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Using the alpha (α)-cluster structure of 12C nucleus, two versions of the 12C+12C real double folded optical
potentials have been generated based upon effective α-α, α-nucleon (N ) and N -N interactions. The obtained
potentials, in conjunction with shallow phenomenological Woods-Saxon imaginary parts, successfully reproduce
the elastic scattering differential cross section for 12 sets of data over the broad energy range 70–360 MeV. No
renormalization of the real folded potentials is required to fit the data. The energy dependence of the extracted
real and imaginary volume integrals and total reaction cross section is investigated.
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I. INTRODUCTION

Knowledge of the ion-ion interaction potential is a key
ingredient in the analysis of nuclear reactions. By using the
potential between colliding nuclei we can estimate the cross
sections of different nuclear reactions such as elastic, inelastic
and fusion reactions, which are strongly dependent on the
nucleus-nucleus interaction potential [1–3]. Although many
different approaches to the nuclear part of the interaction
potential have been adopted, this part is still, unfortunately,
less defined.

In the last three decades, several attempts have been
performed to develop folding formulations of the optical
model potential for the analyses of the elastic and inelastic
heavy ions (HI) scattering [4–13]. The original version of
the double folding (DF) model [14] based upon a realis-
tic effective nucleon-nucleon (NN ) interaction successfully
described most of scattering reactions dominated by the
strong absorption, which makes the HI elastic scattering
data sensitive only to the surface part of the nucleus-nucleus
potential. However, the situation is different if a refractive or
rainbow scattering is observed, where the data are sensitive
to the nuclear potential over a wider radial domain. For such
reactions the simple DF model [14] failed to give a good
description of the data. Refractive scattering contribution in
HI systems, such as 12C+12C, 12C+16O, 16O+16O, has been
discussed in several articles (e.g., Refs. [6,8,15–18]).

Some attempts [4,5] were carried out to impose on the M3Y
effective NN interaction [19] an explicit density dependence to
account effectively for the in-medium effects which are more
substantial at internuclear distances, the so-called DDM3Y
interaction. Khoa et al. [6] used, also, different density-
dependent versions of the M3Y effective interaction for
analyses of the elastic scattering of 12C+12C, 16O+16O data.

On the other hand, El-Azab Farid et al. [8,9], and recently
Karakoc and Boztosun [10], have employed the α-cluster
structure of the interacting nuclei in the folding formalism
to generate α-particle single folding cluster (SFC) and light
HI double folding cluster (DFC) optical potentials based
upon an appropriate α-α interaction. They [8,9] assumed that
projectile and target nuclei consist of an integer multiple

of the number of α-particles. However, in most of the
studied reactions [8–10], it was essential to introduce reducing
renormalization coefficients (∼0.7–0.9) in order to obtain
successful description of the HI elastic scattering data.

Recently, Abdullah et al., in three successive articles [11–
13], have proposed a SFC model to successfully reproduce the
differential cross-section of elastic scattering of α-particles on
12C,16O and 40,44,48Ca and 16O+12C over a broad spectrum of
incident energies. In this model they [11–13] considered the
view that most of the time a number of nucleons in the target
nucleus are primarily in α-like clusters and the rest are in an
unclustered nucleonic configuration. This leads to the folding
potential as a sum of two potentials, one convoluted over the
α-cluster density distribution and the other over the nucleonic
density distribution. In this formalism no renormalization was
required in order to fit the data. Furthermore, they [11–13]
deduced the α-cluster structure configurations for 12C, 16O, and
40,44,48Ca, respectively as 2.35α + 2.6N, 3.5α + 2N, 8.5α +
6N, 8.5α + 10N , and 8.5α + 14N .

In the present study we investigate the 12C+12C elastic
scattering in the framework of the two models, the DFC of
El-Azab Farid et al. [8,9] and a DFC extended from the SFC
of Abdullah et al. [11–13]. For the sake of comparison we
construct both models based upon the same α-α interaction.
Twelve sets of data are analyzed over the broad energy range
70–360 MeV using the generated DFC potentials. In the
following section, a theoretical formalism is presented, while
calculations procedure is described in Sec. III. Section IV is
devoted for results and discussion and finally conclusions are
summarized in Sec. V.

