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Monopole and quadrupole interactions in binding energies of sd-shell nuclei
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It is demonstrated by shell-model calculations of sd-shell nuclei that the binding energies are dominated by
the monopole part of nucleon-nucleon interaction. The monopole component, which comes mainly from the
two-body interaction in triplet-even channel, can be renormalized into one-body single-particle energies. It is
also shown that the proton-neutron quadrupole interaction causes a sizable gain of binding energy by coherent
configuration mixing of quadrupole deformation.
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I. INTRODUCTION

Nuclear binding energies were systematically studied and
simulated by a semi-empirical mass formula in 1930s by
Weizsäcker and Bethe [1,2]. The mass formula consists of
volume, surface, and Coulomb energy terms, which are based
on the liquid-drop model of nuclei, and of symmetry and
pairing energy terms, which take into account properties
of nuclear forces. Various models have been employed for
systematic mass predictions of nuclei throughout the nuclear
chart. They are mostly macroscopic + microscopic models,
and some others are based on microscopic model calculations
[3–7]. It has been found, however, that root-mean-square
deviations of the latter are considerably larger than those
of the macroscopic + microscopic models, and there are
still problems to be solved for reliable predictions of nuclear
masses from basic nucleon-nucleon interactions [8].

Nuclear shell model, which was conceived in late 1940s
by Mayer and Jensen who introduced a spin-orbit interaction
in order to account for observed magic numbers [9–11], has
been applied successfully to light and medium-light nuclei.
Especially, empirical effective interactions have been widely
used in p-shell nuclei [12] and sd-shell nuclei [13,14]. These
effective interactions were obtained by a least-squares fit, by
treating single-particle energies and two-body matrix elements
as free parameters, so as to reproduce binding energies and
excitation energies of a number of observed states which
are presumably described by the respective full 0h̄ω model
space. In the sd shell, semi-empirical effective interactions
were analyzed and compared with typical G-matrix effective
interactions [15]. In the next major shell, the pf shell, such
an optimization of two-body interaction matrix elements was
hard to do, and a G-matrix effective interaction [16] has
been used with modifications of the monopole strengths,
shifts of single-particle energies and minor changes of some
two-body matrix elements [17,18]. The modified interaction,
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named KB3, has been employed for f7/2-shell nuclei. The
monopole shift between the spin-orbit partners, f7/2 and f5/2,
and the single-particle energy difference between these orbits
are responsible for successful description of magnetic dipole
excitations [19,20], double beta decay of 48Ca [21], and a
detailed analysis of the effective coupling constant of gA

for Gamow-Teller transitions in A = 41–50 nuclei [22]. The
monopole shift between f7/2 and p3/2 is important for repro-
ducing low-lying energy spectra, and the KB3 interaction has
been used in systematic spectroscopic studies on A = 48 [23]
and A = 47, 49 nuclei [24], back-bending phenomena [23,25],
and binding energies [26], and, with a KB3G interaction
with a shell-gap readjustment, A = 50, 51, and 52 isobaric
chains [27]. A least-squares fit procedure has later been used
to obtain empirical effective interactions in the pf shell, the
FPD6 interaction [28], and the GXPF1 interaction [29], where
a special attention has been paid to the monopole interaction.

The importance of the monopole interaction was first em-
phasized by Bansal and French [30,31], who derived a simple
equation for average energies of one-hole-many-particle states
by introducing isoscalar and isovector monopole interactions.
In the shell model, a decisive role of the monopole has been
recognized for successful description of nuclear structure and
later in the context of shell evolution by many authors, in
addition to those given in the previous paragraph, including
Schiffer and True [32], Blomqvist and Rydström [33], Pittel
et al. [34], Zuker and his collaborators [35–39], Brown [40],
Otsuka and his collaborators [41–44], Grawe [45,46], and
Umeya and Muto [47–51]. It is noted that closed shell
energies are written in terms of single-particle energies and the
monopole strength. This indicates that single-particle energies
of an orbit with respect to different cores are related to each
other by the monopole interaction [33,46].

Neutron-rich nuclei have attracted much attention to the
monopole interaction as the major driving force of shell
structure evolution. Otsuka et al. suggested that the spin-
isospin (σ · σ )(τ · τ ) component of nucleon-nucleon interac-
tion between spin-orbit partners, j = � ± 1

2 , is responsible for
the shell evolution [42]. But, Umeya and Muto clearly showed
later, by employing the spin-tensor decomposition, that the
monopole interaction is dominated by triplet-even central
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components of shell-model effective interactions [47,48,51].
These triplet-even components are attributed to the medium-
range central interaction and second order effects of tensor
interaction by channel coupling between, for example, 3S1

and 3D1. It has also been shown that the tensor interaction
plays a minor but important role for shell structure evolution by
shell model [52–54] and also by mean-field model calculations
[55–60]. This effect appears clearly when nucleons are filling a
large-j orbit in heavy nuclei. This is the first order contribution
of tensor forces, and it is part of the monopole interaction.

The purpose of this study is to investigate mainly the
monopole interaction from a view point of binding energy of
nuclei, by making use of shell-model calculations of sd-shell
nuclei with the USD interaction which is known to reproduce
experimental binding energies [13,14]. We perform three
kinds of decompositions of two-body effective interaction:
(i) a decomposition into proton-proton, neutron-neutron and
proton-neutron interactions, (ii) a multipole expansion, which
clearly defines the monopole interaction, (iii) the spin-tensor
decomposition which separates contributions from central,
spin-orbit, and tensor interactions in spin/isospin triplet and
singlet channels. These decomposition methods are useful for
the investigation of empirical and/or effective interactions, and,
in particular, the spin-tensor decomposition was used in the
analyses of sd-shell empirical interactions [15].

