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Relativistic random-phase approximation in axial symmetry

Daniel Pena Arteaga1 and P. Ring1,2

1Physikdepartment, Technische Universität München, D-85748, Garching, Germany
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Covariant density functional theory, in the framework of self-consistent relativistic mean field (RMF) and
relativistic random-phase approximation (RRPA), is for the first time applied to axially deformed nuclei. The
fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and nonlinear energy
functionals and solved with the help of a new parallel code. Formal properties of RPA theory are studied and
special care is taken to validate the proper decoupling of spurious modes and their influence on the physical
response. Sample applications to the magnetic and electric dipole transitions in 20Ne are presented and analyzed.
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I. INTRODUCTION

New experimental facilities with radioactive nuclear beams
have stimulated enhanced experimental and theoretical efforts
to understand the structure of nuclei, not only along the narrow
line of stable isotopes, but also in areas of large neutron and
proton excess far from the valley of β stability. Beside the
investigation of the ground state properties of these nuclei,
more and more experimental studies are being devoted to
the understanding of the properties of excited states in this
region.

On the theoretical side, only very light nuclei can be studied
in the framework of modern ab initio methods. Shell model
calculations in restricted configuration spaces provide an
accurate description of light and medium-heavy nuclei. For the
large majority of nuclei, however, a quantitative microscopic
description is only possible using density functional theory
(DFT). Although DFT can, in principle, provide an exact
description of the many-body dynamics if the exact density
functional is known [1,2], in nuclear physics one is far from a
microscopic derivation of this functional, and in addition there
is the problem that in self-bound systems, density functional
theory can only be applied to intrinsic densities [3,4]. The
most successful schemes use a phenomenological ansatz
incorporating as many symmetries as possible, and they adjust
the parameters of these functionals to ground state properties
of characteristic nuclei all over the periodic table (for a recent
review, see Ref. [5]).

Of particular interest are covariant density functionals [6,7],
because they are based on Lorentz invariance. The inclusion
of this symmetry not only allows for the description of the
spin-orbit part of the nuclear interaction in a natural and
consistent way, but also puts considerable restrictions on
the number of parameters in the corresponding functionals,
all without reducing the quality of the agreement with
experimental data. A very successful example is the relativistic
Hartree-Bogoliubov model [7,8], which combines a density
dependence through a nonlinear coupling between the meson
fields [9] with pairing correlations based on an effective
interaction of finite range [8].

Excited states are described within this formalism by
time-dependent density functional theory [10]. In the small

amplitude limit, one obtains the relativistic random-phase
approximation (RRPA) [11,12]. This method provides a
natural framework for investigating collective and noncol-
lective excitations of particle-hole (ph) character. Although
several RRPA implementations have been available since the
1980s [13], only very recently have RRPA-based calculations
reached a level on which a quantitative comparison with
experimental data becomes possible [14]. And even though
the self-consistent relativistic mean field (RMF) framework
has been employed in many studies of deformed nuclei [15,16],
applications of the RRPA method have so far been restricted
to spherical nuclei. This is also true for nonrelativistic density
functionals, where most of the RPA calculations are restricted
to spherical nuclei. Only a very few deformed RPA calculations
based on Skyrme [17,18] or Gogny forces [19] are available
so far.

On the other hand, it is well known that only semimagic
nuclei have a spherical shape, and that most of the other nuclei
in the nuclear chart are deformed. Thus, the description of the
collective response of these nuclei can only be accomplished
within a framework where deformation is explicitly taken
into account. From the point of view of nuclear structure,
the motivation for deformed RPA calculations is evident.
In addition, the nuclear electric dipole response obtained in
this framework provides valuable input for the calculation of
important astrophysical processes [20], such as the r- or the
s-process, that pass though large areas of deformed nuclei.

In this work, we report on the extension of relativistic
RPA theory to axially deformed nuclei and its application
to the study of collective excitations. In Sec. II we discuss
the underlying density functional and the derivation of the
relativistic RPA equations. Section III deals with specific
aspects of RMF and RPA theory in deformed systems and
the evaluation of the relativistic RPA matrix elements on the
basis of axially deformed Dirac spinors. Section IV is devoted
to strength functions and sum rules, and in Sec. V we discuss
transition densities in the intrinsic and in the laboratory frame.
Violations of symmetries and the corresponding Goldstone
modes are treated in Sec. VI, and in Sec. VII we show
illustrative applications in 20Ne, in particular its magnetic
and electric dipole response. Finally, Sec. VIII contains the
summary and an outlook.

0556-2813/2008/77(3)/034317(20) 034317-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.034317


DANIEL PENA ARTEAGA AND P. RING PHYSICAL REVIEW C 77, 034317 (2008)

Details of the mathematical formulation can be found in
the appendices: in particular, Appendices A and B discuss in
detail the interaction, the explicit form of the electromagnetic
transition operators is in Appendices C and D, and Appendix E
details the treatment of angular momentum projection.

II. COVARIANT ENERGY DENSITY FUNCTIONAL AND
RELATIVISTIC RPA EQUATIONS

At the moment, the most successful density functionals
in nuclear physics are purely phenomenological. Considering
from the beginning as many symmetries as possible, one
starts with a relatively simple ansatz for the energy density
functional [21–23], which contains a certain number of phe-
nomenological parameters. One then adjusts these parameters
to bulk properties of nuclear matter and to ground state
properties of a few selected finite nuclei with spherical shape.
These sets are then used over the entire nuclear chart. It turns
out that for a good description of the experiment data, it
is crucial to allow for a density dependence in this ansatz.
The concept of density dependence has its origin in more
microscopic theories of the nuclear many-body system, such
as Brueckner theory [24], which leads to a density-dependent
effective interaction in the nuclear interior. In relativistic
models, this density dependence was taken into account in
the form of a nonlinear meson coupling in Ref. [9] or in
the form of density-dependent meson-nucleon couplings in
Ref. [25]. If the ansatz is chosen properly and if the adjustment
of the phenomenological parameters is carefully done, the
quantitative agreement with available experimental data is
remarkable [5,7].

In this work, we concentrate on relativistic density func-
tional theory [6,7]. These functionals are based on Lorentz
invariance. The basic degrees of freedom are the nucleons
described by pointlike Dirac spinors. To be consistent with
Lorentz invariance and causality, one has two possibilities for
introducing an interaction between these particles. Either one
restricts the theory to zero range interactions, as done in Nambu
Jona-Lasinio models [26], or one allows for the exchange of
effective mesons. Since it has been well known since the early
days of Skyrme theory that pure δ forces are not sufficient
for describing at the same time nuclear binding energies and
radii, and since gradient terms in the Lagrangian can lead to
certain difficulties in the relativistic formulation, historically
the second method was the first to be used [9,23]. Only recently
have relativistic point coupling models with density-dependent
coupling constants been employed successfully in nuclear
physics [27].

For simplicity, we concentrate in this work on meson
exchange models with nonlinear meson couplings. Of course,
the corresponding equations can be easily extended to meson
coupling models with density-dependent vertices [28–30] or
to relativistic point coupling models [27].

In covariant density functionals with meson exchange,
the nucleons are described by Dirac spinors coupled by
the exchange of mesons and by the electromagnetic field
through an effective Lagrangian. The starting point for a
phenomenological ansatz is therefore the Walecka model [23].

The mesons are classified by there quantum numbers, spin,
parity, and isospin (Iπ , T ). In the isoscalar channel, one has
the scalar σ meson (Iπ = 0+, T = 0) and the vector ω meson
(Iπ = 1−, T = 0); and in the isovector channel, one considers
only the vector ρ meson (Iπ = 1−, T = 1). The δ meson
(Iπ = 0+, T = 1) is not included because, so far, there is not
enough data in low energy nuclear structure physics to fix its
parameters uniquely. In addition, the pion is not taken into
account because, again for the sake of simplicity, we work
only at the Hartree level, which forbids the appearance of the
parity violating pion field. The essential contributions of pionic
degrees of freedom by two-pion exchange are taken care of in a
phenomenological way by the σ meson. Therefore, the starting
point is an effective Lagrangian density of the form

L = LN + Lm + Lint . (1)

LN refers to the Lagrangian of the free nucleon

LN = ψ̄(iγ µ∂µ − m)ψ, (2)

where m is the bare nucleon mass and ψ denotes the Dirac
spinor. Lm is the Lagrangian of the free meson fields and the
electromagnetic field

Lm = 1
2∂µσ∂µσ − 1

2m2
σ σ 2 − 1

4
µν

µν + 1

2m2
ωωµωµ

− 1
4

�Rµν
�Rµν + 1

2m2
ρ �ρµ �ρµ − 1

4FµνF
µν (3)

with the corresponding masses mσ ,mω, and mρ , and the field
tensors


µν = ∂µων − ∂νωµ,

�Rµν = ∂µ �ρν − ∂ν �ρµ, (4)

Fµν = ∂µAν − ∂νAµ,

where arrows denote isovectors. The interaction Lagrangian
Lint is given by minimal coupling terms

Lint = −gσ ψ̄�σσψ − gωψ̄�µ
ωωµψ − gρψ̄ ��µ

ρ �ρµψ

− eψ̄�µ
e Aµψ, (5)

with the vertices

�σ = 1, �µ
ω = γ µ, ��µ

ρ = γ µ�τ ,
(6)

�µ
e = 1

2 (1 − τ3)γ µ,

where gσ , gω, gρ , and e are the respective coupling constants
for the σ, ω, �ρ, and photon fields. This yields

Lint = −
∑
m

gmψ̄�mφmψ, (7)

where the index m runs over the various meson and elec-
tromagnetic fields and over the Lorentz index for vector
mesons and isospin indices for mesons carrying isospin,
that is,

φm = (σ, ωµ, �ρµ,Aµ), �m = (
�σ , �µ

ω, ��µ
ρ , �µ

e

)
. (8)

Already in the earliest applications of the RMF framework,
however, it was realized that this simple linear interaction
density functional did not provide a quantitative description
of complex nuclear systems; an effective density dependence
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needed to be introduced. Historically, the first [9] was the
inclusion of nonlinear self-interaction terms in the meson part
of the Lagrangian in the form of a quartic σ potential

1
2m2

σ σ 2 + U (σ ), (9)

with

U (σ ) = g2

3
σ 3 + g3

4
σ 4, (10)

which includes the nonlinear σ self-interactions with two
additional parameters g2 and g3. This particular form of the
nonlinear potential has become standard in applications of
RMF functionals, although additional nonlinear interaction
terms, in both the isoscalar and isovector channels, have been
considered over the years [31–34].

Two other approaches, of more recent development, can
also be found in the literature, based on the introduction
of the density dependence directly in the coupling constants
[28–30] and on the expansion of the meson propagators into
zero-range couplings and gradient corrections terms [27].
For the sake of simplicity, we will restrict the discussion
in this work to nonlinear density functionals, always taking
the NL3 [35] parameter set as the force of choice. Also, the
explicit inclusion of the nonlinear meson potential U (σ ) is
generally avoided in order to keep the formulation as clean
as possible. But, of course, it is included in all numerical
calculations of results presented in the manuscript, and it
shall be explicitly mentioned at certain important points in
the following discussions.

