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The response of the core nucleus to the � in a hypernucleus is studied with a local density approximation.
This reproduces the energies and radii of the core nuclei as well as the �-single particle (s.p.) energies quite well.
The polarizing effect of the � depends on the core response through an “effective” compression modulus KA of
the nucleus. For a certain class of energy functional, KA is found to be almost independent of the compression
modulus K of the infinite nuclear matter. This indeed is a surprising result, and varies with the Hartree-Fock
calculations with effective interactions. Reasons for this discrepancy are carefully examined. We consider values
of K in the range ≈100–400 MeV. Furthermore, the polarizing effects also depend critically on D(ρ), the �

binding in nuclear matter at density ρ. For only a direct �N force: D ∝ ρ and the core nucleus contracts giving
rise to relatively larger core polarization. However, for a “saturating” D(ρ) (with a maximum at ρm < ρ0, where
ρ0 is the nuclear matter equilibrium density), which is required to fit the s.p. data, the s-shell hypernuclei binding
energies and the low energy �p scattering data, which results from a �N force (including exchange) and �NN

forces, there may be an expansion of the nucleus with nucleons flowing from the interior to the surface. This
is shown to reduce the core polarization effects substantially (for ρm in the neighborhood of ρ0). The resulting
changes in root mean square radius and core energy depend on A, but are mostly very small, justifying their
general neglect.
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I. INTRODUCTION

The theoretical study of hypernuclei has focused strongly
on learning about the strong and weak hyperon-nuclear interac-
tions [1–3]. In particular, we have some reasonable knowledge
of the strong �N , �NN , and �� forces [4–10], although
there is much more to be learned. However, there has been a
long expressed hope that if the hyperon-nuclear interaction is
reasonably well known, one may use the hyperon, in particular
the �, to probe the structure of core nuclei. This hope arises
from the consideration that the �, being distinguishable,
can occupy any state in the nucleus. Also, the lifetime of
�-hypernuclei is of the order of 10−10 s, these systems can
then be regarded as stable on the strong nuclear time scale.
Thus one may address such questions as the effect of � on the
moment of inertia and on rotational bands of the core nucleus,
and in general consider the response of nuclei to the presence of
a �. It may also be possible in the future that � single particle
energies in higher angular momentum states in heavy nuclei
may yield some information about nuclear surface properties.
In the present work, we study the effect of a � on spherical
core nuclei. In particular, we calculate the changes in binding
energy (core polarization energy) and of the root mean square
(rms) radii of the core nuclei due to presence of the �.

The presence of a � in hypernucleus causes a compression
or dilation of the core nucleus depending upon the nature
of the �-nuclear interactions [11–15]. The relationship be-
tween the incompressibility and the change in the core size
as well as the polarization energy due to presence of �

has been extensively studied mainly within the Hartree-
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Fock approximation using Skyrme and finite range effective
interactions [11–21]. A few studies pertain to model calcu-
lations [11,22] based upon qualitative considerations. The
polarization energies are found to be 0.1 to 1.2 MeV in the
range 16 � A � 40 and increases or stays constant with respect
to A at least within this range [11,16]. The core polarization
energies have also been found to decrease as K increases.
In the case of 16

�O, it was found to increase with K [21].
However, these values of core polarization energies are not
small and secondly to our knowledge they are mostly confined
to light and medium A nuclei. It was demonstrated in [7]
that for 6

��He, the core polarization effect magnifies in double
hypernuclei where the polarization energies increase roughly
by a factor of 3 or more (also see [21,23]). Their inclusion
assumes importance in cluster model calculations where in a
few cases a rigid core approximation has been used. For a
consistent treatment of hypernuclei it is thus desirable that we
study core polarization in greater detail. The only empirical
knowledge about core-polarization comes from a γ transition
and is limited to contraction of the 6Li core nucleus in 7

�Li
[24]. But this represents a very special situation where the �

probably shrinks the rms radius of the loosely bound p-shell
nucleons by a large amount. We shall very briefly comment on
this at a later stage.

In the present study, we develop an extended Thomas-Fermi
theory using a local density approach (“Thomas-Fermi” model
for short) for nuclei and hypernuclei and demonstrate that
for “realistic” �-nuclear interactions, the core polarization
effects are in general very small, both the polarizing energies
as well as the change in rms radii. The smallness of the core
polarization effects on radii was also pointed out by Rayet [15]
who inferred that presence of a repulsive three-body �NN
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force may turn a contraction into dilation for 16
�O. A dilation

of the core nucleus in presence of � has also been found
by Lanskoy [11], but in most of the studies contraction is a
preferred conclusion [11–24].