The present paper consists as follows. The nuclear Hamil-
tonian is briefly explained in Sec. II. The Hamiltonian is
described in the second quantized form in the jj-coupling
scheme. Section III is devoted to the decompositions of
two-body interaction in a general form, with an emphasis
on the monopole interaction. Numerical results for sd-shell
nuclei are shown in Sec. IV, according to the three kinds of
decompositions of the effective nucleon-nucleon interaction.
We will show that the energy gains due to the nuclear force
are dominated by the monopole interaction, that the monopole
component of two-body interaction can be renormalized into
one-body single-particle energies, and that the first order
contribution of tensor force can be seen in the evolution of
single-particle energies. We also discuss the role of quadrupole
components of the proton-neutron interaction on binding
energies. Conclusion of this study is given in Sec. V.

II. HAMILTONIAN AND BINDING ENERGY

The nuclear Hamiltonian is assumed to consist of one- and
two-body interactions,

H =
∑
jm

εcore
j a

†
jmajm

+
∑

αα′JM

〈2α|V |2α′〉J A†(2αJM)A(2α′JM), (1)

which applies to valence nucleons, and the core energy is
omitted in this Hamiltonian. εcore

j is the single-particle energy
with respective to the core, and it is a sum of kinetic energy
and interaction energy of the valence nucleon and the core
nucleons. a

†
jm and ajm are the creation and annihilation

operators, respectively, of a nucleon in a single-particle state

with angular momentum j and its projection m. The sum of
combinations jm runs over all valence single-particle states
in the model space. The second term of Eq. (1) represents
two-body interaction. A†(2αJM) creates an antisymmetrized
two-particle state with the coupled angular momentum J

and its z-component M , and the corresponding annihilation
operator is denoted by A(2αJM). The additional quantum
number α distinguishes different two-particle configurations,
such as jj ′ and j 2, and the sums of α and α′ run over all
possible configurations that are allowed in the model space.
When there are three single-particle orbits, j1, j2, and j3, the
configuration quantum number α takes

α = j 2
1 , j1j2, j1j3, j 2

2 , j2j3 and j 2
3 .

The Coulomb interaction is not included in the Hamiltonian,
and an energy eigenstate has a good isospin quantum number,
in addition to the angular momentum and parity, Jπ .

The eigenvalue equation for the nuclear Hamiltonian is
written as

H
∣∣Jπ

ν

〉 = E
∣∣Jπ

ν

〉
. (2)

Jπ is the spin-parity, and ν labels eigenstates with the same
spin-parity in the same nucleus. The binding energy of an
eigenstate Jπ

ν is defined here by

B = −E. (3)

The binding energy thus defined includes neither the core en-
ergy nor the Coulomb energy. When the two-body interaction,
the second term of Eq. (1), is decomposed into n terms

V =
n∑

k=1

Vk, (4)

the binding energy is given by a sum of single-particle energies
and the corresponding two-body interaction components,

B = B(spe) +
n∑

k=1

B(k). (5)

The component B(k) of the binding energy is evaluated by the
expectation value of Vk ,

B(k) = −〈
Jπ

ν

∣∣Vk

∣∣Jπ
ν

〉
, (6)

where |Jπ
ν 〉 is obtained by solving the eigenvalue equation,

Eq. (2), with the full Hamiltonian.

III. DECOMPOSITIONS OF TWO-BODY INTERACTION

A. pp-, nn- and pn-interactions

A simple decomposition of the two-body interaction is
that into three-types of interactions, i.e., proton-proton (pp),
neutron-neutron (nn), and proton-neutron (pn) interactions,

V = Vpp + Vnn + Vpn, (7)

and the binding energy of an energy eigenstate is then
expressed as a sum of four terms,

B = B(spe) + B(Vpp) + B(Vnn) + B(Vpn). (8)
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Two-particle matrix elements of the like-nucleon interactions
are expressed in isospin formalism as T = 1 elements,

〈2α|Vpp/nn|2α′〉J = 〈2α|V |2α′〉J,T =1. (9)

Matrix elements of the proton-neutron interaction are written
in terms of T = 0 and T = 1 matrix elements as

〈jpjn|Vpn|j ′
pj ′

n〉J

=
√(

1 + δjpjn

)(
1 + δj ′

pj ′
n

)
2

× (〈jpjn|V |j ′
pj ′

n〉J,T =1 + 〈jpjn|V |j ′
pj ′

n〉J,T =0), (10)

where the difference is considered in the normalization of
two-particle states between the proton-neutron scheme and
isospin scheme, and δjpjn

is unity when the proton and neutron
single-particle orbits, jp and jn, have the same set of quantum
numbers.

B. Multipole expansion and monopole interaction

A two-body interaction can be expanded into multipole
components. Denoting the expansion as

V =
∑

k

V (k), (11)

the binding energy is accordingly given by a sum of the
respective contributions,

B = B(spe) +
∑

k

B(V (k)). (12)

In the following, the multipole expansion is shown in some de-
tail for proton-neutron interaction and like-nucleon interaction
separately, with an emphasis on the monopole component.

1. Proton-neutron interaction

The proton-neutron interaction can be written as expanded
into multipoles,

Vpn =
∑

jpjnj ′
pj ′

nJM

〈jpjn|Vpn|j ′
pj ′

n〉J A†(jpjnJM)A(j ′
pj ′

nJM).