The Hamiltonian density can be derived from the La-
grangian density of Eq. (1) as the (0,0) component of the
energy-momentum tensor

H = T 00 = ∂L
∂q̇j

q̇j − L, (11)

leading to the energy functional

E[ρ̂, φ] =
∫

H d3r . (12)

Following the Kohn-Sham approach [2,36], one can express
the relativistic energy density E as a functional of the
relativistic single-particle density matrix

ρ̂(r, r ′, t) =
A∑
i

ψi(r,t)ψ†
i (r ′, t) (13)

and the meson fields φ = (σ, ω, ρ, γ ). The sum over i in
Eq. (13) runs over the orbits in the Dirac sea (no-sea
approximation, see below). Considering the four-dimensional
Dirac spinor ψi as a column vector and ψ

†
i as a row vector, one

concludes that ρ̂(r, r ′, t) is a 4 × 4 matrix in Dirac space. This
leads to the standard relativistic energy density functional

ERMF[ρ̂, φ] = Tr [(−iα∇ + βm)ρ̂] + Tr [(β�mφm)ρ̂]
(14)

± 1

2

∫
d3r

[
(∂µφm)2 + m2

m

]
,

where summation over the different mesons is implied, and the
trace operation involves summation over Dirac indices and an
integral over the whole space. �m describes the structure of the

meson-nucleon interaction. The upper sign in Eq. (15) holds
for the scalar mesons, and the lower sign for the vector mesons.
At the mean field level, the mesons are treated as classical
fields. The nucleons, described by a Slater determinant |�〉 of
single-particle wave functions, move independently in these
classical meson fields. One can thus apply the classical time-
dependent variational principle

δ

∫ t2

t1

dt{〈�|i∂t |�〉 − E[ρ̂, φ]} = 0, (15)

which leads to the equations of motion

i∂t ρ̂ = [h[ρ̂, φ], ρ̂], (16)[
∂ν∂ν + m2

m

]
φm = ∓Tr[β�mρ̂], (17)

where the single-particle effective Dirac Hamiltonian ĥ is the
functional derivative of the energy with respect to the single-
particle density

ĥ[ρ̂, φ] = δE[ρ̂, φ]

δρ̂
= (−iα∇ + βm) +

∑
m

β�mφm. (18)

The time-dependent Dirac equation for the nucleons reads

[γ µ(i∂µ + Vµ) + m + S]ψk = 0, (19)

with the scalar S and vector Vµ potentials

S(r, t) = gσσ (r, t),
(20)

Vµ(r, t) = gωωµ(r, t) + gρ �τ �ρµ(r, t) + eAµ(r, t)
1 − τ3

2

and the time-dependent meson equations have the form[
∂ν∂ν + m2

σ

]
σ = −gσρs, (21)[

∂ν∂ν + m2
ω

]
ωµ = +gωjµ, (22)[

∂ν∂ν + m2
ρ

] �ρµ = +gρ
�jµ
tv, (23)

[∂ν∂ν]Aµ = +ejµ
c , (24)

with the sources

scalar-isoscalar ρs =
A∑
i

ψ̄iψi, (25)

vector-isoscalar jµ =
A∑
i

ψ̄iγ
µψi, (26)

vector-isovector �jµ
tv =

A∑
i

ψ̄iγ
µ�τψi, (27)

electromagnetic jµ
c =

A∑
i

ψ̄iγ
µ 1

2
(1 − τ3)ψi (28)

To describe the ground state properties of even-even nuclei,
one has to look for stationary time-reversal invariant solutions
of the equations of motion, Eqs. (16) and (17). The nucleon
wave functions are then the eigenvectors of the stationary Dirac
equation,

[−iα∇ + V0 + β(m + S)]ψk = εkψk, (29)

which yields the single-particle energies εk as eigenvalues.
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The meson fields and the Coulomb potential obey the
Helmholtz and Laplace equations[ − � + m2

σ

]
σ = −gsρs, (30)[ − � + m2

ω

]
ω0 = +gωρv, (31)[ − � + m2

ρ

]
ρ0 = +gρρtv, (32)

[−�]A0 = +eρc, (33)

with the following source densities:

scalar-isoscalar ρs =
A∑
i

ψ̄iψi, (34)

vector-isoscalar ρv =
A∑
i

ψ
†
i ψi, (35)

vector-isovector ρtv =
A∑
i

ψ
†
i τ3ψi, (36)

electromagnetic ρc =
A∑
i

ψ
†
i

1

2
(1 − τ3)ψi . (37)

Equation (29), together with Eqs. (30)–(33), poses a self-
consistent problem which is readily solved by iteration. With
the resulting density ρ̂ and fields φ, the total energy of the
system can be calculated using Eq. (15). Radii and other bulk
properties of the nucleus can be derived as well.

An important point of the present versions of covariant
density functional theory is the no-sea approximation; i.e.,
in the calculation of the sources for the meson equations
(30)–(33), only positive energy spinors are included in the
summation. In a fully relativistic description, the negative
energy states from the Dirac sea would also have to be
included. However, this would lead to divergent terms which
have to be treated by a proper renormalization procedure in
nuclear matter [37,38] or in finite nuclei [39–42]. Numerical
studies have shown that effects due to vacuum polarization can
be as large as 20–30%. Their inclusion requires a readjustment
of the parameter set for the effective Lagrangian that leads
to approximately the same results as if they were neglected
[39,43,44]. This means that in a phenomenological theory
based on the no-sea approximation, where the parameters
are adjusted to experimental data, vacuum polarization is not
neglected, it is just taken into account in the phenomenological
parameters in a global fashion, and the no-sea approximation
is in reality not an approximation. It is used in all successful
applications of covariant DFT. This has, however, serious
consequences for the calculation of excited states in the RPA
[12].

The vibrational response of the system can be studied
considering harmonic oscillations with small amplitude and
with eigenfrequencies 
ν around the stationary ground ρ̂(0).
In this case, the time-dependent density can be written as

ρ̂(t) = ρ̂(0) + (δρ̂(ν)e−i
ν t + h.c.). (38)

Imposing the condition that ρ̂ is a projector at all times, the
transition density matrices δρ̂(ν) have only matrix elements

which connect occupied and unoccupied states [11], that is,

X(ν)
mi = δρ(ν)

mi = 〈0|a†
i am|ν〉,

(39)
Y (ν)

mi = δρ
(ν)
im = 〈0|a†

mai |ν〉,
with respect to the stationary solution ρ̂(0). In the nonrelativis-
tic case, these are only ph and hp matrix elements; i.e., the
index i runs over all levels in the Fermi sea, and the index m

runs over all empty levels above the Fermi sea.
In linear order, the equations of motion (17) can be written

as the RPA equations in their standard matrix form,(
A B

−B∗ −A∗

)(
X(ν)

Y (ν)

)
= 
(ν)

(
X(ν)

Y (ν)

)
, (40)

where the X(ν) refers to the forward amplitude transition
density and Y (ν) to the backward amplitude. The forward
amplitude is thus associated with the creation and the backward
amplitude with the destruction of a ph pair.

In the relativistic case, the situation is more complicated.
Because of the no-sea approximation in the RMF model,
the Dirac sea is empty. Therefore, we have to consider
in the relativistic RPA not only the ph (and hp) matrix
elements of δρ̂, but also the matrix elements δρ̂ah and δρ̂ha

connecting states in the Dirac sea with those in the Fermi sea.
The index i in the amplitudes X(ν)

mi and Y (ν)
mi , and therefore

in the RPA equation (40), runs again over all the levels in
the Fermi sea; however, the index m runs now over all the
levels above the Fermi sea and over all the levels in the Dirac
sea. This means we have to not only take particles in the
Fermi sea and put them in the empty levels above the Fermi
surface, but also consider configurations in which we form
holes in the Fermi sea and occupy empty levels in the Dirac
sea. At first glance, this seems to be completely unphysical,
because according to Dirac, the Dirac sea should be filled
with particles. It turns out, however, that this is not the case.
Considering the time-dependent RMF equations, the Dirac
sea depends on time, and the no-sea approximation should
be realized at every point in time. In fact, in solving these
equations, we consider only the time evolution of the levels
ψi(t) in the Fermi sea. The corresponding time-dependent
levels in the Dirac sea stay empty for all times [12]. When
we describe this situation in the static basis, a mathematical
consequence of the completeness of the basis is that one has
to include also the antiparticle-hole (ah) configurations. If one
neglects those configurations, self-consistency is violated, and
one does not preserve the nice properties of RPA, such as
current conservation [45] and the separation of the Goldstone
modes (spurious states) from the other physical solutions.

Neglecting the ah configurations in the RPA equations also
leads in specific cases to highly unphysical results, as for
instance shifts in the energy of the Giant Monopole Resonance
(GMR) in 208Pb from the experimental value at 14 MeV down
to 2–3 MeV [46].

Taking into account also ah configurations renders the
solution of the relativistic RPA equations much more com-
plicated than in the nonrelativistic case, because (i) the
dimension of these equations increases considerably and
(ii) the matrix A ± B is no longer positive definite and
therefore the non-Hermitian matrix diagonalization problem

034317-4



RELATIVISTIC RANDOM-PHASE APPROXIMATION IN . . . PHYSICAL REVIEW C 77, 034317 (2008)

cannot be transformed into a Hermitian problem of half
dimension, as discussed for instance in Ref. [11]. Only recently
has it been shown that the relativistic RPA equations can be
reduced to a non-Hermitian diagonalization problem of half
dimension [47].

For two different RPA excited states ν and ν ′, the following
orthogonality relation holds∑

mi

X(ν)∗
mi X(ν ′)

mi − Y (ν)∗
mi Y (ν ′)

mi = δνν ′ , (41)

which can be used to normalize the eigenvectors (X(ν), Y (ν)).
Within the RPA, the transition matrix elements for a one-body
operator Ô between the excited state |ν〉 and the ground state
|0〉 are given by

〈0|Ô|ν〉 =
∑
mi

OmiX
(ν)
mi + O∗

miY
(ν)
mi . (42)

The RPA matrices A and B read

Ami,nj = (εm − εi)δmnδij + V
ph
mjin, (43)

Bmi,nj = V
ph
mnij , (44)

where the matrix elements V
ph
kl′k′l are the second derivatives of

the energy functional with respect to the single-particle density

V
ph
kl′k′l = 〈kl′|V̂ ph|k′l〉 = δ2E

δρk′kδρll′
, (45)

and V̂ ph is the effective interaction. As we have seen, the mean
field ground state is characterized by the stationary density
matrix ρ̂(0) and by the meson fields φ(0), which, up to this
point, have been treated as independent variables connected to
the density by the equations of motion in Eq. (17).