For a direct �N interaction, our results are in line with
earlier studies. However, there are important major differences.
We find that the behavior of the core polarization depends upon
an “effective compression modulus,” KA (to be defined later)
of a particular nucleus and on the structure of nuclear surface.
It does not depend directly on the compression modulus
K of infinite nuclear matter. KA is commonly used in the
calculation of the energies of the giant monopole resonances
which correspond to the “breathing mode” of the nucleus [25].
Our nuclear Hamiltonian, or the energy density functional
does not depend on a Skyrme or any other NN interaction,
but is rather determined by expanding the energy per nucleon
of nuclear matter around the equilibrium density by means
of Taylor series and then adopting a purely phenomenological
approach. In particular, we find that for a certain class of energy
functional, KA depends on the compression modulus K of the
infinite nuclear matter rather weekly and decreases gradually
with increasing K in the range 100 to 300 MeV and then
starts rising slowly. This indeed is a surprising result. Thus the
relationship between the compressibility and the polarization
of the core nucleus is not as simple as one might have expected
it form the earlier Hartree-Fock studies which employ either
zero-range Skyrme or finite range effective interactions. In
the Hartree-Fock scheme KA is found to be proportional to
K [25,26] and has a strong dependence on it. We discuss in
detail the reasons for this paradox by partially emulating finite
range as well as the zero range Skyrme interactions with in
our formalism.

We take into account the differences between the neutron
and proton densities explicitly arising out of the neutron-proton
imbalance and the presence of Coulomb forces in nuclei. The
nuclei (hypernuclei) considered range from 10B (11

�B) to 243Am
(244

�Am), a total of 32 nuclei. Our local density approach
gives a good description of the static properties of nuclei and
hypernuclei, such as the binding energies and rms radii. The
approach uses the variational principle which minimizes the
energy of the nucleus (hypernucleus) with respect to changes
in neutron and proton densities. Thus rms charge radii, nuclear
surface diffuseness, total binding energies and other nuclear
properties are an outcome of the theory.

The energy of the hypernucleus is the sum of the energy of
the core nucleus and that of the �:

A
�E[ρ] = A−1Ê[ρ] + E�[ρ], (1.1)

where ρ is the density of the core nucleus; E�[ρ] is the
sum of the kinetic and potential energies of the � moving
in the potential generated by the �-nuclear interactions.
A−1Ê[ρ](A−1E[ρ]) is the energy of the nucleus in the presence
(absence) of the �. The square brackets indicate that the
energies are functional of ρ. The calculation of A−1E[ρ] is
described in Sec. II, and that of E�[ρ] (with the � in � �
4 states) is described in Refs. [9,27,28] and briefly in Sec. III. In
Sec. III we also describe the calculation of A

�E[ρ] including the
polarizing effect of the �. Section IV presents and discusses

our results for the polarizing energy and related questions.
Section V is conclusions.

II. THOMAS-FERMI MODEL OF THE NUCLEUS

A. The model

Our model is phenomenological and generally has been
in use for a long time (e.g., Refs. [29–32] for early version
and Refs. [33,34] for more recent elaborate versions). For our
purposes our model gives a good description of nuclei and
adequately describes the nuclear response of the �.

The energy A−1Ê[ρ] or A−1E[ρ] is an integral of an energy
density which accounts for the volume, surface, asymmetry
energies plus coulomb and pairing terms:

A−1E[ρ] =
∫ [

ε(ρ) + h̄2

72m

(∇ρ

ρ

)2

+ h̄2

6m

∇2ρ

ρ
+ aρ

(∇ρ)2

ρ

+ asym(ρ)

(
ρn − ρp

ρ

)2
]

ρd�r + Coulomb

+ Pairing, (2.1)

where ρn(r) and ρp(r) are respectively the neutron and
proton densities, and ρ(r) is the total nucleon density; ρ(r) =
ρn(r) + ρp(r). We ignore shell and deformation effects which
have little relevance for the present investigation. In expression
(2.1), the term ε(ρ) represents the equation of state of
symmetric nuclear matter, i.e., the binding energy per nucleon
as a function of nuclear matter density. The terms (∇ρ)2/ρ

and (∇ρ)2/ρ2are essential for the surface properties. To a very
good approximation asym(ρ) can be considered as independent
of ρ [35]. The parameters asym and aρ are determined by fitting
A−1E to the experimental binding energies and rms radii of
nuclei as described later. For the coulomb energy we use