II. THEORETICAL FORMALISM

A. Folding approaches

Our aim in the present study is to describe the 12C+12C
elastic scatting using two different semimicroscopic real
folded potentials. In the first, the cluster structure 12C ≡ 3α

is considered. Then, the folded potential, denoted as DFC1,
is generated by folding an effective α-α interaction over the
α-cluster density distributions in both projectile and target
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nuclei [8,9]. In this context, if one denotes the density
distributions of α-clusters inside the projectile and target
nuclei by ρCP and ρCT, respectively, the DFC1 potential can
be expressed as [8,9]

UDFC1(R) =
∫ ∫

ρCP(r1)ρCT(r2)Vα-α(| �R − �r1 + �r2|)d�r1d�r2.

(1)

Here, R denotes the projectile-target relative position vector
and r1 and r2are, respectively, the c.m. coordinates of the α-
clusters in the projectile and target nuclei. The α-α effective
interaction V α-α is parametrized as [11–13,20]

Vα-α(s) = VR exp
(−µ2

Rs2
) − VA exp

(−µ2
As2

)
, (2)

where VA and VR are the attractive and repulsive depths and µA

and µR are the corresponding range parameters. We consider
VA = 122.62 MeV, µA = 0.469 fm−1, and µR = 0.54 fm−1,
while the depth VR is kept free parameter in the calculations.
The α-cluster distribution inside 12C is described in the next
subsection.

To deduce the second folded potential, denoted as DFC2,
we consider the cluster structure 12C ≡ Aαα + ANN ; i.e., 12C
nucleus is composed of Aα α-particles plus AN unclustered
nucleons, such that 4Aα + AN = 12. Consequently, if one
denotes the density distributions of the α-clusters and unclus-
tered nucleons in the projectile and target by ραP , ρNP , ραT ,
and ρNT , respectively, the DFC2 potential can be
constructed as

UDFC 2(R) =
∫ ∫

ραP (rαP )ραT (rαT )Vα−α(| �R − �rαP + �rαT |)d�rαP d�rαT

+
∫ ∫

ραP (rαP )ρNT (rNT )Vα−N (| �R − �rαP +�rNT |)d�rαP d�rNT

+
∫ ∫

ραT (rαT )ρNP (rNP )Vα−N (| �R − �rαT + �rNP |)d�rαT d�rNP

+
∫ ∫

ρNT (rNT )ρNP (rNP )VN−N (| �R − �rNT + �rNP |)d�rNT d�rNP , (3)

where rαP (rNP ) and rαT (rNT ) are, respectively, the c.m.
coordinates of the α-clusters (unclustered nucleons) in the
projectile and target nuclei, Vα−N and VN−N are the α-N and
NN effective interactions, respectively. The α–N interaction
has the following form [21]:

Vα−N (s) = −V0αN exp(−K2s2), (4)

where V0αN = 47.3 MeV and K = 0.435 fm−1. The NN

potential is given in a Gaussain form as [7,22]

VN−N (s) = −V0NN exp

[
−

( s

a

)2
]

(5)

with V0NN = 20.97 MeV and a = 1.47 fm.

B. Density distributions

We consider, first, the cluster structure 12C ≡ 3α. The
matter density of 12C nucleus is usually expressed in a modified
form of the Gaussian shape as [8]

ρm(r) = ρ0m(1 + wr2) exp(−βr2). (6)

The matter density of the α-particle can also be obtained by
the Gaussian form as [9,14]

ρα(r) = ρ0α exp(−λr2). (7)

The parametersρ0(m,α), ρ0M,ω, β, and λ and the corresponding
root mean square (rms) radii are given in Table I.

Now, if ρC(r ′) is the α-cluster distribution function inside
12C nucleus, then we can relate the nuclear matter density

distribution functions (6) and (7) as [8]

ρm(r) =
∫

ρC(r ′)ρα(|�r − �r ′∣∣)d �r ′. (8)

Then, using Fourier transform techniques [14] for expression
(8), we can obtain

ρC(r ′) = ρ0C(1 + γ r ′2) exp(−ξr ′2), (9)

where

ξ = βλ

η
, η = λ − β and γ = 2ωλ2

[η(2η − 3ω)]
.

The parametersρ0C, γ and ξ used in Eq. (9) are, also, listed
in Table I. It is evident form this table that the values for
the α-cluster density in 12C nucleus are negative near the
origin, i.e., at r � 0.7 fm. One can notice [23] from Eq. (8)
and using the Fourier transform in the momentum space q,
that the carbon form factor should have a zero whenever the
α-particle does. Now the free α-particle form factor has such

TABLE I. Density parameters used in Eqs. (6), (7), and (9) and
the corresponding rms radii [8].