(13)

Normalized proton-neutron states are created by

A†(jpjnJM) = [
a
†
jp

⊗ a
†
jn

](J )
M

, (14)

where the square bracket denotes angular-momentum cou-
pling to form a spherical tensor of rank-J . The annihilation
operator A(j ′

pj ′
nJM), which is the Hermitian conjugate of

A†(j ′
pj ′

nJM), is written as

A(j ′
pj ′

nJM) = (−1)1+J−M
[
ãj ′

p
⊗ ãj ′

n

](J )
−M

, (15)

where ãjm = (−1)j−maj −m are modified annihilation oper-
ators, and the phase guarantees that both a

†
jm and ãjm are

m components of spherical tensor operators of rank-j . The
proton-neutron interaction is expanded into multipoles by

changing the order of the neutron creation and proton anni-
hilation operators, aj ′

p
a
†
jn

= −a
†
jn

aj ′
p
, and angular-momentum

recoupling,

Vpn =
∑

k

V (k)
pn (16)

with

V (k)
pn =

∑
jpjnj ′

pj ′
n

f (k)(jpjn, j
′
pj ′

n) u(k)(jp, j ′
p) · u(k)(jn, j

′
n), (17)

where

f (k)(jpjn, j
′
pj ′

n) =
∑

J

(−1)jp+j ′
n−J (2k + 1)(2J + 1)

×W (jpjnj
′
pj ′

n; Jk)〈jpjn|Vpn|j ′
pj ′

n〉J (18)

are strengths of the multipole components. In Eq. (17),
u(k)(jp, j ′

p) and u(k)(jn, j
′
n) are unit-tensor operators of rank-k,

which act on proton and neutron systems, respectively. They
are defined by

u(k)(j, j ′) = (−1)2j

√
2k + 1

[a†
j ⊗ ãj ′ ](k), (19)

and the dot denotes an inner product of two unit-tensor
operators with the same rank. The rank k can take integer
values which satisfy

max(|jp − j ′
p|, |jn − j ′

n|) � k � min(jp + j ′
p, jn + j ′

n).

The k = 0 component of the multipole expansion, Eq. (17),
is the monopole interaction. The rank-0 unit-tensor operator
can be formed only when j = j ′,

u(0)(j, j ′) = δjj ′
1√

2j + 1
N̂j , (20)

where

N̂j =
j∑

m=−j

a
†
jmajm (21)

is the number operator of the single-particle orbit j . It is
thus obvious that the monopole interaction appears only
for diagonal two-particle matrix elements with jp = j ′

p and
jn = j ′

n. Then, the monopole strength is written as

f (0)(jpjn, jpjn) =
∑

J (2J + 1)〈jpjn|Vpn|jpjn〉J√
(2jp + 1)(2jn + 1)

(22)

by substituting the Racah coefficient with k = 0. The
monopole component of the proton-neutron interaction is thus
reduced to

V (0)
pn =

∑
jpjn

�εjpjn
N̂jp

N̂jn
, (23)

where �εjpjn
is defined by

�εjpjn
=

∑
J (2J + 1)〈jpjn|Vpn|jpjn〉J

(2jp + 1)(2jn + 1)
. (24)
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The factor in the denominator is the number of states which
are allowed from the coupling of jp and jn,

(2jp + 1)(2jn + 1) =
jp+jn∑

J=|jp−jn|
(2J + 1). (25)

The �εjpjn
is thus the J -average of the proton-neutron interac-

tion matrix elements. When the J -averaged value is substituted
in Eq. (18) as 〈jpjn|Vpn|jpjn〉J = �εjpjn

for the diagonal
matrix elements, and otherwise zero, 〈jpjn|Vpn|j ′

pj ′
n〉J = 0

for jp �= j ′
p and/or jn �= j ′

n, all multipoles except k = 0 vanish
because of a property of Racah coefficients. The monopole
proton-neutron interaction can be written as

V (0)
pn =

∑
jpjnJM

�εjpjn
A†(jpjnJM)A(jpjnJM). (26)

This expression is also useful for the evaluation of monopole
contributions to binding energy by the expectation value,
Eq. (6).

It is noted that, in Sec. IV C, �εjpjn
will appear in single-

particle energies which incorporate interactions between va-
lence nucleons.

2. Like-nucleon interaction

The proton-proton interaction can be expanded into multi-
poles in the same way,

Vpp =
∑

[j1j2][j ′
1j

′
2]JM

〈j1j2|Vpp|j ′
1j

′
2〉J A†(j1j2JM)A(j ′

1j
′
2JM)

=
∑

k

V (k)
pp , (27)

where the sum is taken over all possible combinations of j1j2

and those of j ′
1j

′
2. The multipole expansion for like-nucleon

interaction is a little complicated, since two-particle creation
operators are written by a product of single-particle creation
operators as

A†(jj ′JM) =




[a†
j ⊗ a

†
j ′ ]

(J )
M (j �= j ′)

1 − (−1)2j−J

2
√

2
[a†

j ⊗ a
†
j ](J )

M (j = j ′)
(28)

due to the different normalizations of two-particle states
between j �= j ′ and j = j ′.

The monopole component with k = 0 is given by

V (0)
pp =

∑
[jj ′]

[
1

(1 + δjj ′)
�εjj ′N̂j N̂j ′ − δjj ′

1

2
�εjj ′N̂j

]
, (29)

where

�εjj ′ =
∑

J (1 − δjj ′(−1)2j−J )(2J + 1)〈jj ′|Vpp|jj ′〉J
(2j + 1)(2j ′ + 1)

.

(30)

In contrast to the proton-neutron interaction, the second term
of Eq. (29) appears as a part of the k = 0 interaction, when the
anticommutation relation does not vanish. The �εjj ′ for j �= j ′
is the same form as Eq. (24) of the proton-neutron interaction.

However, in cases of j = j ′, only even-J values are allowed
because of antisymmetrization, and an additional factor of
two is multiplied compared to cases of j �= j ′. Further, the
factor in the denominator does not coincide with the number
of two-particle states allowed for the j 2 configuration, which is
j (2j + 1) instead of (2j + 1)2. Because of this, the monopole
component of like-nucleon interactions cannot be expressed
in the same form as Eq. (26) of the proton-neutron interaction.
In fact, the substitution of 〈j 2|Vpp|j 2〉J = �εjj for even-J
values into the right side of Eq. (30) does not reproduce �εjj

on the left side. The inconsistency is cured, if we define

�ε′
jj ′ =




�εjj ′ (j �= j ′)

2j + 1

2j
�εjj (j = j ′),

(31)

where, in the second case, the factor of two in the denominator
compensates the same factor in the definition of �εjj . Then,
the monopole component can be written as

V (0)
pp =

∑
[jj ′]JM

�ε′
jj ′A

†(jj ′JM)A(jj ′JM), (32)

and both operators of Eqs. (29) and (32) give the same
expectation value in Eq. (6).