Coulomb = 1

2
e2

∫
ρp(�r1)ρp(�r2)

|�r1 − �r2| d�r1d�r2

− 3

4

(
3

π

)1/3

e2
∫

ρ4/3
p (r)d�r, (2.2)

where the second term on the right-hand side (r.h.s.) is an
approximation to the exchange part of the coulomb energy.
For the pairing term we employ

Pairing = −apair
(−1)Z + (−1)N

(N + Z)3/4
. (2.3)

Though, we have included the small pairing energy term, but
it is not expected to play significant role in the present study.

For ε(ρ) in Eq. (2.1) one may utilize a functional from
the results of nuclear matter calculations using some effective
interaction like Skyrme [36] or Gogny [37] types, or the one
which imitates a realistic Hamiltonian [38–41]. However, this
ties us to a specific form of the interaction. Therefore, in the
present study, we adopt a more general approach in which
the different values of the parameters of ε(ρ) could possibly
emulate, at least partly, the various diverse interactions.
Making a Taylor series expansion of ε(ρ) around ρ = ρ0, and
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since at saturation dε/dρ|ρ0 = 0, leads to the following ansatz:

ε(ρ�) = −uv + K

18

(
ρ − ρ0

ρ0

)2

+ M

(
ρ − ρ0

ρ0

)3

,

for ρ � ρx (2.4a)

ε(ρ�) = Aρ + Bρ2 + Cρ3 + Dρ4

+ 3h̄2(3π2)2/3

10 mNρ

(
ρ5/3

n + ρ5/3
p

)
.

for ρ � ρx. (2.4b)

In Eq. (2.4a), the parameter M is a measure of deviation from
parabola in the vicinity of the saturation density ρ0, which
is related to an asymmetry in the saturation curve. We may
have an idea of the values of M from the calculation of
nuclear matter equation of state using realistic Hamiltonians
[38–41]. Higher densities ρ > 0.20 fm−3 are irrelevant in the
present study as they are not accessible by normal nuclei or
hypernuclei. Thus the values of M generally refer to low values
of ρ. The density ρx is a parameter between 0 and ρ0 to be
determined as described later. The terms containing ρ5/3are
the neutron and proton single particle kinetic energies.

We now impose the conditions that at ρ = ρx

ε(ρ�) = ε(ρ�), (2.5a)
∂ε(ρ�)

∂ρ
= ∂ε(ρ�)

∂ρ
, (2.5b)

∂2ε(ρ�)

∂ρ2
= ∂2ε(ρ�)

∂ρ2
, (2.5c)

∂3ε(ρ�)

∂ρ3
= ∂3ε(ρ�)

∂ρ3
, (2.5d)

where ρ�(ρ�) means ρ less (greater) than or equal to ρx . The
conditions of Eq. (2.5) fix the parameters A,B,C, and D of
Eq. (2.4b) in terms of ρx , the volume term uv , the compression
modulus K and the parameter M appearing in Eq. (2.4a). This
guarantees that ε(ρ) and it’s derivatives are well behaved as
one would expect from the nuclear matter calculations with
Skyrme or other effective interactions. Continuity up to third
derivative in Eq. (2.5) ensures that the analogue of the
“compression modulus” in the surface region is continuous.
The condition (2.5d), though not essential, shall be needed to
appreciate the influence of K at lower densities.

For the volume term uv and the equilibrium density ρ0 we
use 16.0 MeV and 0.16 fm−3, respectively, which is now an
accepted norm. We also consider other values of uv and ρ0

in order to mimic at least partially the Skyrme, Gogny, and
other effective interactions. For K , we use five values, namely,
100, 200, 250, 300, and 400 MeV, in order to explore the
dependence on K of the changes of the core in the presence of
the �. However, the detailed results are only presented for the
range of K between 200 and 300 MeV as the realistic values
of K lie between 230–270 MeV [42].

For the variational neutron (proton) densities, we use a two
parameter Fermi distribution:

ρn(p)(r) = Nn(p)

1 + exp((r − Rn(p))/tn(p))
, (2.6)

where Rn(p) and tn(p) are the radius and the surface thickness
parameters for neutrons and protons, respectively. Therefore,
for each nucleus we have four variational parameters to be
varied. These are determined by minimizing the energy. Nn(p)

is the normalization constants for the neutrons and protons
given by

Nn(p) = 3N (Z)

4πR3

[
1 + π2t2

n(p)

R2
n(p)

]−1

, (2.7)

where NandZ are the total number of neutrons and protons,
respectively.

