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Triaxial projected shell model study of γ -vibrational bands in even-even Er isotopes
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We expand the triaxial projected shell model basis to include triaxially deformed multi-quasiparticle states.
This allows us to study the yrast and γ -vibrational bands up to high spins for both γ -soft and well-deformed
nuclei. As a first application, a systematic study of the high-spin states in Er isotopes is performed. The calculated
yrast and γ bands are compared with the known experimental data, and it is shown that the agreement between
theory and experiment is quite satisfactory. The calculation leads to predictions for bands based on one- and
two-γ phonons where current data are still sparse. It is observed that γ bands for neutron-deficient isotopes of
156Er and 158Er are close to the yrast band, and further these bands are predicted to be nearly degenerate for
high-spin states.
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I. INTRODUCTION

Recent experimental advances in nuclear spectroscopic
techniques following Coulomb excitations, in-elastic neutron
scattering, and thermal neutron capture have made it possible
to carry out a detailed investigation of γ -vibrational bands
in atomic nuclei [1–3]. These bands are observed in both
spherical and deformed nuclei. In spherical nuclei, the vi-
brational modes are well described by using the harmonic
phonon model [4,5]. Although exact harmonic motion has
never been observed, there are numerous examples of nuclei
exhibiting near-harmonic vibrational motion. In fact, one- and
two-phonon excitations have been reported in a large class
of spherical nuclei. In deformed nuclei, vibrational motion
is possible around the equilibrium of the deformed shape
configuration. The deformed intrinsic shape is parametrized
in terms of β and γ deformation variables. These parameters
are related to the axial and nonaxial shapes of a deformed
nucleus. The one-phonon vibrational mode in deformed nuclei
with no component of angular momentum along the symmetry
axis (K = 0) is called β vibration and the vibrational mode
with a component of angular momentum along the symmetry
axis (K = 2) is referred to as γ vibration. The rotational
bands based on the γ -vibrational state are known as γ bands
[6–8]. One-phonon γ bands have been observed in numerous
deformed nuclei in most of the regions of the periodic table.
There have also been reports on observation of two-phonon
γ bands [9,10].

Several theoretical models have been proposed to study
γ bands with varying degrees of success. The quasiparticle
phonon nuclear model (QPNM) [11,12], which restricts the
basis to at most two-phonon states, has led to the conclusion
that two-phonon collective vibrational excitations cannot
exist in deformed nuclei owing to the Pauli blocking of
important quasiparticle components. In contrast, the multi-
phonon method (MPM) [13,14] embodies an entirely different
truncation scheme. It employs only a few collective phonons
and restricts the basis to all the corresponding multi-phonon

states up to eight phonons. This approach predicts that, for
strongly collective vibrations, two-phonon Kπ = 4+ exci-
tations should appear at an energy of about 2.6 times the
energy of the one-phonon Kπ = 2+ state [3,15]. The dynamic
deformation model (DDM) [16], which is quite different from
these other models, constructs a collective potential from a
set of deformed single-particle basis states accommodating
eight major oscillator shells. This model predicts a collective
Kπ = 4+ at almost 2 MeV.

None of these models (QPNM, MPM, and DDM) have their
wave functions as eigenstates of angular momentum. Strictly
speaking, these methods do not calculate the states of angular
momentum, but the K states (where K is the projection of
angular momentum on the intrinsic symmetry axis). To apply
these models, one has to assume that I ≈ K . However, since
an intrinsic K state can generally have its components spread
over the space of angular momenta of I � K , the reliability of
these approaches depends critically on the actual situation. As
pointed out by Soloviev [12], it is quite desirable to recover
the good angular momentum in the wave functions.

Some algebraic models including the extended version
of the interacting boson (sdg-IBM) [17,18] and pseudo-
symplectic models [19] have also been employed to study
the γ -excitation modes and these predict high collectivity
for the double-γ vibration [20]. We would also like to add
that a considerable effort has been devoted in understanding
the γ -excitation mechanism by using the random phase
approximation (RPA) approach [21,22].