Nucleus ρ0(m,α,C)

(fm−3)
ω(γ )

(fm−2)
β(λ)(ξ )
(fm−2)

rms radius
(fm)

ρm(r) 0.1644 0.4988 0.3741 2.407
ρα(r) 0.4229 0 0.7024 1.460
ρC(r) −0.1644 −1.7852 0.8003 1.912
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a zero for q2 ∼= 10 fm−2, whereas there is no sign of such out
to the limit of carbon measurement (q2 ∼= 11 fm−2). Inopin
and Tishchenko [24] suggested that perhaps the size of the
α-particle is slightly changed inside the nucleus, and that the
zero is displaced to just outside the measured region. This may
be cured by involving a correction term depends on the rms
radius of the α-particle inside the nucleus. On the other side,
owing to the small number of α-clusters inside 12C nucleus
which are distributed over the surface in an equilateral triangle
configuration, it is not expected to find α-clusters close to the
center of the nucleus, such that this problem disappeared for
the other nuclei when the number of α-clusters increased [23].
The negative density discrepancy was also obtained previously
during the analysis of pion-carbon elastic scattering data using
the 3α-cluster model for the structure of 12C nucleus [25].

Now we assume the approach for the cluster structure of
12C as 12C ≡ Aαα + ANN . The density distributions of the
α-clusters and unclustered nucleons in 12C are taken to be of
the modified Gaussain form as [13]

ρiC(r) = ρ0i(1 + wr2) exp(−βir
2) (10)

where i = α,N . Since 12C nucleus is composed of Aα

α-particles plus AN unclustered nucleons, then we have the
normalization integral as∫

ραC(r)d�r +
∫

ρNC(r)d�r = 4Aα + AN = 12. (11)

The considered values of the parameters are as fol-
lows [13]: ρ0α = 0.0336 fm−3, ρ0N = 0.2186 fm−3, w =
0.496 fm−2, βα = 0.381 fm−2, and βN = 0.9 fm−2. These
values yield Aα = 2.35 and AN = 2.6 and the correspond-
ing rms radius of 12C equals 2.46 fm. These parameters
were recently [13] used to successfully describe the α+12C
and 16O+12C elastic scattering over the energy range 29–
172 MeV. Finally, we can derive the DFC2 potential (3) using
the density distributions (10) together with the α-α, α-N , and
NN interactions defined by Eqs. (2), (4), and (5), respectively.

III. PROCEDURE

The semimicroscopic potentials, DFC1 and DFC2 gener-
ated from Eqs. (1) and (3) are considered as the real part of the
12C+12C optical potential. The imaginary part is taken in the
phenomenological Woods-Saxon (WS) shape as

W (R) = −W0

/[
1 + exp

(
R − RI

aI

)]
, RI = 2rI x121/3,

(12)

where W0, rI , and aI are the depth, radius, and diffuseness
parameters. Then, the nucleus-nucleus interaction may be
written in the form

U (R) = UDFC1(DFC2)(R) + iW (R) + VC(R), (13)

where VC is the repulsive Coulomb potential, which is
represented by the interaction between two uniform charge
distributions of radius parameter equals 1.25 fm.

The obtained potentials are fed into the computer code HI-
OPTIM-94 [26] to calculate the elastic scattering differential
cross sections. To obtain the best fit between the experimental

data and the theoretical calculations, we have conducted a χ2
search to define the parameters of the potentials. The χ2 value
is defined as

χ2 = 1

ND

∑ND

k=1

[
σth(θk) − σexp(θk)

�σexp(θk)

]2

(14)

where ND is the number of differential cross-section data
points, σth(θk) is the calculated cross section at angle θk in
the c.m. system, σexp(θk) and �σexp(θk) are the correspond-
ing experimental cross section and its relative uncertainty,
respectively. All potential parameters are held constant during
the search except the depth of the real repulsive part of α-α
interaction, VR , and the depth of the imaginary potential, W0,
where they are freely adjusted in order to obtain best fits to
data.

IV. RESULTS AND DISCUSSION

In the present work, 12 sets of data for the differential
cross section of 12C+12C elastic scattering at energies from
70.7 to 360 MeV are analyzed using the generated DFC1 and
DFC2 potentials. The obtained parameters and associated real
and imaginary volume integrals per interacting nucleon-pair,
JR, JI , in addition to the resulted reaction cross sections,
σR , are listed in Table II and the corresponding fits with
experimental data are shown in Figs. 1–3.