To describe small oscillations self-consistently, it turns out
to be useful to eliminate the meson degrees of freedom from
the energy functional such that the fermion equation of motion
[approximated by the RPA equation (43)] is closed; i.e., the
residual interaction has to be expressed as a functional of the
generalized density ρ̂ only. This elimination of the meson
degrees of freedom is possible only in the limit of small
amplitudes,

φ = φ(0) + δφ,
(46)

ρ̂ = ρ̂(0) + δρ̂,

where δρ̂ and δφ are small deviations from the ground state
values ρ̂(0) and φ(0). Substituting this expansion in the Klein-
Gordon equations (17) and retaining only the first order in δρ̂,
we find [

∂µ∂µ + m2
m

]
δφm = ∓gmδρm, (47)

with the local densities, the sources for the various meson fields
are given by δρm(r) = (δρs(r), δρv(r),δρvt(r),δρc(r)) for m =
(σ, ω, ρ,A). Neglecting retardation effects (i.e., neglecting
∂2
t ), one finds for the linearized equations of motion for the

mesons [ − � + m2
m

]
δφm = ∓gmδρm . (48)

This approximation is meaningful only at small energies, as
compared to the meson masses, where the short range of

the corresponding meson exchange forces guarantees that
retardation effects can be neglected. A formal solution for
Eq. (48) can be written as

δφm(r) = ∓
∫

d3r ′gmGm(r, r ′)δρm(r ′), (49)

which allows us to decompose the residual interaction V̂ ph in
various meson exchange forces, that is,

V̂ ph = V̂σ + V̂ω + V̂ρ + V̂γ , (50)

with

V̂m(1, 2) = ∓g2
m(β�m)(1)Gm(r1, r2)(β�m)(2). (51)

For linear meson couplings, the propagator Gm obeys the
Helmholtz equation( − � + m2

m

)
Gm(r, r ′) = δ(r − r ′), (52)

and has the Yukawa form

Gm(r1, r2) = 1

4π

e−mm|r1−r2|

|r1 − r2| . (53)

The vertices β�m reflect the different covariant structures
of the fields as defined in Eq. (7). Combining the spatial
coordinates r and the Dirac index α = 1 . . . 4 to the coor-
dinate 1 = (r1, α1), we can express the relativistic two-body
interactions in the following way:

for the σ exchange,

V̂σ (1, 2) = − g2
σ

4π
β(1)β(2) e

−mm|r1−r2|

|r1 − r2| , (54)

for the ω exchange,

V̂ω(1, 2) = g2
ω

4π
(1 − α(1)α(2))

e−mm|r1−r2|

|r1 − r2| , (55)

for the ρ exchange,

V̂ρ(1, 2) = g2
ρ

4π
�τ (1) �τ (2)(1 − α(1)α(2))

e−mm|r1−r2|

|r1 − r2| , (56)

and for the electromagnetic interaction,

V̂em(1, 2) = e2

4π

1 − τ
(1)
3

2

1 − τ
(2)
3

2

1 − α(1)α(2)

|r1 − r2| . (57)

In the case of nonlinear meson couplings, the Klein-Gordon
equation (48) is replaced by[ − � + m2

σ

]
σ + U ′(σ ) = −gsρs. (58)

When considering small oscillations around the static solution
σ (0), it leads not to Eq. (48) but to[ − � + m2

σ + W (r)
]
δσ = −gσ δρs, (59)

with

W (r) = U ′′(σ (0)(r)), (60)

and the propagator Gσ (r, r ′) obeys the equation[ − � + m2
σ + W (r)

]
Gσ (r, r ′) = δ(r − r ′), (61)

which cannot be solved analytically. More details on how
to determine this propagator numerically are given in
Appendix B.
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III. RMF+RRPA IN DEFORMED NUCLEI

The fact that nuclei can be deformed was already em-
phasized by Niels Bohr in his classic paper on the nuclear
liquid-drop model [48], where he introduced the concept of
nuclear shape vibrations. If a system is deformed, its spatial
density is anisotropic, so it is possible to define its orientation
as a whole, and this naturally leads to the presence of collective
rotational modes. In 1950, Rainwater [49] observed that the
experimentally measured large quadrupole moments of nuclei
could be explained in terms of the deformed shell model,
i.e., the extension of the spherical shell model to the case
of a deformed average potential. In a following paper [50],
Age Bohr formulated the basis of the particle-rotor model and
introduced the concept of an intrinsic (body-fixed) nuclear
system defined by means of shape deformations regarding
nuclear shape and orientation as dynamical variables. The
basic microscopic mechanism leading to the existence of
nuclear deformations was proposed by A. Bohr [51], stating
that the strong coupling of nuclear surface oscillations to the
motion of individual nucleons is the reason for the observed
static deformations in nuclei. Nowadays, the deformation
mechanism in nuclei is well understood [11]: for sufficiently
high level density in the vicinity of the Fermi surface, or for
sufficiently strong residual interaction, the first 2+ excited
state (a quadrupole surface phonon) is shifted down to zero
energy (it “freezes out”), effectively creating a condensate of
quadrupole phonons and giving rise to a static deformation of
the mean field ground state.

To calculate excitations in deformed nuclei, the RPA theory
outlined in the previous section can be used. It is important
to remember, however, that these excitations are intrinsic in
as much as they are relative to the local deformed ground
state. Nevertheless, the application of RPA to the calculation of
intrinsic excitations of deformed nuclei is formally completely
analogous to that for spherical nuclei. The only difference is
that one has now single-particle orbitals violating rotational
symmetry, i.e., having no good angular momentum. For this
reason, it is not possible to apply group theory techniques to
reduce the dimension of the RPA matrix by angular momentum
coupling techniques. Only in the case of axial symmetry are
reductions based on the good quantum number K possible,
which is the projection of the total angular momentum onto
the symmetry axis.

The introduction of a deformed intrinsic state in DFT is
straightforward. Let us suppose that there exists a symmetry
operator S such that the energy density functional is invariant
under the symmetry transformations eiαS , i.e., for a trans-
formed density ρ̂α , where

ρ̂α = e−iαS ρ̂ eiαS , (62)

we have

E[ρ̂α] = E[e−iαS ρ̂ eiαS ] = E[ρ̂] . (63)

Examples of such a symmetry in even-even nuclear systems
would be rotational and translational symmetries and the
third component of isospin (i.e., the charge). If the density
has the same symmetry, ρ̂α = ρ̂, we can restrict the set of
variational densities to those with this symmetry. However,

such a symmetric solution is not necessarily at the minimum
in the energy surface defined by E[ρ̂], that is, the best solution.
Because of the nonlinearity of the variational in Eq. (29), it is
possible that the solution breaks the symmetry spontaneously;
i.e., the energy density is invariant under S transformations,
but the density is not ρ̂α �= ρ.

Rotations are among such continuous symmetry transfor-
mations. Nuclei with semiclosed shells have pairing correla-
tions, and the solution with the lowest energy of the variational
Hartree-Bogoliubov (HB) or Hartree-BCS (HBCS) equations
has a spherical intrinsic density distribution. One can always
write the ground state wave function of these nuclei as a
rotationally invariant product state of the HB or BCS type.
On the other hand, most nuclei throughout the periodic table
have open shells for both types of particles, and thus due
to the strongly attractive seniority breaking proton-neutron
interaction, their respective intrinsic single-particle densities
are usually not invariant under rotations. Nevertheless, most
of the nuclei have minima with axial symmetric density
distributions. Only a few cases have pronounced triaxial
deformations.

The present investigation is restricted to nuclei that can be
adequately described by a variational wave function with axial
symmetry, and so the projection of the angular momentum 


on the symmetry axis is a conserved quantity. It is therefore
convenient to use cylindrical coordinates

r = (r cos ϕ, r sin ϕ, z), (64)

where, as usual, the symmetry axis is labeled as the z axis.
Note, that r is the distance from the symmetry axis, not the
distance from the origin. For reasons of simplicity, we avoid in
this work, as far as possible, the notation r⊥. The single-particle
Dirac spinors ψk , solution of Eq. (29), are then characterized
by the angular momentum projection 
, the parity π , and the
isospin projection t such that

ψk(r) = 1√
2π




f +
k (r, z)ei(
i−1/2)φ

f −
k (r, z)ei(
i+1/2)φ

ig+
k (r, z)ei(
i−1/2)φ

ig−
k (r, z)ei(
i+1/2)φ


χtk (t) . (65)

For even-even nuclei, for each solution ψk with positive 
k

there exists a time-reversed one with the same energy, which
will be denoted by a bar, that is,

k̄ := {εk, −
k, πk} . (66)

The time reversal operator has the usual form iγ 3γ 1K̂ , where
K̂ is the complex conjugation.

A. Configuration space for the RPA equation

The rows and columns of the RPA matrix in Eq. (40)
are labeled by all the possible ph and ah pairs that can be
formed using the single-particle spinor solutions of the static
problem. Since the total angular momentum is no longer a
good quantum number, we cannot take advantage of angular
momentum techniques when forming these pairs. Only axial
symmetry and parity is left. The full RPA matrix can be thus
reduced to blocks with good quantum numbers K and π . In
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particular, this means that the RPA matrix elements V
ph
mjin must

obey the following selection rules:


m − 
i = 
n − 
j = K, (67)

πmπi = πnπj = π. (68)

Thus we can define RPA phonon operators

Q+
ν,Kπ =

∑
mi

X(ν)
mi a

†
mai − Y (ν)

mi a
†
ı̄ am̄ (69)

as linear combination of pairs with good angular momentum
projection K and parity π . This means that the sum runs only
over pairs mi such that the conditions (67) and (68) are satisfied
and the different excitation modes

|ν,Kπ 〉 = Q+
ν,Kπ |0) (70)

can be labeled by the quantum numbers

Kπ = 0±, 1±, 2±, . . . , (71)

where

Kπ = (
m − 
i)
(πmπi ). (72)

One has to be careful handling time reversal symmetry in the
case of coupling to K = 0, where for each pair of the form of
Eq. (72) there exists the time reversed one

Kπ = (−
m̄ + 
ı̄)
(πmπi ) = (
m − 
i)

(πmπi ), (73)

with the same energy that also satisfies Eq. (67), and which
has to be considered explicitly when calculating the matrix
elements.

B. Evaluation of the RPA matrix elements

As we have seen in Eq. (45), the matrix elements of the
residual interaction can be derived from the energy functional
as the second derivative with respect to the density. In the case
of meson exchange models, this interaction is in Eqs. (50)
and (51). The index m runs over the various mesons, and
introducing explicitely the Minkowski index µ, the interaction
has the form

V̂m(1, 2) = ∓g2
mβ(1)�µ(1)Gm(r1, r2)β(2)�(2)

µ , (74)

where the propagator G(r1, r2) has the Yukawa form for
mesons with linear couplings and has to be evaluated nu-
merically in the other cases. We first concentrate on mesons
with linear couplings. In this case, the propagator Gm(r1 − r2)
depends only on r1 − r2 and can be written in Fourier space
as

Gm(r1 − r2) =
∫

d3q

(2π )3
eiqr1�m(q)e−iqr2 , (75)

with the meson propagator

�m(q) = 1

q2 + m2
m

. (76)

The interaction (74) has the form

V̂m(1, 2) = ∓
∫

d3q

(2π )3
Q̂µ(q, 1)�m(q)Q̂†

µ(q, 2), (77)

with

Q̂µ(q, 1) = gmβ(1)�µ(1)eiqr1 . (78)

For each q, Q̂µ(q) is a one-body operator in r space and in
the four-dimensional Dirac space defined by the combined
index 1 = (r1, α1). This definition of the operator Q̂µ is
flexible enough to also allow applications of the meson
exchange model with density-dependent coupling constants
gm(r) = gm(ρ(r)). In the present investigation, however, we
do not follow this avenue. Considering the q integral as a sum
over discrete values in q space, the interaction (77) is a sum of
separable terms. The corresponding two-body matrix elements
can thus be expressed by the one-body matrix elements of
the operators Q̂µ(q). Using this form we can evaluate the
two-body matrix elements

〈kl′|V̂ ph
m |k′l〉 =

∫
d3q

(2π )3
〈k|Q̂µ(q)|k′〉�m(q)〈l|Q̂µ(q)|l′〉∗

(79)

with the single-particle matrix elements

〈k|Q̂µ(q)|k′〉 =
∫

d3r˜gmψ̄k(r)�µ(r)eiqrψk′(r). (80)

For the case with axial symmetry, the evaluation of these matrix
elements is best accomplished in cylindrical coordinates (64).
In this case, one finds that the integrals over the azimuth
angles in coordinate and momentum space can be evaluated
analytically. This leads to the selection rule 
k − 
k′ =

l − 
l′ (details are given in Appendix A).