The neutron-neutron interaction can be expanded into
multipole interactions in the same form as the proton-proton
interaction, just by replacing Vpp with Vnn.

C. Central, spin-orbit, and tensor interactions

The two-body interaction can be decomposed into cen-
tral, spin-orbit, and tensor interactions. The decomposition
procedure was briefly mentioned in Ref. [12] and in detail in
Refs. [47,51]. It is based on the assumption, first, that the radial
wave functions are identical for spin-orbit partners, j = � ± 1

2 ,
which allows transformation from jj-coupling to LS-coupling
of a product of two-particle wave functions, and, secondly,
that radial potentials involved in the nuclear interaction are
functions of only the relative coordinate r = |r1 − r2| of the
two interacting nucleons.

The central interaction can be written as

VC = VSE(r)	S
σ	T

τ + VTO(r)	T
σ 	T

τ

+VSO(r)	S
σ	S

τ + VTE(r)	T
σ 	S

τ , (33)

where

	S
σ = 1 − σ 1 · σ 2

4
, 	T

σ = 3 + σ 1 · σ 2

4
, (34)

	S
τ = 1 − τ 1 · τ 2

4
, 	T

τ = 3 + τ 1 · τ 2

4
(35)

are projection operators onto spin/isospin singlet (S) and triplet
(T ) parts of the two-particle wave functions. The spin-orbit and
tensor interactions survive only between spin-triplet states, and
they consist of two components,

VLS = VLSE(r)L · S	S
τ + VLSO(r)L · S	T

τ , (36)

VTN = VTNE(r)S12	
S
τ + VTNO(r)S12	

T
τ , (37)
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where L is the orbital angular momentum of the relative
motion, and S = (σ 1 + σ 2) /2. The tensor operator S12 is
defined by

S12 = (r̂ · σ 1)(r̂ · σ 2) − 1
3 (σ 1 · σ 2)

= [r̂ ⊗ r̂ ](2) · [σ 1 ⊗ σ 2 ](2), (38)

where r̂ is the unit vector along the relative coordinate r .
The effective interactions which have been utilized in shell-

model calculations, including the USD interaction designed
for (sd)A−16-configuration calculations, are not provided in a
potential form but by two-particle matrix elements numeri-
cally. However, they can be decomposed into the components
mentioned above, first, by transforming the given jj-coupling
matrix elements to LS-coupling matrix elements. Then, central,
spin-orbit and tensor contributions are separated by employing
different spherical-tensor structure of them and Racah algebra.
The central interaction involves no spin operator or in a form
of σ 1 · σ 2, which are scalars, i.e., rank-0 spherical tensors.
The spin-orbit interaction has the structure V (r)L · S, where
V (r)L and S are rank-1 spherical tensor operators in ordinary
and spin spaces, respectively, and the tensor operator, Eq. (37),
is, clearly from the second line of Eq. (38), the inner product
of rank-2 operators.

The assumption of the same radial wave function for
j = � ± 1

2 orbits, in the present case d5/2 and d3/2, and the
three interactions, Eqs. (33), (36), and (37), reduces the number
of degrees of freedom. In sd-shell, the central, spin-orbit and
tensor interactions are described by 45 matrix elements in
LS-coupling, while there are 63 independent matrix elements
in jj-coupling scheme. The remaining matrix elements are
those between spin-singlet and spin-triplet states, and the
selection rule for spin quantum numbers is obtained by spin
structure of σ 1 − σ 2, which may be called an antisymmetric
spin-orbit (ALS) interaction, see Ref. [28]. There are nine
those matrix elements in LS-coupling in each isospin channel,
T = 0 and T = 1. The appearance of this kind of interaction
matrix elements can be attributed to a small difference between
d5/2 and d3/2 radial wave functions. On the other hand,
ALS components in shell-model effective interactions may
be derived from a three-body force by averaging over one
nucleon in the core. In total, there are ten components; four
central components, two spin-orbit components, two tensor
components, and two antisymmetric spin-orbit components.

IV. RESULTS AND DISCUSSION

Shell-model calculations have been performed for sd-shell
nuclei. The model space consists of three single-particle orbits,
0d5/2, 1s1/2, and 0d3/2, on the inert 16O core. The USD inter-
action [13,14] is adopted for the nucleon-nucleon interaction,
and Coulomb interaction is neglected. The USD interaction
was designed so as to reproduce binding energies and energy
spectra of sd-shell nuclei in the (sd)n configurations on the
16O core. It reproduces binding energies very well except for
nuclei with large neutron (proton) excess.

FIG. 1. The decomposition of the binding energies according to
Eq. (7) for ground states of (a) even-even Z = N nuclei, (b) even-
N silicon isotopes, and (c) A = 28 isobars with 9 � Z � 14 in the
sd-shell.

A. Attraction of the pn-interaction

The decomposition of binding energies according to
Eq. (7) is shown in Fig. 1 for the ground states of three
chains of nuclei. For the Z = N nuclei, the binding energy
increases proportionally with the number of valence nucleons
from 4(20Ne) to 24(40Ca). The increase is mostly due to that of
the pn-interaction contribution. The proton-neutron interaction
is on average much more attractive than the like-nucleon
interactions. The single-particle-energy contribution does not
increase with the valence nucleon number. This is because
nucleons tend to occupy higher-lying orbits with the increase
of mass number. For the Z = N nuclei with A − 16 = 4n

(n = 1–6) valence nucleons, the number of pairs of protons
(neutrons) is n (2n − 1) and that of proton-neutron pairs is
4n2. However, the binding energy increases almost linearly
with the mass number.