Recently, the triaxial projected shell model (TPSM) has
been employed to describe γ bands [23,24]. This model
uses the shell model diagonalization approach and, in this
sense, it is similar to the conventional shell model approach
except that the basis states in the TPSM are triaxially
deformed rather than spherical. In the present version of
the model, the intrinsic deformed basis is constructed from
the triaxial Nilsson potential. The good angular momentum
states are then obtained through an exact three-dimensional
angular momentum projection technique. In the final stage, the
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configuration mixing is performed by diagonalizing the pairing
plus quadrupole-quadrupole Hamiltonian in the projected ba-
sis [25,26]. The advantage of the TPSM is that it describes the
deformed single-particle states microscopically as in QPNM,
MPM, and DDM, but its total many-body states are exact
eigenstates of the angular momentum operator. Correlations
beyond the mean field are introduced by mixing the projected
configurations.

It is to be noted that an intrinsic triaxial state in the TPSM
is a rich superposition of different K states. For instance, the
triaxial deformed vacuum state is composed of K = 0, 2, 4, . . .

configurations. The projected bands from these K = 0, 2, and
4 intrinsic states are the dominant components of the ground,
γ , and 2γ bands, respectively [24].

In the earlier TPSM analysis for even-even nuclei, the
shell model space was very restrictive, including only the
0-quasiparticle (qp) state [23,24,27–30]. This strongly limited
the application of the TPSM to the low-spin and low-
excitation region only. It was not possible to study high-spin
states because multi-qp configurations will usually become
important for states with I > 10 in the normally deformed
rare-earth nuclei. In the present work, the qp space is enlarged
to incorporate the two-neutron-qp, two-proton-qp, and four-qp
configurations, the latter consisting of two protons plus two
neutrons. This large qp space is adequate to describe the
bands up to the second band crossing [26]. The purpose of
the present work is, as a first application of the extended
model, to perform a detailed investigation of the high-spin band
structures, in particular γ bands, of Erbium isotopes ranging
from mass number A = 156 to 170. In a parallel work [31],
the TPSM analysis for odd-odd nuclei in a multi-qp space has
been performed.

The manuscript is organized in the following manner: In
the next section, a brief description of the TPSM method
is presented. The results of the TPSM study are presented
and discussed in Sec. III. Finally, the work is summarized in
Sec. IV.

II. TRIAXIAL PROJECTED SHELL MODEL APPROACH

In the present work, we extend the TPSM qp basis,
which consists of projected 0-qp vacuum, two-proton (2p),
two-neutron (2n), and four-qp states, that is,
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In Eq. (1), the three-dimensional angular momentum operator
is [32]

P̂ I
MK = 2I + 1

8π2

∫
d�DI

MK (�)R̂(�), (2)

with the rotational operator

R̂(�) = e−ıαĴz e−ıβĴy e−ıγ Ĵz , (3)

and |�〉 represents the triaxial qp vacuum state. The qp basis
chosen here is adequate for describing the high-spin states
up to, say, I ∼ 24, and in the present analysis we shall restrict
ourselves to this spin regime. The triaxially deformed qp states
are generated by the Nilsson Hamiltonian

ĤN = Ĥ0 − 2

3
h̄ω

{
εQ̂0 + ε′ Q̂+2 + Q̂−2√

2

}
. (4)

Here Ĥ0 is the spherical single-particle Hamiltonian, which
contains a proper spin-orbit force [33]. The parameters ε

and ε′ describe axial quadrupole and triaxial deformations,
respectively. It should be noted that for the case of axial
symmetry, the qp vacuum state has K = 0, whereas in the
present case of triaxial deformation, the vacuum state |�〉 is a
superposition of all possible K values. The allowed values
of the K quantum number for a given intrinsic state are
obtained through the following symmetry consideration. For
the symmetry operator, Ŝ = e−ıπĴz , we have

P̂ I
MK |�〉 = P̂ I

MKŜ†Ŝ|�〉 = eıπ(K−κ)P̂ I
MK |�〉, (5)

where Ŝ|�〉 = e−ıπκ |�〉, and κ characterizes the intrinsic
states in Eq. (1). For the self-conjugate vacuum or 0-qp state,
κ = 0 and, therefore, it follows from this equation that only
K = even values are permitted for this state. For 2-qp states,
the possible values for the K quantum number are both even
and odd depending on the structure of the qp state. For the
2-qp state formed from the combination of the normal and
the time-reversed states, κ = 0 and, therefore, only K = even
values are permitted. For the combination of the two normal
states, κ = 1 and only K = odd states are permitted.