For nonlinear meson couplings, the propagator Gm(r, r ′)
depends on both coordinates, and therefore we find in Fourier
space the matrix �m(q, q ′), which is calculated numerically by
matrix inversion. This leads to a fourfold integral in momentum
space for the evaluation of the two-body matrix elements (79)
(for details see Appendix B).

Summarizing this section, one finds for the elements of the
RPA matrix (40)

Ami,nj = (εm − εi)δmnδij

+
∫

d3q

(2π )3
〈m|Q̂µ(q)|i〉�m(q)〈n|Q̂µ(q)|j 〉∗, (81)

Bmi,nj =
∫

d3q

(2π )3
〈m|Q̂µ(q)|i〉�m(q)〈j̄ |Q̂µ(q)|n̄〉∗, (82)

where |n̄〉 = T |n〉 is the time-reversed state to |n〉. Using the
symmetry properties of the operators Q̂µ(q), one obtains

〈j̄ |Q̂µ(q)|n̄〉 = (−)S〈n|Q̂µ(q)|j 〉, (83)

where S is the spin of the exchanged meson; i.e., S = 0 for
scalar mesons and the timelike part of vector mesons, and
S = 1 for the spatial part of the vector mesons.

C. Matrix elements in the intrinsic and in the laboratory frame

So far we have solved the relativistic RPA equations in
the intrinsic frame. Neither the basis states, the ph states
based on a deformed ground state, nor the eigenstates |ν,Kπ 〉
of the RPA equations in Eq. (70) are eigenfunctions of the
angular momentum operators J2 and Jz in the laboratory
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frame. We therefore call the states |ν,Kπ 〉 wave functions
in the intrinsic frame. In fact, they have little in common with
the wave functions in the laboratory frame, which have to
be eigenstates of the angular momentum operators J2 and Jz.
To calculate matrix elements which can be compared with
experimental data, we therefore have to project onto good
angular momentum, i.e., on eigenspaces of these operators J2

and Jz in the many-body Hilbert space.
Using the projection operators defined in Ref. [11], we

obtain the wave functions

|ν,K, IM〉 = P̂ I
MK |ν,Kπ 〉

(84)

= 2I + 1

8π2

∫
d
DI∗

MK (
)R̂(
)|ν,Kπ 〉,

where DI∗
MK (
) are the Wigner functions [52], the irreducible

representations of the group O(3) of rotations in three-
dimensional space. They depend on the Euler angles 
,
and R̂(
) is an operator which rotates the intrinsic wave
function |ν,Kπ 〉 by the Euler angles 
. The evaluation of
matrix elements in the many-body Hilbert space using a
projected wave functions is a rather complicated task. In
involves in particular the calculation of the overlap integrals
〈ν,Kπ |R̂(
)OR̂(
′)|ν ′,K ′π 〉. It has been found that for well-
deformed intrinsic wave functions, these overlap integrals are
sharply peaked at 
 = 
′. Replacing these sharply peaked
functions by Gaussians with a rather small width and in the
extreme limit of strong deformation by δ(
 − 
′), one obtains
the so-called needle approximation [11]. The overlap functions
are sharply peaked, in particular for systems with many
particles, and therefore the needle approximation is valid not
only in cases of strong deformations in the geometrical sense,
but in general for heavy systems with normal deformations,
and in the classical limit even for a spherical shape with a
well-defined orientation. Moreover, it can be shown that the
results obtained with this approximate projection (the needle
approximation) are equivalent to the results of the particle plus
rotor model [51] where the orientation 
 of the intrinsic frame
is used as a dynamical variable (for details see Appendix E).

The evaluation of the matrix elements in the laboratory
system reduces to the calculation of products of specific
intrinsic matrix elements and geometrical factors. This leads
to the following expression for the reduced matrix elements:

〈If Kf ||Ôλ||IiKi〉 = (2Ii + 1)(2If + 1)

[(
Ii λ If

Ki µ Kf

)
×〈Kf |Ôλµ|Ki〉 + (−1)Ii+Ki

×
(

Ii λ If

K̄i µ Kf

)
〈Kf |Ôλµ|K̄i〉

]
, (85)

where 〈Kf |Ôλµ|Ki〉 is the intrinsic matrix element of the
multipole operator Ôλµ which is easily calculated with the
help of Eq. (42).

In the following, we therefore have to distinguish matrix el-
ements and transition densities in the intrinsic frame calculated
directly with the solutions of the RPA equation and matrix
elements and transition densities in the laboratory system,
which are obtained after angular momentum projection in the
needle approximation in Eq. (85).

IV. STRENGTH FUNCTIONS AND SUM RULES

Experimental nuclear spectra show in the continuum excita-
tions as resonances with finite width. Since the diagonalization
of the RPA equations is done in a discrete basis, we obtain
discrete eigenstates |ν〉. Using Eqs. (42) and (85), we can
calculate for each of them the reduced transition matrix
elements for specific multipole operators, as for instance the
reduced transition probabilities [B(EI ) and B(MI ) values]
for electric and magnetic transitions

B(EI, 0 → I,K,ων) = |〈ν, I ||Q̂IK ||0|2, (86)

B(MI, 0 → I,K,ων) = |〈ν, I ||M̂IK ||0|2. (87)

It is well known that the width cannot be described well within
the RPA approach discussed here. On one side, we work in
a discrete basis, and therefore the continuum is not treated
properly and the escape width is not taken into account; and
on the other side, the RPA itself is a linear approximation. It
does not contain the coupling to 2p2h and more complicated
configurations and therefore does not allow a proper treatment
of the decay width. Higher order correlations, for example,
the coupling to low-lying collective phonons [53–55], have
to be included for this purpose. It is, however, also known
from spherical RPA calculations, that this method is able
to describe rather well the position of the resonances and
the strength of the transitions for given multipole operators,
i.e., the percentage of the sum rule exhausted by a specific
resonance. To overcome the problem of the width, we adopt
a phenomenological concept and average the discrete RPA
strength distribution obtained from the solution of the RPA
equations in a discrete basis with a Lorentzian function of a
given width �. For the electric response, we have

R(E) =
∑

ν

B(EI, 0 → I,K,ων)
1

π

�/2

(E − ων)2 + (�/2)2
,

(88)

and a corresponding expression holds for the magnetic
response. This results in continuous strength functions which
can be compared with experimental spectra and sum rules. The
knowledge of the sum rules is of special interest, since they
represent a useful test of the models describing the collective
excitations [11]. For example, the energy weighted sum rule
(EWSR) for a transition operator Ô can be represented as a
double commutator

S1 = 〈0|[Ô, [H, Ô]]|0. (89)

If one assumes a nonrelativistic Hamiltonian, a local operator
Ô, and a local two-body interaction, only contributions from
the kinetic energy contribute, and one can evaluate this sum
rule in a model independent way:

S1 = h̄

2m

(2λ + 1)2

4π
Z〈r2λ−2〉. (90)

These classical values for the sum rules are only approximate
estimates. In practical calculations they may be enlarged by an
enhancement factor due to the velocity dependence and due
to exchange terms of the nucleon-nucleon interaction. It can
be shown that many of these sum rules apply also in the RPA.
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In this work, we evaluate the EWSR in the interval below
30 MeV excitation energy as

S1 =
∑

ν

ωνB(EI, 0 → I,K,ων). (91)

In particular, the Lorentzian function in Eq. (88) is normalized
in such a way as to give the same EWSR as calculated with
the discrete response

S1 =
∑

ν

ωνB(EI, 0 → I,K,ων) =
∫

E R(E) dE. (92)

Sum rules also offer the possibility of a consistent definition
of the excitation energies of giant resonances via the energy
moments of the discrete transition strength distribution

mk =
∑

ν

Ek
νB((E/M)I,K,ων) . (93)

In the case k = 1, this equation defines the energy weighted
sum rule of Eq. (91). If the strength distribution of a partic-
ular excitation mode has a well-pronounced and symmetric
resonance shape, its energy is well described by the centroid
energy

Ē = m1

m0
. (94)

Alternatively, mean energies are defined as

Ēk =
√

mk

mk−2
, (95)

where the difference between the values Ē1 and Ē3 can be
used as an indication of how much the strength distribution
corresponding to an excitation mode is actually fragmented. If
the multipole response is characterized by a single dominant
peak, the two moments are equal, i.e., Ē1 = Ē3. In the
relativistic approach, due to the no-sea approximation, the sum
in Eq. (93) not only runs over the positive excitation energies,
but also includes transitions to the empty states in the Dirac sea
which contribute with negative terms to the sum. As pointed
out in Refs. [56–58], for the EWSR the double commutator of
Eq. (89) should vanish, and it is another good check for the
numerical implementation.

V. TRANSITION DENSITIES

To have a intuitive picture of the nuclear excitations, we
investigate in the following the time evolution of the baryon
density. Let us consider the baryon four-current operator in
coordinate space

̂ µ(r) =
∑

i

γ µδ(r − r i), (96)

with single-particle matrix elements in the Dirac basis

j
µ

kk′(r) = ψ̄k(r)γ µψk′(r), (97)

which can be written as

̂ µ(r) =
∑
kk′

j
µ

kk′a
†
kak′ . (98)

To calculate its time evolution within the RPA, and for a
particular excitation mode ν, we use Eq. (42) and find

δjµ(r) =
∑
mi

(
j

µ

im(r)X(ν)
mi + jµ

mi(r)∗Y (ν)
mi

)
. (99)

Thus, the total time-dependent baryon four-current for a given
excitation mode ν with energy ων is

jµ(r, t) = j
µ

0 (r) + δjµ(r)e−iων t + δjµ(r)∗eiων t . (100)

In particular, the baryon density ρ(r, t) = j 0(r, t) can be
written as

ρ(r, t) = ρ0(r) + δρ(r)e−iων t + δρ(r)∗eiων t . (101)

Throughout the rest of this paper, all types of intrinsic
transition densities refer to the baryon intrinsic transition
density in coordinate space, δρ(r), as defined by the zero’s
component of Eq. (99). As discussed in the previous section,
we also have to distinguish the transition densities in the
intrinsic system from those in the laboratory frame.