Binding energies of silicon isotopes are shown in the middle
panel of Fig. 1. The linearity with mass number seems to be
broken, especially on the left side of 28Si. The energy gain due
to the proton-proton interaction stays at an almost constant
value for the isotopes with the same atomic number Z = 14,
while that due to the neutron-neutron interaction increases with
neutron number but not beyond 28Si. The breaking of linearity
is mainly due to the proton-neutron interaction for the nuclei
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with N − Z changes from −4 to 6, depending on the distance
from the symmetric nucleus 28Si.

Figure 1(c) shows binding energies of A = 28 isobars with
9 � Z � 14. Those on neutron deficient side, 19 � Z � 14, are
symmetric with respect to the Z = N nucleus 28Si, since
the full (sd)12 configurations are adopted with the nuclear
Hamiltonian which conserves isospin and does not include
the Coulomb energy. The binding energies show a parabolic
feature around the symmetric 28Si, which has the largest
binding energy, and this represents the symmetry energy
of the semi-empirical Weizsäcker-Bethe mass formula. The
parabolic shape is mostly due to that of the proton-neutron
interaction. The pairing effect is also seen between even-even
and odd-odd nuclei.

B. Monopole interaction

The multipole decomposition is alternatively made. The
binding energies are separated into single-particle energies, the
monopole component (k = 0) and the sum of higher multipole
components (k �= 0). The result for the same chains of nuclei as
shown in Fig. 1 is shown in Fig. 2. The monopole interaction
is the largest component of the binding energy in most of
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FIG. 2. The decomposition of the binding energies into contri-
butions coming from single-particle energies, monopole interaction
k = 0 and a sum of higher multipoles, for ground states of (a)
even-even Z = N nuclei, (b) even-N silicon isotopes, and (c) A = 28
isobars with 9 � Z � 14 in the sd-shell.

nuclei. The increase of the monopole contribution makes the
binding energy larger with mass number toward the single- and
double-closed shell, and the closed-shell nucleus 40Ca has no
contributions from higher multipoles (k �= 0) of the two-body
interaction. This can be understood as follows.

Consider a closed-configuration state, where a proton orbit
jp and a neutron orbit jn are fully filled, the (2jp + 1) protons
are coupled to Jπ

p = 0+ and the (2jn + 1) neutrons are coupled
to Jπ

n = 0+,

|cc 〉 = ∣∣j 2jp+1
p (0+

p ), j 2jn+1
n (0+

n ); Jπ = 0+〉
. (39)

For the proton configuration, the matrix element of Vpp is
given by〈
j

2jp+1
p (0+

p )
∣∣Vpp

∣∣j 2jp+1
p (0+

p )
〉 =

∑
J

(2J + 1)
〈
j 2
p

∣∣Vpp

∣∣j 2
p

〉
J
,

(40)

which is equivalent to the expectation value of the monopole
component of Vpp. The matrix element of Vnn for the neutron
configuration is written in the same form. Further, of the
proton-neutron interaction, only the monopole component V (0)

pn

survives, since both protons and neutrons are coupled to angu-
lar momentum zero, respectively. Therefore, the expectation
value of the monopole components,

V (0) = V (0)
pp + V (0)

nn + V (0)
pn , (41)

for the closed-configuration state is written, by substituting
expectation values of number operators in Eq. (29), as

〈cc |V (0)|cc〉 = 1
2 (2jp + 1)2�εjpjp

+ 1
2 (2jn + 1)2�εjnjn

+ (2jp + 1)(2jn + 1)�εjpjn
. (42)

When the jp-orbit is occupied by (2jp + 1) protons but the
jn-orbit is partly filled, the pp- and pn-interactions contribute
only through the monopole components, V (0)

pp and V (0)
pn . Even

if both single-particle orbits have some vacancy, there arises a
considerable energy gain from the monopole components.

It is, however, noted that the monopole component survives
only between the same shell-model basis states, the diagonal
elements of the Hamiltonian matrix, since the basis states
are eigenstates of the number operators. The monopole
interaction, therefore, does not induce configuration mixing.
The latter is caused by higher multipoles. Large energy gains
due to the higher multipoles appear in the symmetric nuclei
on the Z = N line, and the largest value is obtained for 24Mg.
This will be discussed in some detail in the subsection of
quadrupole interaction, Sec. IV E.

The core nucleus 16O of the sd-shell calculation consists
of closed 0s1/2 and 0p3/2-0p1/2 shells. The observed binding
energy of 16O, 127.619 MeV, includes the kinetic energies
of the sixteen nucleons and the Coulomb energy. Here,
we estimate the binding energy due to the nuclear force,
according to an extensive Hartree-Fock + BCS calculation [4].
They calculated not only binding energies but also kinetic
and Coulomb energies separately for a number of nuclei
over the nuclear chart, adopting the Skyrme SIII force and
the three-dimensional Cartesian-mesh representation which
allows any type of deformation. For the 16O nucleus, the kinetic
energy amounts to 114.643 MeV (proton) + 116.576 MeV
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(neutron) = 231.219 MeV, and the Coulomb energy to
16.848 MeV, both contributing in negative sign to the binding
energy. The binding energy is calculated, with the correction
for the finite mesh size, to be 128.099 MeV, which should be
compared with the experimental value. Based on these values,
the binding energy of 16O due to the nuclear force is estimated
to be 376 MeV. This is much larger than the observed binding
energy, and it is clear from the discussion given above that the
energy gain is exclusively due to the monopole components.
In addition, the single-particle energies with respect to the
core, εcore

j , consist of kinetic energy and two-body interaction
between the valence nucleon and the core nucleons. Since
the single-particle orbits in the core are fully occupied, again
only the monopole components contribute to εcore

j . Taking
into account the core and single-particle energies with respect
to the core, we conclude that binding energies of nuclei are
dominated, much more than seen from Fig. 2, by the attraction
of the monopole components of the two-body interaction, with
a small additional gain due to configuration mixing by the
higher multipoles.