As in the earlier projected shell model (PSM) calculations,
we use the pairing plus quadrupole-quadrupole Hamiltonian
[25]

Ĥ = Ĥ0 − 1

2
χ

∑
µ

Q̂†
µQ̂µ − GMP̂ †P̂ − GQ

∑
µ

P̂ †
µP̂µ. (6)

The interaction strengths are taken as follows: The QQ-force
strength χ is adjusted such that the physical quadrupole
deformation ε is obtained as a result of the self-consistent
mean-field HFB calculation [25]. The monopole pairing
strength GM is of the standard form

GM = [21.24 ∓ 13.86(N − Z)/A]/A,

with “−” for neutrons and “+” for protons, which approxi-
mately reproduces the observed odd-even mass differences in
the rare-earth mass region. This choice of GM is appropriate
for the single-particle space employed in the PSM, where three
major shells are used for each type of nucleon (N = 4, 5, 6
for neutrons and N = 3, 4, 5 for protons). The quadrupole
pairing strength GQ is assumed to be proportional to GM , and
the proportionality constant is fixed as 0.18. These interaction
strengths are consistent with those used earlier for the same
mass region [23–25].
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III. RESULTS AND DISCUSSION

The triaxial projected shell model calculations have been
performed for Er isotopes ranging from A = 156 to 170.
The deformation parameters (ε, ε′) used in the present work
are the same as those employed in Ref. [24]. It has already
been mentioned in Sec. II that in the present work the mean-
field potential is constructed with given input deformation
values of ε and ε′. In a more realistic calculation, these
deformation values for a given system are obtained through
the variational HFB calculations. The chosen values of ε for
the present calculation are those from the measured quadrupole
deformations of the nuclei, as is done in the previous projected
shell model analysis. The ε′ values used in the present work are
realistic and correctly reproduce, for example, excitations of
the γ band relative to the ground state [24]. To further clarify
that the ε′ values used in the present work are realistic, we
have calculated the ground-state energies as a function of ε′.
These energy surface calculations clearly depict a minimum
for the ε′ values used in the present work.

A. Band diagrams

Band diagrams can bring valuable information regarding
the underlying physics [25]. These band diagrams for the
studied Er isotopes are presented in Figs. 1 to 4 and depict
the results of the projected energies for each intrinsic config-
uration. In the diagrams, the projected energies are shown for
0, 2n, 2p, and 2p + 2n quasiparticle configurations. The qp
energies for these configurations are given in the legend of each
figure. We mention that the angular momentum projection has
been performed from all the quasiparticle configurations that
are within an energy window of 3.5 MeV for two-quasiparticle
and 7 MeV for four-quasiparticle states around the Fermi
surface. The projected bands in these Figs. 1 to 4 are shown
only for the lowest quasiparticle states.

As already mentioned in the previous section, with the
triaxial basis, the intrinsic states do not have a well-defined
K quantum number. Each triaxial configuration in Eq. (1) is a
composition of several K values and bands in Figs. 1 to 4
are obtained by assigning a given K value in the angular
momentum projection operator. To simplify the discussion,
we denote a K state of an i configuration as (K, i), with
i = 0, 2n, 2p, and 4. For example, the K = 0 state of the
0-qp configuration is marked as (0, 0) and K = 1 of the 2n-qp
configuration as (1, 2n).

In Figs. 1 to 4, the projected bands associated with the
0-qp configuration are shown for K = 0, 2, and 4, namely the
(0, 0), (2, 0), and (4, 0) bands. In the literature, these K = 0,

2, and 4 bands are referred to as ground-state, γ , and 2γ bands.
The ground-state band has κ = 0 and is, therefore, comprised
of only even-K values. We use the same names in the following
discussion to be consistent with the literature, but we stress
that, in our final results obtained after diagonalization, K is not
a strictly conserved quantum number because of configuration
mixing.

It is evident from Fig. 1 that the (2, 0) bands for 156Er
and 158Er lie very close to the (0, 0) bands. This means that
γ vibration has low excitation energy in these two nuclei.
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FIG. 1. (Color online) Band diagrams for 156−158Er isotopes. The
labels (0, 0), (2, 0), (4, 0), (1, 2n), (3, 2n), (1, 2p), (3, 2p), (2, 4),
and (4, 4) correspond to ground, γ, 2γ , and 2n-aligned γ band on
this 2n-aligned state, 2p-aligned γ band on this proton-aligned state,
(2n + 2p)-aligned band, and γ band built on this four-quasiparticle
state.