In a classical system, the transition density would describe
the actual movement of particles. In the quantum mechanical
description, one considers a time-dependent wave packet
and decomposes it into the contributions of the different
excited eigenstates of the system. The transition density is
an off-diagonal matrix element between the stationary ground
state |0〉 and the excited eigenstate |ν〉, and it is regarded
as a measure of the contribution of the eigenstate |ν〉 of the
system to the evolution of the time-dependent wave packet.
To what extent an state |ν〉 can be interpreted in the classical
sense depends on percentage of the sum rule exhausted by
the transition strength of this excitation mode |ν〉. Therefore
the transition densities provide an intuitive understanding of
the nature of the excitation modes. They can be used for the
calculation of transition probabilities as well as for obtaining
a qualitative understanding of these modes.

In an axial symmetric system, the transition density in
Eq. (99) can be written as

δρ(r) = δρ(r⊥, z)e−iKϕ, (102)

where K is the angular momentum projection of the excitation
mode under study. Note that we distinguish in this section the
coordinates r⊥ (the distance from the symmetry axis) and r

(the distance from the origin). Substituting this last expression
in Eq. (101), we arrive at

ρ(r⊥, ϕ, z, t) = ρ0(r⊥, z) + [δρ(r⊥, z)e−i(Kϕ+ων t) + h.c].

(103)

The two-dimensional quantities δρ(r⊥, z) will be plotted
when discussing intrinsic transition densities, and no further
reference to the phase expressed in the exponentials will be
made. To interpret these plots, it is useful to keep in mind
that δρ(r⊥, z) has to be considered together with Eq. (103) in
order to obtain the full three-dimensional geometrical picture.
However, to be able to compare with experimental transition
densities measured in the laboratory frame, we project the
two-dimensional intrinsic transition densities δρ(r⊥, z) on
to good angular momentum. This is done by expanding
the current operator in Eq. (98) in spherical coordinates
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r = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ ) using the set of spher-
ical harmonics YLM (θϕ) as a basis, i.e.,

̂ µ(r) =
∑

LK,kk′
j

µ

L,kk′(r)YLK (θϕ) a
†
kak′ , (104)

where

j
µ

L,kk′(r) =
∫

d cos θdϕ j
µ

kk′(r)Y ∗
LK (θϕ) . (105)

The projected transition density reads

δρ(r) = δρL(r)YLK (θϕ), (106)

with the radial projected transition density

δρL(r) =
∫

d cos θ dϕ δρ(r⊥, z)Y ∗
LK (θϕ). (107)

In the following figures, we present the quantity r2δρL.
Because of the approximations in the derivation of Eq. (85),
this last equation only holds approximately. Nevertheless, we
will see that the results for well-deformed nuclei are excellent.
For example, the transition density patterns for the giant
dipole resonances and the pygmy dipole resonances are in
reasonable agreement with those found experimentally and in
other theoretical RPA studies in spherical symmetry.

VI. SPURIOUS MODES AND NUMERICAL
IMPLEMENTATION

If the generator for a symmetry operation of the full
two-body Hamiltonian, which is represented by a one-body
operator, does not commute with the ground state density,
there exists a Goldstone mode, a so-called spurious solution,
of the RPA equations with zero excitation energy associated
with this symmetry. These solutions are not really spurious,
but they correspond to a collective motion without a restoring
force [59], and therefore they do not correspond to oscillations
with small amplitude. Examples are translations or rotations. In
principle this should not be significant, since we are concerned
only with the intrinsic structure of the nucleus. Thouless found
that for the exact solution of the self-consistent RPA equations,
these spurious modes are orthogonal to all the other modes.
They do not mix with them and can be separated [60].

In practical applications, however, in many cases the spu-
rious solutions are not completely orthogonal to the physical
states for various reasons. One should be able to distinguish
them from the true vibrational response of the nucleus, as
experience shows that this mixture can lead to serious over
estimations in the strength distributions.

In normal calculations, because of numerical inaccuracies,
truncation of the ph space, and inconsistencies among the
ground state and RPA equations, the spurious states are often
located at energies somewhat higher than zero and often cause
a mixing with physical states. There are several approaches to
overcoming this problem. Some authors adjust a free parameter
of the residual interaction until the energy of the spurious mode
goes to zero. Another method is to remove a posteriori the
spurious components from the physical states by projection.
This is possible because the wave functions of the spurious
modes are given by the matrix elements of the corresponding
generators [11].

In this investigation, a fully self-consistent implementation
of the RPA is used, and thus as long as numerical inaccuracies
are kept to a minimum, the spurious modes decouple without
further complications. Because of the block-wise structure
of the RPA matrix, they are expected to be present only for
specific quantum numbers when specific symmetry constraints
are met; since we are restricted to axial symmetry, their
expected appearance can be summarized as follows:

(i) A rotational spurious mode for the Kπ = 1+ channel
associated with rotations of the nucleus as a whole
around an axis perpendicular to the symmetry axis in
the z direction. Its generator is the angular momentum
operator Ĵ+ = Ĵx + iĴy [61].

(ii) A translational spurious mode for the Kπ = 0−, 1−
channels associated with the translation of the nucleus
as a whole. Its generators are the linear momentum
operators P̂z and P̂+ .

In fact, the position of the spurious modes provides a very
accurate test of the actual numerical implementation of the
RMF+RRPA framework. Thus, it is important to study their
evolution with the approximations performed. In the present
status of the implementation, seven parameters control the nu-
merical accuracy and can be categorized into two groups. The
first group specifies the precision of the numerical integrations.
This category includes the number of coordinate and momen-
tum lattice points and the upper boundary of the momentum
integrals. The second group deals with the size of the configu-
ration space and includes the energy cutoffs for ph and ah pairs.

Since it is unfeasible to study this seven-dimensional
surface in detail, when studying the dependence of the spurious
modes on one parameter or a set of parameters, those not
under scrutiny were fixed to the best possible values supported
by the hardware. This means, in particular, that the full ph
configuration space is taken if not otherwise stated, and that
the maximum momentum is fixed to qmax = 8 fm−1, well above
the Fermi momentum of the nucleus.

In Fig. 1 the position of the rotational Kπ = 1+ spurious
mode in 20Ne is plotted against the number of points in
the coordinate and momentum lattices. For a relatively

FIG. 1. (Color online) Dependence of the Kπ = 1+ rotational
spurious mode on the coordinate and momentum mesh size for
the nonlinear model NL3 parametrization. For a coordinate and
momentum mesh size of 41 × 41 and 31 × 31, respectively, the
accuracy limit of the diagonalization procedure is achieved. The
logarithmic scale in the z axis is used to enhance the readability of the
graph. The lowest z value corresponds to a value of around 0.05 MeV.
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FIG. 2. (Color online) Spurious Kπ = 1+ rotational mode de-
pendence on the maximum interaction momentum while keeping
the number of mesh points constant. Good numerical results for a
momentum mesh size of 31 × 31 can be achieved with a maximum
momentum in the interval 5 < qmax < 9.

low number of points, a plateau is reached where further
improvement of the accuracy cannot be achieved. The optimal
number of evaluation points for the quadratures is therefore
around 41 × 41, which allows for very precise calculations.
Furthermore, additional tests show that the overall precision
in the determination of the energy of excited states of the code
is capped out at 0.05 MeV, which is surprisingly good.

Figure 2 depicts the position of the rotational Kπ = 1+
spurious mode for 20Ne against the maximum momentum of
the expansion used in the integral for the evaluation of the
single particle matrix elements in Eq. (80). The flat region
between 5 and 9 fm−1 suggests that a maximum momentum
of qmax = 5 fm−1 provides enough precision for the proper
decoupling of the spurious mode. The increase observed in
the position of the spurious mode for maximum momentum
values larger than 9 fm−1 is an artifact due to the number of
points for the momentum lattice being fixed at 31 × 31.

Figure 3 shows the dependence of the rotational Kπ =
1+ and translational Kπ = 0−, 1− spurious modes on the
configuration space size for 20Ne, as calculated with the NL3
parameter set. In the translational case, two curves are plotted,
one for the Kπ = 0− mode and one for the Kπ = 1− mode.
It is interesting to note that even if the spurious mode can
be brought very close to zero, it requires the inclusion of
almost all the possible ph pairs in the configuration space. In
this specific case, i.e., in 20Ne, that amounts to the inclusion
of roughly 5000 pairs. Several tests have indicated that the
situation improves greatly in heavier nuclei, where usually 5%
percent of all possible ph pairs are enough to decouple the
spurious modes at energies around 0.5 MeV.

Since for the solution of the ground state the equations
of motion are expanded in a harmonic oscillator basis, the
configuration space in which the RPA is solved does not spawn
the whole Hilbert space, even if all possible ph pairs are taken.
The quality of this expansion depends on the number of major
oscillator shells used, and the results obtained at the RPA
level will be influenced by this approximation. In particular,
the proper decoupling of the translational spurious mode is
very sensitive to the number of oscillator shells employed. In
Fig. 4 the translational spurious mode is plotted versus the
number of oscillator shells used in the ground state. Already,
the inclusion of 16 major shells is enough to achieve a precision
in the spurious mode of around 0.1 MeV. In all practical cases

FIG. 3. (Color online) Upper plot: dependence of the Kπ = 1+

rotational spurious mode on the size of the ph and ah space
size. Lower plot: same dependence for the Kπ = 1+ and Kπ = 0−

translational spurious modes.

presented in the this study, the number of oscillator shells was
chosen between 12 and 16, depending on the desired final
precision and the availability of computer resources.

However, more important than the actual position of the
spurious modes is their admixture to the real physical states.
For the same reasons that the spurious mode does not appear
at exactly zero energy, the physical states are not completely
orthogonal to it, producing unreal results and very often
overestimated strength.

Moreover, there is one important property of the spurious
modes that can also be used to measure the extent of their
admixture with the rest of the RPA states. They are not
normalizable in the sense of Eq. (41) because

Xmi = Ymi. (108)

However, in all numerical implementations, the relation (108)
is only approximately fulfilled because the spurious modes do
not decouple exactly. How good the decoupling of the spurious

FIG. 4. (Color online) Dependence of the Kπ = 1− and Kπ = 0−

translational spurious modes on the configuration space size, dictated
by the number of oscillator shells used in the ground state calculation.
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FIG. 5. (Color online) Response in 20Ne to the operator J±1,
generator of rotations around a perpendicular of the symmetry axis.
Almost 100% of the strength is exhausted by the spurious mode
(situated at 0.08 MeV), with minimal admixture to the physical states.

modes is can be measured by comparing the relative norms of
the different eigenmodes. For an approximate spurious mode
labeled as (sp) it should hold that X

(sp)
mi ≈ Y

(sp)
mi , or

δ := 1 −
∑

mi

∣∣Y (sp)
mi

∣∣2

∑
mi

∣∣X(sp)
mi

∣∣2 � 1; (109)

while for any other RPA mode ν, by initial assumption, it holds
that Xmi  Ymi, and thus

δ := 1 −
∑

mi

∣∣Y (sp)
mi

∣∣2

∑
mi

∣∣X(sp)
mi

∣∣2 ≈ 1. (110)

Our tests indicate that when the spurious modes are located
below 0.5 MeV, the value of δ in Eq. (109) is at least three
orders of magnitude smaller than the ones belonging to normal
RPA modes. This is a very good indication of the proper
decoupling of the Goldstone modes.