C. Single-particle energies

The single-particle energy εj of a nucleus is defined, accord-
ing to French [31] and Baranger [61], by spectroscopic strength
distributions of one-nucleon stripping and pick-up reactions,
and this leads to an expression with a anticommutator and a
commutator as

εj = 1

2j + 1

j∑
m=−j

〈
Jπ

ν

∣∣{[ajm,H ], a†
jm}∣∣Jπ

ν

〉
. (43)

Substituting the nuclear Hamiltonian, single-particle energies
are written [47,48,51] as

εj = εcore
j + εval

j , (44)

where the second term εval
j represents the interaction between

the valence nucleons, and they are given by

εval
jp

= 〈
Jπ

ν

∣∣

∑

j ′
p

�εjpj ′
p
N̂j ′

p
+

∑
jn

�εjpjn
N̂jn


 ∣∣Jπ

ν

〉
,

(45)

εval
jn

= 〈
Jπ

ν

∣∣

∑

j ′
n

�εjnj ′
n
N̂j ′

n
+

∑
jp

�εjpjn
N̂jp


 ∣∣Jπ

ν

〉
,

for proton and neutron single-particle orbits, respectively.
Here, �εjpj ′

p
and �εjnj ′

n
are defined by Eq. (30), and �εjpjn

by Eq. (24). The single-particle energies, εj , are state depen-
dent, since the single-particle energies are defined with the
expectation values of number operator.

The single-particle energy has an intimate relation to the
monopole components of two-body interaction. For the simple
closed-configuration state of Eq. (39), the expectation value of
the monopole components, Eq. (42), can be rewritten as

2〈cc|V (0)|cc〉 = (2jp + 1)
(
(2jp + 1)�εjpjp

+ (2jn + 1)�εjpjn

)
+ (2jn + 1)

(
(2jn + 1)�εjnjn

+ (2jp + 1)�εjpjn

)
= (2jp + 1)εval

jp
+ (2jn + 1)εval

jn
(46)

which is identical to the expectation value of the single-particle
energies due to the valence-nucleon interaction. For the present
(sd)A−16-model, we define here the ratio of the sum of single-
particle energies (those with respect to the core are subtracted)
to the monopole contribution multiplied by a factor of 2,

R =
〈
Jπ

ν

∣∣∑
j εval

j N̂j

∣∣Jπ
ν

〉
2
〈
Jπ

ν

∣∣V (0)
∣∣Jπ

ν

〉 , (47)

where the sum in the numerator is taken over all valence orbits,
and V (0) represents the sum of monopole components of the
pp-, nn- and pn-interactions, Eq. (41). The εval

j ’s already
contain the expectation value of the number operator, see
Eq. (45). On the other hand, the monopole components,
Eqs. (23) and (29), are written by �εjj ′ and number operator
in linear and quadratic forms. The ratio is exactly R = 1 for
the closed-shell nucleus 40Ca, where the following equality for
expectation values of number operator holds:〈

Jπ
ν

∣∣N̂j N̂j ′
∣∣Jπ

ν

〉 = 〈
Jπ

ν

∣∣N̂j

∣∣Jπ
ν

〉〈
Jπ

ν

∣∣N̂j ′
∣∣Jπ

ν

〉
. (48)

It is noted that shell-model basis states which we usually take
are eigenstates of the number operator of an orbit, N̂j , but an
energy eigenstate |Jπ

ν 〉 is not. In other words, the number
operator N̂j can have matrix elements between different
energy eigenstates. The equality, Eq. (48), is thus violated for
open-shell nuclei. But the violation is generally very small.
For example, the ratios are evaluated for Z = N nuclei to be
R = 1.035 (20Ne), 0.994 (24Mg), 1.009 (28Si), 1.004 (32S),
and 1.000 (36Ar). The approximate equality is a result of the
fact that the equation obtained by the sum over j ′ on both
sides of Eq. (48) is always satisfied for any single-particle
orbit j . The tiny deviations come from differences of �εjj ′

which are multiplied before summing over j ′ when we
calculate single-particle energies εj . We thus conclude that the
monopole components of the two-body interaction are almost
completely renormalized into the single-particle energies.

The result for the closed-shell nucleus should be compared
with the energy expectation value of the Hartree-Fock calcu-
lation [65],

EHF =
∑

i

εi −
∑
i<j

vij,ij . (49)

The Hartree-Fock method assumes that the nuclear wave
function is described by a single determinant of single-particle
wave functions. This corresponds to the closed-shell which is
expressed by a single basis state with no configuration mixing.
The above expression states that the energy expectation value
is not the sum of single-particle energies. The second term is
the sum of two-particle matrix elements, and it is the monopole
components of the two-body interaction. In the shell model,
the monopole value is a half of the sum of single-particle
energies, and the energy of the closed-shell is equal to the
monopole expectation value.

The single-particle energies are calculated not only with
the USD interaction [13,14] but also with new USDA, USDB
and renormalized G-matrix (RGSD) interactions [62]. The
new USDA and USDB interactions give the single-particle
energies very close to those of the USD interaction, generally
within 0.2 MeV with a few exceptionally large deviations
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FIG. 3. Single-particle energies of the three orbits in sd-shell for
0+ ground states of even-even Z = N nuclei, calculated with the
USD interaction (filled) and the renormalized G-matrix interaction
(open).