For high-spin states, it is further noted that the (0, 0) and
(2, 0) band energies become almost degenerate, and, in fact,
for I = 16 and above, the energy of even-spin states in the
(2, 0) band is slightly lower than that of the (0, 0) band. It is
a well-known fact that γ bands become lower in energy with
increasing triaxility; what is also evident from Fig. 1 is that
they become favored with increasing angular momentum. As
can be seen from Fig. 1, the (2, 0) bands in 156Er and 158Er
also depict pronounced signature splitting with the splitting
amplitude increasing with spin. The (4, 0) band is close to
the (2, 0) band for 156Er and lies at a slightly higher excitation
energy for 158Er. The (4, 0) bands in these two isotopes are also
noted to have signature splitting for higher angular momenta,
and the splitting amplitude is nearly the same for the (2, 0) and
(4, 0) bands.

In Fig. 1, several representative multi-qp bands, namely pro-
jected 2- and 4-qp configurations, are also plotted. Although
the K = 1 2-qp neutron (1, 2n) and 2-qp proton (1, 2p) bands
are close in energy for low spins, with increasing spin the 2n-qp
bands are lower in energy than 2p-qp bands owing to larger
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FIG. 2. (Color online) Band diagrams for 160−162Er isotopes. The
labels indicate the bands mentioned in the caption of Fig. 1.

rotational alignment. It is noted that neutrons are occupying
1i13/2 and protons are occupying 1h11/2 intruder subshells. For
each of the (1, 2n) and (1, 2p) bands, the projected energies are
also shown for the corresponding γ bands with configurations
(3, 2n) and (3, 2p). The (1, 2n) band is noted to cross the
(2, 0) and (0, 0) bands at I = 12. It is also seen that the (3, 2n)
band crosses the (0, 0) band at a slightly higher spin value of
I = 14. It is interesting to note that, after the band crossing,
the lowest even-spin states originate from the (1, 2n) band,
whereas the odd-spin members are the projected states from
the (3, 2n) configuration. Finally, the 4-qp (4, 4) configuration
lies at high excitation energies and does not become yrast, at
least up to the spin values shown in the figure.

The band diagrams for 160Er and 162Er are presented in
Fig. 2. The energy separation between the (0, 0) and (2, 0)
bands is larger as compared to the two lighter isotopes in
Fig. 1. In the case of 160Er, the (2, 0) band energies do come
close to the (0, 0) energies for spins I > 12. The (1, 2n) band
again crosses the (0, 0) band at I = 12 for 160Er and at I = 14
for 162Er. The band diagrams for 164Er and 166Er shown in
Fig. 3 depict larger energy gaps among various bands. The
signature splitting of the (2, 0) band is considerably reduced.
It is further noted that 2n band crossing is shifted to higher spin
values. For the case of 164Er, the band crossing is observed to
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FIG. 3. (Color online) Band diagrams for 164−166Er isotopes. The
labels indicate the bands mentioned in the caption of Fig. 1.

occur at I = 16 and for 166Er it occurs at I = 18. The band
diagrams for 168Er and 170Er shown in Fig. 4 indicate that
the (2, 0) bands are quite high in excitation energy. The band
crossing for these cases is further shifted to higher spin values.

B. Results after configuration mixing

In the second stage of the calculation, the projected states
we obtained are employed to diagonalize the shell model
Hamiltonian of Eq. (6). For the purpose of our discussion,
only the lowest three bands from the 0-qp configuration and
the lowest two bands for the other configurations have been
shown in the band diagram, Figs. 1 to 4. However, in the
diagonalization of the Hamiltonian, many more basis states
are employed, including, for example, those K = 1, 3, 5, and
7 with κ = 1 and K = 0, 2, 4, 6, and 8 with κ = 0.