As an example of the low admixture of spurious compo-
nents with the physical states, Fig. 5 shows the response to the
generator of the rotational spurious mode, the operator J±1,
which represents rotations around an axis perpendicular to the
symmetry axis. More than 99.99% of the strength is exhausted
by the spurious mode, which is located below 0.1 MeV. Similar
results are obtained for the translational spurious modes in
20Ne.

In general, it was observed that if the position of the spurious
mode is below 1 MeV, the strength function of the rest of the
spectrum is mostly unaffected. The spectrum in the low energy
region, below 5 MeV, is, however, more sensitive to admixtures
of the spurious modes; as a rule of thumb, the confidence limit
in the position of the spurious mode, for a proper decoupling,
has been consistently found around 0.5 MeV.

There is still another test that can be devised to check the
consistency of the whole framework, namely, the conservation
of spherical symmetry. Even though all the formulas are
particularized to the case of axial symmetry, the interaction
is rotationally invariant, so they should still be valid when a
spherical ground state is taken as the basis for the RPA config-
uration space, i.e., they should preserve spherical symmetry.

In Fig. 6 is plotted the E1 excitation strength for the
spherical nucleus 16O. Since the E1 operator is a rank-one
tensor, it has three possible angular momentum projections,
K = −1, 0, 1, that have to be calculated separately. The

FIG. 6. (Color online) Kπ = 0− and Kπ = 1− response to the E1
transition operator for the spherical nucleus 16O.

response for the modes with K = −1 and K = 1 are identical
and correspond to vibrations perpendicular to the symmetry
axis; i.e., one can calculate only one of them and double its
contribution. The K = 0 mode corresponds to vibrations along
the symmetry axis. If the nucleus is prolate, like 20Ne, the
response for in the K = 0 mode should lie at lower energies
than the K = 1 mode, as the potential is flatter in the direction
of the symmetry axis. However, if the nucleus is spherical,
like 16O, there is no distinction between the K = 0 and K = 1
modes, and their corresponding excitation strength should lie
at exactly the same energies. From Fig. 6 one can attest that
the procedure for the solution of the RPA equation in axial
symmetry indeed preserves rotational symmetry with a good
degree of accuracy.

The study presented concerning the decoupling of the
spurious modes and the preservation of spherical symmetry
shows that the numerical implementation solves the equations
posed by the self-consistent RMF+RPA framework in axial
symmetry. We have also ascertained that a high degree of
accuracy can be achieved in real calculations, as well as
validated the good reproduction of formal and mathematical
aspects of the RPA theory.

VII. APPLICATIONS IN 20Ne

As a first application of the RMF+RRPA framework, we
have undertaken a model study of the magnetic and the electric
dipole response in 20Ne. This nucleus offers several advan-
tages. Its ground state is well deformed and exhibits a prolate
shape in the RMF model, with a quadrupole deformation
parameter β ≈ 0.5. Another advantage is the reduced number
of nucleons to be taken into account in the calculations, which
translates in fast running times and thus in the possibility
of detailed analysis. With the optimal number of oscillator
shells for a ground state calculation with full precision, the
number of pairs never exceeds 5000. Furthermore, because
the number of protons and neutrons is the same, switching off
the electromagnetic interaction should give identical results for
both protons and neutrons. Using this technique, very detailed
checks can be carried out on the isospin part of the interaction,
and its consistency can be further established. All these reasons
make 20Ne the ideal theoretical playground for introducing the
concepts that can later be used in the study of more complex
systems. In the this section, we present two sample applications
for the well-deformed nucleus 20Ne.
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A. Magnetic dipole (M1) response

We first consider the magnetic dipole response. The
discovery of low-lying M1 excitations, known as the scissors
mode, was made by Richter and collaborators in 156Gd
in Darmstadt through a high-resolution inelastic electron
scattering experiment [62]. The search for such a mode
was stimulated by the theoretical prediction of a collective
mode, where the deformed proton distribution oscillates in a
rotational motion against the deformed neutron distribution
[63–67]. The name “scissors mode” was indeed suggested by
such a geometrical picture. An excitation of similar nature was
also predicted by group-theoretical models [68–70].

The mode has been detected in most of the deformed
nuclei ranging from the fp shell to rare-earth and actinide
regions. The mode has been well characterized, and it has
been established that it is fragmented over several closely
packed M1 excitations. For reviews to this mode and for recent
semiclassical investigations, see Refs. [71–76]

A byproduct of the systematic study of the scissors
mode was the discovery of spin excitations. Inelastic proton
scattering experiments on 154Sm and other deformed nuclei
found a sizable and strongly fragmented M1 spin strength
distributed over an energy range of 4–12 MeV [77]. The
experimental discovery stimulated theoretical investigations
in the RPA [17].

Figure 7 shows the response to the M1 magnetic dipole
operator in the nucleus 20Ne. The shaded region corresponds
to the full M1 response; the blue dashed line is the response to
orbital part of the M1 operator, and the red dotted line refers
to the spin part. The calculations were performed with the
maximum precision allowed by the current implementation
of the computer code. The number of pairs is around 5000.
Optimal numerical parameters were chosen to minimize the
error. The rotational spurious mode is well separated, situated
around 0.1 MeV; i.e., no admixture with the vibrational
response is observed.

Only one prominent peak is found around 5.7 MeV. Re-
grettably, no experimental data are available for the magnetic
response in this nucleus. Theoretical studies using large scale
shell model calculations [78] predict a low lying orbital mode
around 11 MeV for 20Ne, in strong disagreement with our
results. However, other calculations [79] performed in 22Ne,
with the same shell model interaction, exhibit two dominant
low lying peaks around 5–6 MeV. The orbital contribution to
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FIG. 7. (Color online) M1 excitation strength for 20Ne, using the
NL3 parameter set. A very well-developed peak can be seen around
5.8 MeV. Its structure is composed mostly of spin flip transitions.

TABLE I. Particle-hole structure for the 5.7 MeV M1 transition
mode in 20Ne for the NL3. N and P indicate a neutron or
proton ph pair, respectively. The second column refers to the
normalization of the RPA amplitudes. The level quantum numbers
in the third column are ±
π , where ±
 is the angular momentum
projection over the symmetry axis and π is the parity. In square
brackets are the quantum numbers of the oscillator state which
contributes most to the mean field single-particle level. The effect
of Coulomb interaction can be seen as the small differences in
the mixing percentages for protons and neutrons. A calculation
with the electromagnetic interaction switched off gives as a result
a perfect isospin symmetry, with no differences observable within
the accuracy of the computed results.

Peak at 5.7 MeV ε1 − ε2

P 49% 1
2

+
[220] − 3

2

+
[211] 5.15

N 48% 1
2

+
[220] − 3

2

+
[211] 5.22

P 1% 1
2

+
[220] − 1

2

+
[211] 9.73

N 0.9% 1
2

+
[220] − 1

2

+
[211] 10.17

the total response is below 25%, which is in better agreement
with results found within our RMF+RRPA calculations, where
fragmented strength with similar characteristics is found in the
same energy region.

Regarding the contributions from the orbital and spin
components of the M1 operator to the total response, it can
be observed in Fig. 7 that there are two differentiated energy
regions. Around the main excitation peak at 6 MeV there is an
enhancement of the response due to the additive interference
of the orbital and spin contributions. In contrast, in the energy
region above 6.5 MeV, we observe the opposite, destructive
interference, and both contributions cancel. This feature of the
M1 strength distribution has been also found in other studies
[17] and is much more evident in the case of heavier nuclei.

From this figure we can also recognize that the main
contribution to the total response comes from spin excitations.
The supposed orbital character of the low lying spectra in the
M1 transitions is eclipsed by the preponderance of spin flip
strength, three times larger than the orbital response. Again,
this disagrees with the cited shell model calculation [78],
which in 20Ne predicts a much bigger orbital contribution to
the total strength. However, low lying collective transitions
in such a light nucleus as 20Ne cannot be expected to be
exceptionally well described by the RMF+RRPA theory. In
a few nucleon systems, the single-particle structure around the
Fermi surface is of the utmost importance in the calculation
of low-lying excitations. As such, the results produced in a
self-consistent mean field calculation are not so reliable. A
better description would require a proper account of excitations
to the continuum above the Coulomb barrier and probably for
higher order correlations at the time-dependent mean field
level. The situation improves in heavier nuclei, where mean
field theories were designed to yield good results at low
computational costs.

Nevertheless, it is still interesting to delve further into the
study of the properties of the main excitation peak, as the
same analysis can be performed in heavier nuclei, and many
of the general features will still be present. The study of the
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FIG. 8. (Color online) Intrinsic transition density for neutrons
(left) and protons (right) of the M1 peak at 5.7 MeV in in 20Ne.
Full (red shade) and dashed (blue shade) lines indicate positive
and negative values, respectively. The z coordinate runs along the
symmetry axis, and r is the distance from the symmetry axis. The
thin dotted line represents the rms radius of the ground state neutron
or proton density and qualitatively marks the position of the ground
state nuclear surface.

structure of the excitation peaks can be carried out in detail
attending to their ph structure. The contribution Cph from a
particular proton or neutron ph configuration to a RPA state is
determined by

Cph = (∣∣Xν
ph

∣∣2 − ∣∣Y ν
ph

∣∣2)
, (111)

where Xν and Y ν are the RRPA amplitudes associated with a
particular excitation energy. Table I outlines the single-particle
decomposition of the dominant M1 peak observed in Fig. 7.
All the strength is provided by a single-particle transition
within the sd shell, from the last level in the Fermi sea to
the first consecutive unoccupied level. The low collectivity
indicates that, within the RMF+RRPA model, the spectrum of
the M1 operator in 20Ne is of single-particle character. Each
of the two Dirac spinors in the particle-hole pair corresponds
to an eigenstate of the static RMF potential. They can be
characterized by the Nilsson quantum numbers 
π [Nnz�]
of their largest component in an expansion in anisotropic
oscillator wave functions. Here 
 is the total angular mo-
mentum projection onto the symmetry axis, π is the parity,
N = 2nr + nz + � is the major oscillator quantum number,
and � = 
 − ms is the projection of the orbital angular
momentum onto the symmetry axis. From these quantum
numbers, one concludes the following approximate selection
rules: �
 = +1,�N = 0,�nz = −1, and �� = +1. The
orbital character of the excitation peak is confirmed by the fact
that �
 = ��, which implies that the change in the magnetic
quantum number ms is zero. It is interesting to note that even
if the approximate selection rule points to an orbital character
for the mode, the spin strength is nevertheless dominant.

It is difficult to form a geometrical image of the nature of
an excitation, having at hand only the information given in
Table I. For that purpose, it is always useful to compare the
the neutron and proton intrinsic transition densities in a plot.
Figure 8 shows a color plot of the transition densities at an
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FIG. 9. (Color online) Radial part of the projected (to I = 1,

M = 1) transition densities of the M1 peak at 5.7 MeV. r is the
distance from the symmetry axis. The prominent isovector nature is
evident in the graphs.

excitation energy of 5.7 MeV. Color is used to indicate the
value of the function, with blue for negative values and red
for positive ones. Regions with the same kind of line (solid
or dashed), or color shade (red or blue), for both protons
and neutrons are indicative of an in-phase vibration; while
in regions where the opposite is true, protons and neutrons
vibrate out of phase. In this case, the excitation is of clear
isovector nature, and we can observe the typical structure of a
scissors mode; neutrons and protons are out of phase over the
full space, with a concentration near the caps of the prolate
nuclear shape.