of about 0.4 MeV. However, the calculated binding energies
of the closed-shell nucleus 40Ca are in good agreement with
one another, B(40Ca) = 280.102 MeV (USD), 280.183 MeV
(USDA), and 279.961 MeV (USDB). On the other hand,
the RGSD interaction yields a binding energy of B(40Ca) =
287.659 MeV with the single-particle energies with respect to
the core from the USD interaction. Such a large discrepancy
is naturally due to those of monopole components, and the
calculated single-particle energies for the ground states of
Z = N nuclei are compared in Fig. 3. In the Z = N nuclei,
the single-particle spectrum of protons is identical to that of
neutrons in the present calculation with the Hamiltonian which
conserves the isospin. The RGSD interaction gives single-
particle energies of d3/2 and s1/2 orbits systematically smaller
than those of the USD interaction, especially for the s1/2 orbit
at the middle of sd-shell. The degeneracy of the d5/2 and s1/2

orbits at 28Si would cause a large amount of configuration
mixing in the two orbits, in a contrast to the empirical USD,
USDA and USDB interactions which yield a large gap of about
5 MeV between them. The degeneracy can be traced back to
a strong attraction between d5/2 and s1/2 of the RGSD proton-
neutron interaction, �εd5/2s1/2 = −0.352 MeV, compared to
the corresponding value �εd5/2s1/2 = +0.104 MeV of the USD
interaction. The monopole strength �εd5/2d3/2 is also more
attractive in the RGSD interaction by about 0.3 MeV than
the USD interaction.

It is a problem to be resolved that effective interaction
theories, such as G-matrix method, do not predict correct
monopole components of two-body interaction. This is the
reason why the monopole shifts have been introduced to the
G-matrix effective interaction to define the KB3 interaction
in the pf shell, and, on the other hand, empirical effective
interactions have been utilized if available. One of the alter-
natives of G-matrix is the unitary-model-operator approach
(UMOA), where much effort has been paid for an accurate
numerical calculation of the short-range repulsion of the
bare nucleon-nucleon interaction [63] and the Pauli exclusion
operator has been treated exactly [64]. An improvement
has been achieved in agreement with experimental data of

single-particle energies, but there remain some deviations. The
origin of the discrepancies in the monopole interactions might
be found in three-body forces [39]. The problem becomes more
serious when we go to heavier mass region, where empirical
effective interactions are not available and we have to rely on
predictions of effective interaction theories.

D. Triplet-even channel attraction

The binding energies due to the monopole interaction are
decomposed into ten components, i.e., four central compo-
nents (SE, TO, SO, and TE), two spin-orbit components
(LSO and LSE), two tensor components (TNO and TNE),
and two antisymmetric LS components (ALSO and ALSE).
The decompositions for the three chains of nuclei are shown
in Fig. 4. The contributions of non-central interactions are
summed, and the sum is shown on the top for each nucleus. The
monopole interaction is dominated by the central components.
The even-channel contributions are positive and the odd-
channel contributions are negative. This result reflects the
basic feature common to realistic bare NN interactions, even-
channel potentials are attractive and odd-channel potentials are
repulsive. The SE potential is the most attractive in the bare
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interactions, but the TE component shares the largest fraction
of the binding energies calculated with the effective USD
interaction. This is due to the second-order tensor correlations
that, in the TE channel, the tensor interaction allows coupling
such as between 3S1 and 3D1, and this enhances the attraction
of the TE central part of the empirical interaction. Figure 4
further indicates that the repulsive TO component cancels the
attractive SE component to a large extent, and the net binding
due to the T = 1 interaction remains to be small. On the other
hand, the repulsion of the SO component is much smaller
than the attraction of the TE component. The SO interaction
has a small (2S + 1) (2T + 1) weighting compared with the
TO interaction. In the bare G matrix, the SO interaction is
actually quite strongly repulsive while the TO interaction is
much weaker. In the renormalized effective interaction or the
empirical effective interaction, the TO interaction becomes
more repulsive. The binding energies are, therefore, due
mainly to T = 0 central interaction, in particular, to the
attraction in the triplet-even channel. This has been shown
numerically in Refs. [47,48,51] for the effective interactions
in the light-mass region.

Recently, it has been pointed out that the tensor force plays
an important role as the second mechanism of shell evolution.
This is the first order effect of the tensor interaction. In the
sd-shell, the tensor force has no effect on the s1/2 orbit, and the
monopole strengths due to the tensor component for the spin-
orbit partners, d5/2 and d3/2, satisfy the following equation:

6 · 4�εd5/2d3/2 (TN) = −62�εd5/2d5/2 (TN)

= −42�εd3/2d3/2 (TN). (50)

With the USD interaction, the value of the equation for the
triplet-odd tensor component of the like-nucleon interaction is

6 · 4 �εd5/2d3/2 (TNO) = −2.110 MeV,

and those for the triplet-odd (T = 1) and triplet-even (T = 0)
components are

6 · 4 �εd5/2d3/2 (TNO) = −1.055 MeV,

6 · 4 �εd5/2d3/2 (TNE) = −3.589 MeV,

respectively, for the proton-neutron interaction. When a tensor
force is associated with the isospin product τ1 · τ2, such
as the one-pion exchange potential, the ratio of T = 0 to
T = 1 strengths is restricted to three. In the empirical USD
interaction, the ratio is larger than three, indicating a stronger
T = 0 (triplet-even) tensor component.

Single-particle energies in the sd-shell are calculated with
and without the tensor components, while the wave functions
of energy eigenstates are constructed with the full Hamiltonian.
The calculated results are shown in Fig. 5. In the Z = N nuclei
in going from the beginning to the middle of the shell, where
nucleons are filling mainly the d5/2 orbit, the tensor force
slightly reduces the binding energy of the d5/2 orbit while it
raises the d3/2 orbit. This is because of the repulsion of the
tensor force between d5/2 nucleons, �εd5/2d5/2 (TN) > 0, but it
is attractive between the spin-orbit partners, �εd5/2d3/2 (TN) <

0. From the middle of the shell, nucleons fill s1/2 and d3/2

orbits, the contributions of the tensor force are reduced, and
they finally vanish in the closed-shell nucleus 40Ca because of
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FIG. 5. Single-particle energies of the three orbits in sd-shell for
ground states of (a) Z = N nuclei and (b) Ne isotopes, calculated
with (filled) and without (open) the tensor interaction.