The lowest three bands after the configuration mixing are
shown in Figs. 5 and 6 and are compared with the experimental
energies wherever available. Although they are of mixed
configurations in our model, we still call them yrast, γ, and 2γ

bands to be consistent with the literature. It is observed from
these two figures that the agreement between the calculated and
the experimental energies for the yrast and γ bands is quite
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FIG. 4. (Color online) Band diagrams for 168−170Er isotopes. The
labels indicate the bands mentioned in the caption of Fig. 1.

satisfactory. For 156−164Er, the theoretical yrast line depicts two
slopes and these correspond to the slopes of the two crossing
bands shown in Figs. 1 and 4. This also indicates that the
interaction between the two crossing bands is small, with the
result that these nuclei depict a back-bending effect [26]. It is
also encouraging to note from Figs. 5 and 6 that the agreement
for the γ bands is quite good, except that for 164Er and 170Er,
where the signature splitting at the top of the bands is not
reproduced properly. For the 2γ bands, our calculations agree
well with the only available data in 166Er [9] and 168Er [10].

There is another notable effect about anharmonicity in γ

vibrations. If we regard the γ bandhead as one γ -phonon
vibration and the 2γ bandhead as two γ -phonon vibrations,
it can be easily seen from Figs. 5 and 6 that the vibration is
not perfectly harmonic. In fact, in the two lightest isotopes, the
γ -soft 156Er and 158Er, the vibration is almost harmonic. As the
neutron number increases, a clear anharmonicity is predicted
from our calculation and the degree of anharmonicity increases
with increasing neutron number.

In Ref. [24], even-even nuclei 156−170Er were studied by the
TPSM with a very restrictive shell model space consisting of
only a 0-qp state. This limited the application of the TPSM to
the low-spin region before band crossing. Consequently, one
sees deviations already at I = 10 in Fig. 2 of Ref. [24], which
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FIG. 5. (Color online) Comparison of experimental and calcu-
lated band energies for 156−162Er.

shows that without the contribution of 2-qp configurations,
the theoretical I = 10 yrast state is systematically too high as
compared to the data. Therefore, the improvement with the
basis expansion has a large effect for higher states at and after
the band crossing region.

C. Analysis of the wave function

To probe further the structure of the bands presented in
Figs. 5 and 6, the wave function decomposition of the yrast, γ,

and 2γ bands are shown in Figs. 7, 8, and 9 for 156Er, 164Er, and
170Er, respectively. For other nuclei, the wave functions have
similar structure and are not presented. The quantity plotted
in these figures is |aK |2 = |f I

K |2/∑
K |f I

K |2 with f I
K being

the wave function amplitudes. Each K stands for a basis state
(K, i) and the sum runs over all the basis states in expressions
(1). As already noticed in Ref. [34], only relative amplitudes
plotted in the figures are important because the wave functions
are expressed in a nonorthogonal basis.

It is seen from Fig. 7 that the yrast band for 156Er is
predominantly composed of the (0, 0) configuration up to
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I = 10. The (0, 0) contribution suddenly drops at I = 10,
and the (1, 2n) configuration becomes dominant from I = 12
to 16. For I = 18 and onward, there are many configurations
with finite values contributing to the yrast states. The band
diagram of 156Er in Fig. 1 suggests that the γ band should
have the (2, 0) configuration as the dominant component. This
is evident from Fig. 7 and it is also noted that (0, 0) is significant
for the even-spin states up to I = 8. The I = 10 state is mostly
composed of (1, 2n) and for higher spin states the (3, 2n) and
(3, 2p) configurations are the dominant components of the
γ band.

The dominance of these K = 3 configurations explains why
the signature splitting almost disappears in the γ band after
configuration mixing in Fig. 5. In the projected γ band in
Fig. 1 for 156Er, signature splitting is quite large and increases
with increasing spin. However, after the configuration mixing
the intrinsic band structures are mixed and it is noted from
Fig. 7 that the γ band in 156Er above I = 10 is dominated
by K = 3 states and, therefore, reduces the signature splitting
observed in the original γ band in Fig. 1. The 2γ band in
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FIG. 7. (Color online) Wave function decomposition for 156Er. aK

denotes the amplitude of the wave function in terms of the projected
basis states.

Fig. 7 is composed of the (4, 0) band for the low-spin states.
I = 8 of this band is predominantly composed of the (1, 2n)
configuration, but the high-spin states are found to have quite
a complex structure.