In such a simple case as the one found in 20Ne, the inter-
pretation of the two-dimensional color plot for the transition
densities is very clear. They represent the intrinsic transition
densities, referred to the intrinsic frame of reference, where
only the total angular momentum projection on the symmetry
axis is well defined. In that regard, they are expected to contain
admixtures from all possible angular momenta. However, the
transition operator (M1 in this specific case) restricts the major
contributions of the transition densities to the total response
to its own total angular momentum, i.e., in the case of M1
transitions, to I = 1. It is therefore advisable to project out the
weaker-contributing angular parts from the densities to obtain
the actual transition density that would be observed in the
laboratory frame of reference. For the M1 operator, that means
retaining, with the help of Eq. (107), only the contributions
coming from angular momentum I = 1. In Fig. 9 the radial
part of such a projected transition density is plotted for the
main peak in the 20Ne M1 response.

Both transition densities are almost the mirror of each
other, a very clear indication of the pure isovector nature of
the mode at 5.7 MeV. We have already seen that in simple
geometrical terms, this mode can be interpreted as a rotation
of neutrons against protons around an axis perpendicular of
the symmetry axis. Furthermore, details in Fig. 8 show that
two distinct regions can be distinguished. They are separated
at around 2 fm from the origin, where the direction of rotation
for protons and neutrons changes. The appearance of two
regions (as depicted in Fig. 9) is already a strong hint that
the simple picture of the proton density rotating against the
neutron density as rigid rotors (as in the two rotor model [64])
does not reflect reality in this nucleus. The traditional scissors
picture considers the neutron and proton densities as the blades
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FIG. 10. (Color online) E1 strength in 20Ne, as calculated with
the NL3 parameter set.

of a scissors oscillating against each other. In addition, one
has to take into account the angular momentum inherent in
a K = 1+ excitation: it can be described as an oscillation of
the scissors which rotates at the same time slowly around its
longitudinal symmetry axis. However, the picture we derive
from the results of our calculation is somewhat different.

B. Electric dipole (E1) response

We have chosen the electric dipole response in 20Ne as a
second example application of the RMF+RRPA formalism
with axial symmetry. In Fig. 10, the E1 strength is plotted
as calculated with the NL3 parameter set. The dotted curve
corresponds to excitations along the symmetry axis with
Kπ = 0−, while the dashed curve shows those perpendicular
to the symmetry axis with Kπ = 1−. In principle, for prolate
nuclei, as is the case for 20Ne, the strength due to the Kπ = 0−
mode should lie at lower energies than those for the Kπ = 1−
mode. As the nuclear potential must be flatter (more extended)
along the symmetry axis, it is energetically more favorable
for the nucleons to oscillate in that direction than along an
axis perpendicular to the symmetry axis, where the nuclear
potential is narrower. It is possible, therefore, to relate the
nuclear deformation with the energy separation of the two
modes [80,81].

The splitting of the response due to the broken spher-
ical symmetry, and its interpretation, can be observed in
Figs. 11 and 12. The former is the transition density for
the main isovector giant dipole resonance (IVGDR) peak at
16.73 MeV observed in the Kπ = 0− response, while the
latter corresponds to the peak at 21.31 MeV in the Kπ = 1−
mode. The prolate deformation is evident, as the intrinsic
transition densities are elongated in the direction of the z axis.
The character of the Kπ = 1− mode as a vibration along a
perpendicular of the symmetry axis is easily recognizable in
Fig. 12. By comparison, the transition density in Fig. 11 is then
easily interpreted as a vibration along the symmetry axis. As
expected for the IVGDR, the neutron-proton vibrations are out
of phase over the same spatial regions. It is even more evident
from looking at their respective projections to the laboratory
system of reference, which are shown in the lower plots of
Figs. 11 and 12.

Coming back to Fig. 10, the response in the energy region
between 15 and 25 MeV corresponds to the IVGDR. Its
strength is heavily fragmented into several peaks in an energy

FIG. 11. (Color online) 20Ne IVGDR transition density for the
Kπ = 0− peak at 16.7 MeV, NL3 parameter set.

interval of about 3–4 MeV for both excitation modes. The main
contributions to the strength curve come from more than four
different peaks. For example, the Kπ = 1− IVGDR response is
composed, besides the already mentioned peak at 21.3 MeV,
by four additional major peaks, situated at 19.6, 20.2, 21.8,

FIG. 12. (Color online) 20Ne IVGDR transition density for the
Kπ = 1− peak at 21.3 MeV, NL3 parameter set.
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FIG. 13. (Color online) Projected transition densities for major
Kπ = 1− peaks contributing to the electric dipole response in 20Ne.

and 22.4 MeV. Their projected transition densities, shown in
Fig. 13, indicate that all of them can be classified as a vibration
of the neutron density against the proton density.

The decomposition in ph components of the main Kπ = 0−
and Kπ = 1− IVGDR peaks can be found in Table II. The
characteristic �N = 1 pattern of the IVGDR is present in
both peaks. The high collectivity indicates a very coherent
excitation pattern that fits into the properties of a giant

TABLE II. Particle-hole structure of the two main IVGDR
modes. N and P indicate a neutron or proton ph pair, respectively.
The second column is the percentage of the contribution of each
particular ph excitation. The Nilsson quantum numbers, labeling
the particle-hole, are shown in the next columns. The last column
gives the energy of the excitation in MeV.

Kπ = 0− peak at 16.73 MeV ε1 − ε2

N 20% 3
2

−
[101] − 3

2

+
[211] 14.25

P 18% 3
2

−
[101] − 3

2

+
[211] 13.89

N 16% 1
2

+
[220] − 1

2

−
[321] 17.52

N 11% 1
2

−
[101] − 1

2

+
[200] 15.28

P 9% 1
2

−
[101] − 1

2

+
[211] 14.46

N 7% 1
2

+
[220] − 1

2

−
[310] 18.20

P 5% 1
2

−
[101] − 1

2

+
[211] 12.71

N 3% 1
2

−
[101] − 1

2

+
[211] 13.37

N 2% 1
2

+
[220] − 1

2

−
[330] 2.90

Kπ = 1− peak at 21.31 MeV ε1 − ε2

N 13% 1
2

−
[110] − 3

2

+
[211] 20.01

N 13% 1
2

+
[220] − 1

2

−
[321] 20.64

P 11% 1
2

+
[220] − 1

2

−
[321] 22.03

P 9% 1
2

−
[101] − 1

2

+
[200] 21.55

N 7% 1
2

−
[110] − 1

2

+
[211] 24.96

P 5% 1
2

−
[101] − 3

2

+
[202] 22.83

N 5% 1
2

+
[220] − 1

2

−
[321] 23.81

N 5% 1
2

+
[220] − 3

2

−
[312] 21.56

N 4% 1
2

+
[220] − 3

2

−
[321] 22.79

resonance. This phenomenon can also be observed in the
transition densities, where the coherent superposition of ph
pairs is evident in the absence of wavefunction-like features,
and is easily interpreted in a macroscopic picture where the
proton and neutron densities oscillate one against the other. The
total percentage of the classical Thomas-Reich-Kuhn (TRK)
sum rule exhausted between 10 and 40 MeV for the calculated
E1 response in 20Ne is 111%. In a fully classical system, the
share of the strength exhausted by the Kπ = 1− mode should
be double that exhausted by the Kπ = 0− mode; however, with
86% of the TRK sum rule coming from the Kπ = 1− mode
and 25% from the Kπ = 0− mode, it is obvious that it is no
longer true for quantum systems, even though we do not fully
understand the mechanism behind this phenomenon.

VIII. CONCLUDING REMARKS

In the present investigation, we have formulated the rela-
tivistic random-phase approximation (RRPA) on the basis of
a relativistic mean field (RMF) model having axial symmetry
in a fully self-consistent way, i.e., the interactions used in both
the RMF equations and in the matrix equation of the RRPA
are derived from the same Lagrangian, i.e., the same energy
functional. As it has been shown, this self-consistency feature
is of vital importance for the fulfillment of current conservation
and the proper decoupling of spurious modes without further
adjustments in the interaction.

So far, pairing correlations have not been included. The
inclusion of such correlations will allow the application of this
method to a large number of investigations in medium and
heavy nuclei, in particular, in a first step, for a systematic
study of low-lying electric and magnetic dipole strength
over large regions of the periodic table. Of course, the
study of the nuclear response to other electric and magnetic
multipoles is also open to scrutiny. Since the formulation of
the relativistic proton-neutron RPA, once the main building
blocks presented in this document are present, is mostly
trivial, its implementation opens the door to the wide area
of nuclear spin-isospin excitations, in particular the isobaric
analog resonance and the Gamov-Teller resonance, but also to
many types of weak processes such as the β decay and neutrino
reactions in deformed nuclei.

In conclusion, the relativistic RPA formulated for axially
deformed systems represents a significant new theoretical
tool for a realistic description of excitation phenomena in
large regions of the nuclear chart, which has been accessible
so far only by relatively crude phenomenological models.
Its development and the sample application presented in
this document show that its future use in nuclear structure
and astrophysics will provide an valuable insight into very
important, and still open, questions about the nature of nuclear
interaction, collective response, deformation effects, and cross
sections relevant for astrophysical processes.
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APPENDIX A: TWO-BODY MATRIX ELEMENTS

Starting from the general expression for the two-body
matrix element in Eq. (79),

〈kl′|V̂ ph
m |k′l〉 =

∫
d3q

(2π )3
〈k|Q̂µ(q)|k′〉�m(q)〈l|Q̂µ(q)|l′〉∗,

(A1)

we first have to evaluate the matrix elements in Eq. (80) for
the single-particle operators Qµ(q). In cylindrical coordinates

q = (qx, qy, qz) = (q cos χ, q sin χ, qz), (A2)

we obtain

Q
µ

kk′(q, χ, qz) =
∫

dϕ

2π
d2r ψ̄kgm �µ ψk′ eiqzz+iqr cos(ϕ−χ).

(A3)

It turns out to be useful to classify the various vertices �µ by
the spin quantum numbers S and Sz = � of the exchanged
meson. For this reason, we use the the γ matrices in the Dirac
basis defined by{
γ 0, γ + = −1√

2
(γ 1+ iγ 2), γ − = 1√

2
(γ 1− iγ 2), γ 3

}
(A4)

and obtain

γ µγµ = γ 0γ 0 + γ +γ − + γ −γ + − γ 3γ 3. (A5)

Including the scalar mesons (and neglecting for the moment
the isospin), we therefore have five vertices characterized by
the index µ̃:

�µ̃ = (1, γ 0, γ +, γ −, γ 3). (A6)

µ̃ runs over µ̃ = s (for scaler mesons, S = � = 0), µ̃ = 0
(for the timelike part of the vector mesons, S = � = 0), and
µ̃ = +,−, 3 (for the spatial parts of the vector mesons with
S = 1). The channels µ̃ = ± describe the spin flip (� = ±1)
and µ̃ = 3 has � = 0.