From these figures, it is clear that, in general, successful
descriptions of the data are obtained using both of the DFC1
and DFC2 potentials. Only two exceptions are observed
for 89.7 and 300 MeV energies at backward angles, where
theoretical underestimation is found. From this comparison
one may, also, notice that introducing the treatment of
unclustered nucleons in the structure of 12C through the DFC2
potential relatively reduces the amplitude of oscillation, which
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FIG. 1. A comparison between the measured 12C+12C elastic
scattering differential cross sections and theoretical predictions
obtained using the DFC1 and DFC2 potentials at energies of 70.7,
78.9, 89.8, and 106.9 MeV. Data are taken from [27].
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TABLE II. Best-fit parameters obtained for the DFC1 and DFC2 potentials analysis of 12C+12C elastic
scattering. The parameters rI = 1.23 fm and aI = 0.505 fm are kept fixed during the search.

Potential Energy (MeV) VR (MeV) W0 (MeV) JR (MeV fm3) JI (MeV fm3) σR (mb) χ 2

DFC1 70.7 33.0 11.0 340.7 61.6 1259 36.6
DFC2 166.0 11.2 286.8 62.7 1280 35.8
DFC1 78.9 28.0 12.3 351.7 68.5 1285 28.3
DFC2 156.0 12.4 300.4 69.7 1308 30.0
DFC1 89.7 28.0 22.7 353.9 115.8 1373 53.2
DFC2 152.0 21.5 305.0 120.6 1402 54.3
DFC1 106.9 28.0 13.8 349.5 85.9 1334 10.9
DFC2 167.0 13.5 285.5 75.9 1321 10.3
DFC1 112.0 30.0 14.4 347.3 91.0 1344 17.5
DFC2 168.0 14.2 284.1 79.4 1328 11.0
DFC1 117.1 30.0 14.1 347.3 88.0 1339 13.4
DFC2 188.0 13.8 267.8 77.2 1316 12.3
DFC1 121.6 31.0 15.3 345.1 95.7 1353 15.2
DFC2 172.0 15.3 278.7 85.5 1338 17.8
DFC1 126.7 35.0 15.0 336.2 98.0 1356 17.8
DFC2 182.0 14.7 265.0 82.7 1326 12.4
DFC1 158.9 37.0 17.8 331.8 113.8 1380 47.7
DFC2 164.0 18.6 289.5 104.2 1371 25.9
DFC1 300.0 76.0 18.1 245.6 107.7 1321 22.8
DFC2 198.0 19.4 243.4 108.8 1325 23.9
DFC1 344.0 76.0 13.6 245.6 76.6 1225 9.6
DFC2 198.0 11.8 243.4 66.0 1185 8.1
DFC1 360.0 90.0 14.9 219.1 90.0 1257 24.2
DFC2 232.0 15.3 197.4 85.6 1240 13.2

yields slight improvement in the fitting with data, particularly
at forward angles.

On the other hand, it is observable that, at the lower
considered energies, predictions produced by the DFC2
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FIG. 2. Same as Fig. 1, but at energies of 112, 117.1, 121.6, and
126.7 MeV. Data are taken from [27].

potential are more successful than those produced by the DFC1
one. At the three highest energies (300, 344, and 360 MeV)
the situation seems to be reversed, where predictions of the
DFC1 potential are the best. This may indicate that the
number of unclustered nucleons decreases when energy of
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FIG. 3. Same as Fig. 1 but at energies of 158.9, 300, 344, and
360 MeV. Data are taken from [15].
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FIG. 4. Energy dependence of the real and imaginary volume
integrals of the DFC1, DFC2 and imaginary WS potentials. Lines are
drawn to guide eyes.

12C projectiles increases, consequently, full α-clustering in
12C nucleus (Aα = 3, AN = 0) dominates at higher energies.