Eq. (50), which can be rewritten as

6 · 4 �εd5/2d3/2 (TN) + 62 �εd5/2d5/2 (TN) = 0,

6 · 4 �εd5/2d3/2 (TN) + 42 �εd3/2d3/2 (TN) = 0,

where effects of the tensor force are completely canceled out.
A similar trend can be seen also in Ne isotopes, as shown in the
lower panel of Fig. 5. In 30 Ne, the tensor force has no effect
on the proton orbits because of the closure of the neutron shell
and the complete cancellation shown above, whereas a small
effect remains in the neutron orbits since the nucleus has only
two protons on the 16O core.

E. Quadrupole interaction

Now, we discuss contributions of higher multipoles, which
are displayed by black bars in Fig. 2. Though the contribution
shares a small fraction of the total binding energy, it is
important for open-shell nuclei, such as 20Ne and 24Mg, since
it is a result of configuration mixing, which is not obtained by
the monopole interaction.

We have decomposed them into multipoles with k > 0 for
the proton-neutron interaction, while for the proton-proton
and neutron-neutron interactions into 〈j1j2|Vpp/nn|j ′

1j
′
2〉J with

different J -values. It is found that the magnitudes of higher-
multipole contributions are correlated with the quadrupole
component (k = 2) of the proton-neutron interaction.
Figure 6 shows the calculated result for even-even nuclei
in sd-shell. There is a tendency that the energy gain is
large in the Z = N nuclei, especially in the first half of
sd-shell, and becomes smaller as the neutron number becomes
closer to the neutron magic number N = 20. In each nucleus,
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FIG. 6. The energy gain due to the higher multipoles (k �=
0), calculated for 0+ ground states of even-even nuclei with
10 � Z � N � 18 in the sd shell. The largest energy gain is 30.4 MeV
for 24Mg. The black bar corresponds to the quadrupole (k = 2)
component of the proton-neutron interaction.

approximately a half of the energy gain is caused by the
quadrupole interaction of the proton-neutron interaction, that
is, there are large effects of the quadrupole interaction in the
symmetric nuclei.

A schematic quadrupole interaction is the well known
Q · Q force,

V
(2)
pn,sch = Qp · Qn, (51)

where Qp and Qn are quadrupole operators acting on proton
and neutron systems, respectively, and it enhances deformation
of the nucleus.

Wave functions of 0+ states can be expressed, symbolically,
as

|0+〉 =
∑

J

βJ |J+
p ⊗ J+

n 〉, (52)

where |J+
p ⊗ J+

n 〉 represents wave-function components in
which both proton system and neutron system have the
same value of angular momentum J , and βJ corresponds to
their amplitudes. Figure 7 shows the decomposition of 0+
ground-state wave functions, where probabilities of |0+

p ⊗ 0+
n 〉

and |2+
p ⊗ 2+

n 〉 shell-model basis states are separately plotted.
A strong correlation is observed, by comparing Figs. 6
and 7, that the nuclei with a large energy gain in Fig. 6 has a
large |2+

p ⊗ 2+
n 〉 fraction. This is well understood by the matrix

element of the schematic Q · Q force,

〈2+
p ⊗ 2+

n |Qp · Qn|0+
p ⊗ 0+

n 〉

= 1√
5
〈2+

p ‖Qp‖0+
p 〉〈2+

n ‖Qn‖0+
n 〉. (53)

First, a large mixture of the |2+
p ⊗ 2+

n 〉 component induces
a large energy gain by configuration mixing. Secondly, the
magnitude of the matrix element is determined by quadrupole
collectivity. The latter is most enhanced when the proton and
neutron systems collaborate to deform, namely, in symmetric
Z = N nuclei. As the neutron number tends to the closed shell,
N = 20, the neutron system becomes spherical and prevents
the proton system from deforming.

N = 10 N = 12 N = 14 N = 16 N = 18

Ne

Mg

Si

0p
+ 0n

+

2p
+ 2n

+

S

Ar

FIG. 7. Decomposition of the wave functions of 0+ ground states
of even-even nuclei with 10 � Z � N � 18.

The pairing interaction, i.e., the like-nucleon interaction
with J = 0, gives always a positive gain of binding energy.
But, we cannot say that it dominates the rest of higher multipole
contributions, after subtracting the quadrupole proton-neutron
interaction. Higher J -value components of the like-nucleon
interaction sometimes appear in negative sign, and then there
is considerable cancellation between J = 0 and higher-J
contributions.

V. CONCLUSION

We have calculated binding energies of sd-shell nuclei
with the USD interaction, which is known to reproduce
experimental binding energies very well, by employing three
types of decompositions of two-body interaction.

In the first decomposition, the present calculation demon-
strates numerically the well known fact that, on average, the
strongly attractive proton-neutron interaction is much more
important for binding energies than like-nucleon interactions
which are weakly attractive or sometimes repulsive.

The multipole expansion clearly defines the monopole
interaction as the k = 0 component, which has been
discussed in a number of previous papers, and it is
shown that the monopole strengths �εjj ′ are exactly the
same quantity which appears in the definition of single-
particle energies which arises interaction between valence
nucleons. The binding energies are dominated by the
monopole interaction. The ratio R, defined by Eq. (47),
is found usually to be very close to unity, and this means
that the monopole interaction can be represented by one-
body single-particle energies, and higher multipoles are
then residual interactions which cause configuration mix-
ing. Among the higher multipoles, the quadrupole com-
ponent of the proton-neutron interaction is responsible for
a considerable gain of binding energy in some nuclei, by
coherent mixing of various configurations which describes
deformation.

The spin-tensor decomposition has shown the importance
of the attraction of the central interaction in the triplet-even
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channel with isospin T = 0. In the T = 1 channels, the
singlet-even attraction is canceled to a large extent by the
triplet-odd repulsion, leading to a much smaller contribution
to binding energies. As part of the monopole interaction,
effects of the tensor force are found in the behaviors of
single-particle energies, which is recently pointed out as the
second mechanism of shell structure evolution.
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