The yrast wave function decomposition of 164Er, shown
in the top panel of Fig. 8, indicates that this lowest band is
predominantly composed of the (0, 0) configuration up to I =
12 and there appears to be very small admixtures of K = 2
and other configurations. After the band crossing at I = 16, the
yrast states are dominated by the (1, 2n) configuration. There is
also a significant contribution of the (3, 2n) configuration after
the band crossing. The γ band in Fig. 8 is primarily composed
of the (2, 0) configuration up to I = 11 and above this spin
the states are a mixture of different configurations. There is a
clear distinction in the composition of the even- and odd-spin
states above I = 11. The odd-spin states are composed of
the (3, 2n) and (2, 0) configurations, and the even-spin states
are dominated by the (1, 2n) and (0, 0) structures. The 2γ

band up to I = 7 is primarily the (4, 0) configuration. For
I = 8 and above, this band is a mixture of (1, 2n) and (3, 2n)
configurations.

The wave function analysis of 170Er shown in Fig. 9
indicates that the yrast state, as expected for a well-deformed
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FIG. 8. (Color online) Wave function decomposition for 164Er. aK

denotes the amplitude of the wave function in terms of the projected
basis states.

nuclei, is mainly composed of the (0, 0) configuration. This
contribution drops smoothly whereas the (1, 2n) component
increases steadily. For I = 20, it is noted that the (0, 0) and
(1, 2n) contributions are almost identical and above this spin
value, it is expected that the (1, 2n) configuration dominates
the yrast states. The γ band is also noted to have a well-
defined structure of (2, 0) and only for high-spin states is it
observed that the (1, 2n) and (3, 2n) contributions of the
2n-aligned configuration become important. The 2γ band is
dominated mostly by the aligning configurations above I = 7.
As is evident from the band diagram of this nucleus, presented
in Fig. 4, the 2n-aligned band is lower than the (4, 0) band for
most of the spin values.

IV. SUMMARY AND CONCLUSIONS

In the present work, the triaxial projected shell model
approach with extended basis has been employed to study the
high-spin band structures of the Er isotopes from A = 156
to 170. In this model, the Hamiltonian employed consists
of pairing plus the quadrupole-quadrupole interaction. It is
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FIG. 9. (Color online) Wave function decomposition for 170Er. aK

denotes the amplitude of the wave function in terms of the projected
basis states.

known that the Nilsson deformed potential is the mean field
of the quadrupole-quadrupole interaction and this potential is
directly used as the Hartree-Fock field rather than performing
the variational calculations. It is, in fact, quite appropriate
to use the Nilsson states as a starting basis because the
parameters of this potential have been fitted to a large body
of experimental data. The parameters of the model are the
deformation parameters ε and ε′. The axial deformation
parameter ε has been fixed from the observed quadrupole
deformation of the system as is done in most of projected
shell model analyses. The nonaxial parameter ε′ was chosen
to reproduce the bandhead of the γ band. The pairing strength
parameters have been determined to reproduce the odd-even
mass differences. The monopole pairing interaction has been
solved in the BCS approximation and the qp states have been
generated. In the present work, the qp states considered are
0-qp, 2-qp neutron, and 2-qp proton states and the 4-qp state
of 2n + 2p.

In the second stage of the calculations, the three-
dimensional angular momentum projection is performed to
project out the good angular momentum states from these
qp states. These projected states are then used as the basis
to diagonalize the shell model Hamiltonian in the third and
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the final stage. The salient features of results obtained in the
present work are as follows:

(i) γ bands are quite close to the yrast line for the neutron-
deficient Er isotopes, in particular, for 156Er and 158Er.
It is further evident from the present results that these
γ states become even lower in energies for high-spin
states. In fact, for 156Er and 158Er, they become lower
than the ground-state band for I > 14. We propose that
this is a feature of γ -soft nuclei.

(ii) γ bands are pushed up in energy with increasing neu-
tron number, and further the degree of anharmonicity
of γ vibration also increases.

(iii) The wave function decomposition of the bands demon-
strates that for neutron-deficient Er isotopes, there is a
significant mixture of the γ configuration in the ground-
state band and vice versa. The neutron-rich 170Er

nucleus, in contrast, has the intrinsic structures expected
for a well-deformed nucleus with the ground-state band
comprising a nearly pure K = 0 configuration.

(iv) The γ bands for neutron-deficient Er isotopes show
large signature splitting in Fig. 1 before configuration
mixing. However, after mixing, γ bands for these
isotopes have a considerable admixture of K = 3 two-
quasiparticle configurations and, therefore, reduced
splitting.
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