The obtained values of real and volume integrals, noted in
Table II, are plotted against energy as shown in Fig. 4. It is
clear that at low energies the real volume integrals, JR , of the
DFC1 are significantly larger than those of the DFC2 one. This
behavior results from the values of the repulsive depth, VR ,
used in the calculations, where VR(DFC2)/VR(DFC2) > 5,
while at the higher energies this factor reduces to about 2 and
JR values of both potentials are almost similar. On the other
side, the obtained values of JR are significantly larger than
those found [13] from the analysis of the refractive 16O+12C
elastic scattering using the SFC model. The overall tendency
of JR is to decrease with increasing energy. However, it
is interesting to state that our JR values agree well either
with those obtained by Refs. [6,8] or those recently resulted
from analysis of the same sets of data using microscopic
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FIG. 5. Energy dependence of the total reaction cross sections
deduced from the analysis of 12C+12C elastic scattering using the
DFC1 and DFC2 potentials. Lines are drawn to guide the eyes.
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FIG. 6. Energy dependence of the real repulsive depth of the α-α
interaction in the DFC1 and DFC2 potentials, straight lines are the
least-square fits (upper part). Energy dependence the depth of the
imaginary WS potential, lines are drawn to guide the eyes (lower
part).

potentials based upon the JLM and SBM effective NN

interactions [28].
The energy dependences of the obtained imaginary volume

integrals, JI , of both of the imaginary potentials supplemented
with the DFC1 and DFC2 potentials, as shown in Fig. 4, are
almost identical all over the investigated energy range. This
behavior is attributed to the consistent values of the imaginary
depth, W0, used with both potentials, as shown in Table II. In
Fig. 5 the energy dependence of the reaction cross section, σR ,
is shown. It is clear that the variations of σR,W0 and JI with
energy are very similar, where σR determines the absorption
produced by the imaginary potential. Comparing our values for
σR with those obtained by the previous studies, we find that
the obtained σR are consistent with those obtained by using
microscopic potentials based upon the DDM3Y, BDM3Y [6],
JLM and SBM [28] interactions.

For completeness, we display in Fig. 6 the energy depen-
dence of both of the best-fit parameters, VR and W0. We note
that the real repulsive part of α-α effective interaction, VR ,
reveals slight linear energy dependence, where VR increases
as energy increases for both DFC1 and DFC2 potentials.
We find VR = C + DE, where C = 8.6(146.8) MeV and
D = 0.21(0.19) for the DFC1 (DFC2) potential, i.e., the two
dependences have similar slopes (∼0.2). The depth of the
imaginary part potential, W0, does not show a clear behavior
with energy. However, it is noticeable that, the imaginary
potentials used in the present study are significantly shallower
than those used by Abdullah et al., for the analysis of 16O+12C
elastic scattering.

V. CONCLUSIONS

In the present study, two types of the real double folding
cluster optical potential, DFC1 and DFC2, for the 12C+12C
system have been generated. In the first, the cluster structure

034601-5



HASSANAIN, IBRAHEEM, AND EL-AZAB FARID PHYSICAL REVIEW C 77, 034601 (2008)

12C ≡ 3α is considered. Then, the DFC1 potential is calculated
with the total contribution from the α-α attractive and repul-
sive effective interactions folded with the α-cluster density
distribution inside projectile and target nuclei. However, in
the other type, the cluster structure 12C ≡ Aαα + ANN is
taken into account and the DFC2 potential is calculated from
contributions of the α-α attractive and repulsive interactions
besides the α-N and NN interactions, folded with the α-like
cluster and unclustered nucleon density distributions in the
colliding nuclei. A phenomenological WS volume shape
with a significant shallow depth has been considered for
the imaginary part of the optical model potential.

Twelve sets of 12C+12C elastic scattering data in the
energy range 70–360 MeV are analyzed using the derived
potentials. Obtained results showed that successful description
of the data all over the measured angular ranges can be
obtained using the constructed semimicroscopic potentials.
The success of our DFC1 and DFC2 potentials to reproduce
the data is equivalent to that gained using microscopic
potentials based upon the DDM3Y and BDM3Y effective NN

interactions. However, from the present analysis, it has been
noticed that, for high energy incident 12C projectiles, the full
α-clustering treatment (12C ≡ 3α) seams to be more successful
to reproduce the data than the partial α-clustering concept
(12C ≡ Aαα + ANN ) and reversed behavior is observable at
low energies.

The extracted reaction cross sections are quite consistent
with those obtained by the previous studies by using micro-
scopic potentials based upon the different versions of effective
NN interactions.

Finally, despite the evident success of our model to describe
12C+12C elastic scattering data over the considered energy
range, we recommend more studies to be performed on other
kinds of HI reactions in order to confirm the validity of
this model. In this connection, we draw attention to further
aspects to be investigated in the future. Aside from the
usual idiosyncracies of individual data sets, there are other
sources of uncertainty in the analyses, such as choices of
the folding ingredients, i.e., density distributions and effective
interactions.
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