transparencies
in the two approaches shrinks to a few percentages. The
estimated model dependence in the computed transparencies
is of the same order as the predicted role of SRC mechanisms.
From these observations, it is clear that pion and nuclear
transparencies are not the optimum observables to study SRC
mechanisms in nuclei. Indeed they bring about a relatively
modest overall renormalization of about 5%. Unlike the CT
effects, for example, their role does not grow with an increasing
hard scale, nor is there any sizable A dependence in the SRC
effects.

C. Pion electroproduction

The E01-107 collaboration at Jefferson Lab measured the
nuclear transparency for the pion electroproduction process on
H,12C,27Al,64Cu, and 197Au. Measurements were done for the
kinematics listed in Table II. In all the measurements the pion
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FIG. 10. The |t | dependence of the relative increase of the nuclear transparency due to SRC and CT effects. We consider the 4He(γ, pπ−)
reaction at θc.m. = 70◦ (left panel) and 90◦ (right panel) and kinematic conditions from Table I. The baseline result is the RMSGA calculation.
The solid (dashed) curve includes the effect of CT (SRC). The dot-dashed line is the combined effect of CT+SRC.
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FIG. 11. Comparison between the RMSGA (squares) and ROMEA (circles) description of the nucleon transparency of the 4He(γ, pπ−)
reaction for kinematics at θc.m. = 70◦ (left panel) and 90◦ (right panel). Neither CT nor SRC effects were included in the calculations.

is detected in a relatively narrow cone about the momentum
transfer. We have performed calculations for all target nuclei.
The transparency is defined as

T =
∑

α

∫
dωY (ω)

∫
�3pm

d �pm

(
d8σ

d�e′dEe′ dEπ d�π d�N

)
RMSGA∑

α

∫
dωY (ω)

∫
�3pm

d �pm

(
d8σ

d�e′ dEe′dEπ d�π d�N

)
RPWIA

.

(63)

The integration over ω takes into account the spread in energy
of the virtual photon in the experiment and weighs each
point with the reconstructed yield Y (ω) [42]. The quantity
�3pm specifies the phase space of the missing momen-
tum and is determined by the condition |pm| � 300 MeV/c
and the experimental cuts and detector acceptances. An
experimental cut of 100 MeV was placed on the missing mass
of the final state. Accordingly, the undetected final neutron
is an extremely slow one. The experimentally determined
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FIG. 12. (Color online) The Q2 dependence of the nuclear transparency for the A(e, e′π+) process in 12C,27Al,63Cu, and 197Au. The black
and green curves are RMSGA and RMSGA+CT calculations respectively. The blue and red line are RMSGA+SRC and RMSGA+SRC+CT
results.
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FIG. 13. (Color online) A dependence of the transparency for the
A(e, e′π+) process at Q2 = 1.1 GeV2 (black) and Q2 = 4.69 GeV2

(red). The solid curves denote RMSGA+SRC results. The dashed
lines are RMSGA+CT+SRC calculations.

transparency was formed by dividing the measured yield by
a Monte Carlo equivalent yield for the targets with nucleon
number A and comparing it to the ratio of the yields from
the 1H target [15]. As the Monte Carlo simulation does not
include the attenuation mechanisms on the detected pions,
the measured transparency is a measure of these. We compute
these intranuclear attenuation effects on the ejected pions in the
RMSGA model. Thereby, we use a parametrization provided
by the E01-107 collaboration for the free electroproduction in
Eq. (46) [42,43].

Figure 12 presents the results from our transparency
calculations for the electroproduction reaction. The RMSGA
calculations show a modest increase over the Q2 range. This
behavior finds a simple explanation in the pπ dependence of
the σ tot

π+p of Fig. 2. The results contained in Fig. 12 cover a
range in pion momenta given by 2.8 � pπ � 4.4 GeV. In this
range, σ tot

π+p displays a soft decrease, which reflects itself in a
soft increase of the nuclear transparency. The RMSGA+CT
transparencies are again about 5% larger than the RMSGA
ones. The RMSGA+CT shows a strong Q2 dependence with
CT-related enhancements up to 20% at the highest energies.
The evolution of the A dependence of the transparency is
shown in Fig. 13. One observes that the addition of CT to
the calculation adds more curvature and that this increases
with higher Q2. Finally, in Fig. 14, we compare our model
calculations with the results from the semiclassical model
of Ref. [16]. The transparency is plotted as function of
�k = �pπ − �q. As in the photoproduction calculations [17],
our results again turn out to be higher by a few
percentages.
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FIG. 14. Nuclear transparency results for 12C(e, e′π+) versus
the z component of �k = �pπ − �q for kinematics corresponding to
data points of the JLab experiment of Ref. [15]. The circles are
RMSGA+CT predictions, whereas the stars are from the semiclassi-
cal calculations of Ref. [16].

IV. CONCLUSION

We have outlined a relativistic framework to compute
nuclear transparencies in exclusive A(γ,Nπ ) and A(e, e′Nπ )
reactions. For the bound states, the model uses relativistic
mean-field wave functions. At sufficiently high nucleon and
pion energies, the intranuclear attenuation on the ejected
particles can be computed with a relativistic version of the
Glauber model. At lower ejectile energies, the framework
offers the flexibility to use optical potentials. For nucleon
momenta where both approaches can be applied, the Glauber
and optical-potential based calculations predict nucleon trans-
parencies in 4He that follow similar trends. The differences
in the magnitude of the transparency is smaller than 5% and
shrinks with nucleon momentum. Our RMSGA predictions
for the pion transparencies are in reasonable agreement with
the semiclassical results of Larson, Miller, and Strikman. Both
models predict similar trends, with the RMSGA predictions
being systematically ≈5% higher. This provides support that
the baseline nuclear-physics transparencies can be computed
in a rather model-independent fashion. Extension of our rela-
tivistic and quantum mechanical photoproduction calculations
up to energies accessible in the JLab 12 GeV upgrade show an
increase of the transparency up to 20% at the highest energies
due to color transparency. Transparencies are also enhanced
through the inclusion of SRC effects in the calculations. This
yields an increase of about 5%, independent of the hard scale.
Accordingly the SRC and CT mechanisms can be clearly
separated.
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