Using the Dirac spinors in cylindrical coordinates (65)
and exploiting the properties of the γ matrices defined in
Eq. (A4), we find that the ϕ dependence of the amplitudes
ψ̄k(r, ϕ, z) �µ̃ ψk′(r, ϕ, z) can be separated, i.e.,

ψ̄k(r, ϕ, z) �µ̃ ψk′(r, ϕ, z) = iS F
µ̃

kk′(r, z)ei�ϕ, (A7)

where the integer

� = 
k − 
k′ − � = K − � (A8)

is the orbital part of the angular momentum of the pair in the
z direction. The real functions F

µ̃

kk′(r, z) are given by

F s
kk′(r, z) = f +

k f +
k′ + f −

k f −
k′ − g+

k g+
k′ − g−

k g−
k′ , (A9)

F 0
kk′(r, z) = f +

k f +
k′ + f −

k f −
k′ + g+

k g+
k′ + g−

k g−
k′ , (A10)

F+
kk′(r, z) = g+

k f −
k′ − f +

k g−
k′ , (A11)

F−
kk′(r, z) = f −

k g+
k′ − g−

k f +
k′ , (A12)

F 3
kk′(r, z) = f +

k g+
k′ − g+

k f +
k′ + f −

k g−
k′ − g−

k f −
k′ . (A13)

This allows us to evaluate analytically the ϕ integration in the
integral (A3) and to express it in terms of Bessel functions of
the first kind

Jn(x) = (−i)n
∫ 2π

0

dϕ

2π
einϕeix cos ϕ. (A14)

We obtain

Qµ̃

kk′(q) = i�+S ei�χ F µ̃

kk′(q, qz) (A15)

with the integrals

F µ̃

kk′(q, qz) =
∫

d2r F
µ̃

kk′(r, z) J�(qr) eiqzz, (A16)

which are either real or purely imaginary. Using the parity
relation

F
µ̃

kk′(r,−z) = π (−)S+�F
µ̃

kk′(r, z), (A17)

we recognize that the exponential factor eiqzz reduces to the
cosine or sine depending on the quantum numbers π and K of
the mode and on the spin quantum numbers S,� of the vertex
µ̃

eiqzz →
{

cos(qzz) for π (−)K+S−� = +1,

i sin(qzz) for π (−)K+S−� = −1.
(A18)

Substitution of these expressions in the integral of Eq. (A1)
allows the χ integration to be carried out analytically and leads
to the selection rule


k − 
k′ = 
l − 
l′ (A19)

and to the following matrix elements for the exchange of scalar
mesons

〈kl′|V̂ ph
σ |k′l〉 = −

∫
d2q

(2π )2
F s

kk′�σF s∗
ll′ , (A20)

of the timelike part of the vector mesons

〈kl′|V̂ ph
ω0 |k′l〉 = +

∫
d2q

(2π )2
F0

kk′�ωF0∗
ll′ , (A21)

and of the spacelike part of the vector mesons

〈kl′|V̂ ph
ω |k′l〉 =

∫
d2q

(2π )2
F+

kk′�ωF−∗
ll′ (A22)

+
∫

d2q

(2π )2
F−

kk′�ωF+∗
ll′ (A23)

−
∫

d2q

(2π )2
F3

kk′�ωF3∗
ll′ , (A24)

where, for simplicity, we have neglected for each matrix
element a factor δ
k −
k′ ,
l −
l′ and the arguments in the
functions F µ̃

kk′(q, qz) and in the propagators

�m(q, qz) = 1

q2 + q2
z + m2

m

(A25)

in the two-dimensional momentum integrals.
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APPENDIX B: NONLINEAR σ PROPAGATOR IN
MOMENTUM SPACE

The equation to solve is[ − � + m2
σ + W (r)

]
δσ (r) = −gσ δρs(r), (B1)

with

W (r) = 2g2σ + 3g3σ
2. (B2)

Because of axial symmetry and using cylindrical coordinates
r =(r cos ϕ, r sin ϕ, z), W (r) := W (r, z) does not depend on
the azimuth angle ϕ. We solve Eq. (B1) in momentum space.
W (r) is local in r space, but it is an operator in momentum
space, i.e.,

W (q, q ′) =
∫

d3rW (r)e−ir(q−q ′). (B3)

The propagator in momentum space is the solution of

(q2+ m2)�(q, q ′) +
∫

d3rW (q, q ′′)�(q ′′, q ′) = δ(q − q ′),

(B4)

where the ∗ is the convolution operator and W (q) is the Fourier
transform of W (r). Expanding the δ function in cylindrical
coordinates in q space using q =(q cos χ, q sin χ, qz), we find

δ(q − q ′) = δ(q − q ′)
q

δ(qz − q ′
z)

∞∑
n=−∞

ein(χ−χ ′), (B5)

and taking the following ansatz for �

�(q, q ′) =
∞∑

n=−∞
�n(q, qz, q

′, q ′
z) ein(χ−χ ′) (B6)

and inserting it into Eq. (B4) leads to a set of integral equations
for each �n(

q2 + q2
z + m2

)
�n(q, qz, q

′, q ′
z)

+
∫

d2q ′′Wn(q, qz, q
′′, q ′′

z )�n(q ′′, q ′′
z , q ′, q ′

z)

= δ(q − q ′)
q

δ(qz − q ′
z), (B7)

where we have used the obvious notation d2q = q dq dqz.
Each Wn can be calculated using the series expansion

eix cos(α) =
∞∑

n=−∞
inJn(x)einα, (B8)

which leads to the following expression for the nonlinear σ

field in momentum space:

Wn(q, qz, q
′, q ′

z) =
∫

d2r

2π
W (r, z)e−i(qz−q ′

z)zJn(qr)Jn(q ′r).

Together with Eq. (B7), this allows the numerical evaluation
of the nonlinear σ propagator in momentum space.

APPENDIX C: EVALUATION OF M1 SINGLE-PARTICLE
MATRIX ELEMENTS

The M1 operator is defined as

M̂1µ =
√

3

4π
µN (gs s + gl l), (C1)

with

gs = gp

gl = 1

}
protons,

gs = gn

gl = 0

}
neutrons. (C2)

In the spherical coordinates defined as

x+ = −1√
2

(x + iy), x− = 1√
2

(x − iy), x0 = z, (C3)

we find

s+ = 1

2
�+ = −1

2
√

2
(�x + i�y), (C4)

l+ = 1

2
√

2
eiϕ

[
r∂z − z

(
∂r + i

1

r
∂ϕ

)]
. (C5)

And in the M̂11 single-particle matrix elements, the integration
over the azimuthal angle ϕ can be carried out analytically. This
yields

〈k|M̂11|k′〉 = µNδ
m−
i,1
1√
2

√
3

4π

∫
d2r

×
(

gl

[
+ r(f +

k ∂zf
+
k′ + f −

k ∂zf
−
k′ + g+

k ∂zg
+
k′

+ g−
k ∂zg

−
k′ ) − z(f +

k ∂rf
+
k′ + f −

k ∂rf
−
k′ + g+

k ∂rg
+
k′

+ g+
k ∂rg

−
k′ ) +

(

i − 1

2

)
z

r
(f +

k f +
k′ + g+

k g+
k′ )

+
(

i + 1

2

)
z

r
(f −

k f −
k′ + g−

k g−
k′ )

]

− gs(f
+
k f −

k′ + g+
k g−

k′ )

)
. (C6)

APPENDIX D: EVALUATION OF THE E1
SINGLE-PARTICLE MATRIX ELEMENTS

The effective isovector dipole operator, with spurious
translation of the center of mass already subtracted, reads in
spherical coordinates as

D̂ = e
N

A

Z∑
p=1

rp − e
Z

A

N∑
n=1

rn. (D1)

With the spherical coordinates of Eq. (C3), the dipole operators
are given in cylindrical coordinates as

D̂0 = e
N

A

Z∑
p=1

zp − e
Z

A

N∑
n=1

zn, (D2)
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D̂± = e
N

A

Z∑
p=1

rpe±iϕp − e
Z

A

N∑
n=1

rne
±iϕn , (D3)

and the single-particle matrix elements are

〈k|D̂0|k′
0〉 = eeffδ
k,
k′

∫
z d2r

× (f +
k f +

k′ + f −
k f −

k′ + g+
k g+

k′ + g−
k g−

k′ ), (D4)

〈k|D̂+|k′
0〉 = eeffδ
k,
k′ +1

∫
r d2r

× (f +
k f +

k′ + f +
k f +

k′ + g+
k g+

k′ + g+
k g+

k′ ), (D5)

where eeff = eN/A for proton pairs and eeff = −eZ/A for
neutron pairs.

APPENDIX E: APPROXIMATE ANGULAR MOMENTUM
PROJECTION

The wave function |ψIM〉 in the laboratory frame is obtained
by angular momentum projection from the intrinsic wave
function |�〉, that is,

|ψIM〉 =
∑
K

gI
KP̂ I

MK |�〉, (E1)

where the projector operator P̂ I
MK is given by [52]

P̂ I
MK = 2I + 1

8π2

∫
d
DI�

MK (
)R̂(
). (E2)


 represents the set of Euler angles (α, β, γ ), DI
MK (
) are the

Wigner functions [82], and R̂(
) = e−iαĴz e−iβĴy e−iγ Ĵz is the
rotation operator. Taking into account the transformation law
for the multipole operators Q̂λµ under rotations,

R̂(
)Q̂λµR̂†(
) =
∑
µ′

Dλ
µ′µ(
)Q̂λµ′ . (E3)

The matrix element of this operator between two states with
good angular momentum is given by

〈�If Mf
|Q̂λµ|�IiMi

〉 = 〈IiMiλµ|If Mf 〉√
2If + 1

〈If ||Q̂λ||Ii〉, (E4)

with the reduced matrix element defined by

〈If Kf ||Q̂λ||IiKi〉 = (2Ii + 1)(2If + 1)

8π2
(−)Ii−λ

×
∑
Ki ,Kf

µ,µ′

(−)Kf g
If �

Kf
g

Ii

Ki

(
Ii λ If

µ′ µ −Kf

)

×
∫

d
DIi�
µ′Ki

(
)〈Kf |Q̂λµR̂(
)|Ki〉.
(E5)

In the case of axial symmetry, the integral in the last equation
is reduced to∫ π

0
d(cos β)dIi�

−µ′Ki
(β)〈Kf |Q̂λµe−iβĴy |Ki〉. (E6)

To evaluate the overlap integrals in the last equation, we use
in the limit of the needle approximation [83,84] to first order
in a Kamlah [11] expansion

〈Kf |Q̂λµe−iβĴy |Ki〉 = 〈Kf |Q̂λµ|Ki〉〈Kf |e−iβĴy |Kf 〉, (E7)

and using that the integral over β contributes only at β = 0
and π, we obtain the final expression for approximate angular
momentum projection used in the calculation of RPA single-
particle observables:

〈If Kf ||Ôλ||IiKi〉 = (2Ii + 1)(2If + 1)

[(
Ii λ If

Ki µ Kf

)
×〈Kf |Ôλµ|Ki〉 + (−1)Ii+Ki

×
(

Ii λ If

K̄i µ Kf

)
〈Kf |Ôλµ|K̄i〉

]
. (E8)
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