A useful quantity of interest is the effective compression
modulus widely used in connection with the giant monopole
resonances. This is defined by [25,26]

KA = 4η2
0
d2(E/A)

dη2

∣∣∣∣
η0

= ξ 2
0
d2(E/A)

dξ 2

∣∣∣∣
ξ0

, (2.8)

where η0 = 〈r2〉0/A, ξ 2
0 = 〈r2〉0/A, and 〈r2〉0 is the mean

square radius of matter distribution and is given by

〈r2〉0 = N〈r2〉0n + Z〈r2〉0p, (2.9)

where 〈r2〉0n and 〈r2〉0p are the single particle neutron and
proton mean square radii, respectively:

〈r2〉0n(p) = 3
5

(
R2

n(p) + 7
3π2t2

n(p)

)
(2.10)

KA is calculated using scaling [43] approximation or putting
constraint on the rms radii as in the Hartree-Fock approach
[25,26]. These are specific to monopole excitations in the giant
resonances. In this study we shall use the scaling method in a
more general form to calculate KA [44]. Some details regarding
these calculations are given below. Details about scaling are
given in the next subsection.

With the help of Eqs. (2.9) and (2.10), the functional
derivative in Eq. (2.8) can be carried out:

d2(E/A)

dη2

∣∣∣∣
η0

= E(〈r2〉0 + δ〈r2〉) + E(〈r2〉0 − δ〈r2〉) − 2E(〈r2〉)
(δ〈r2〉)2

(2.11)

with δ〈r2〉 → 0. The change in the mean square radius can be
calculated from

δ〈r2〉 =
∑

i=n(p)

3

5
Xi

[
2RiδRi + 7

3
π22tiδti

]
, (2.12)

where Xi = N or Z for i = n or p. Therefore

〈r2〉0 ± δ〈r2〉
=

∑
i=n(p)

3

5
Xi

[
R2

i

(
1 ± 2δRi

Ri

)
+ 7

3
π2t2

i

(
1 ± 2δti

ti

)]
.

(2.13)
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For small δRi and δti , Eq. (2.13) can be written as

〈r2〉0 ± δ〈r2〉
=

∑
i=n(p)

3

5
Xi

[
(Ri ± δRi)

2 + 7

3
π2 (ti ± δti)

2

]
. (2.14)

Thus for small changes, changing Ri → Ri ± δRi and ti →
ti ± δti in the expression for 〈r2〉0 , we can easily calculate the
r.h.s. of Eq. (2.11). These calculations shall be presented in the
next subsection.

We may point out that in our calculations of energies or
other quantities, the effective compression modulus KA does
not enter directly as it does in case of the calculations for
energies of the giant monopole resonances. But in our case
it plays an important role in understanding the paradoxical
nature of some of our results.

B. Determination of nuclear parameters and results for nuclei

We have made calculations for a number of nuclei ranging
from 10B to 243Am including all those nuclei (and in their
neighborhood) for which the single-particle data on hypernu-
clei (A � 208) are available [45]. For the nuclei we calculate
A−1E[ρ]. Since the values of uv and ρ0 have been fixed (and are
consistent with those of similar studies) we are left with five
parameters ρx, aρ, asym, apair, and M which are determined as
follows. The parameter ρx was varied in steps of 0.03 in the
range 0.03–0.12. For a given K (i.e., 100, 200, 250, 300, or
400 MeV) and ρx (i.e., 0.03, 0.06, 0.09, or 0.12) and for a
given choice of parameters aρ, asym, apair, and M the energy
is minimized with respect to Rn(p) and tn(p) for 32 nuclei. We
then construct

χ2 = a

32∑
i=1

(
A−1Ei − E

exp
i

)2 + b

32∑
i=1

′
(

rmscal
i − rmsexp

i

rmsexp
i

)2

,

(2.15)

where rmsi are the calculated and experimental rms radii.
The experimental values for the rms radii are taken from
Refs. [46,47] and for the experimental energies from Ref. [48].
The prime on the summation sign in the second term indicates
that only those values are included in the summation for
which the experimental data on rms radii are available.
The parameter values a and b are chosen to give suitable
weights (approximately equal) to energies and rms radii,
a = 1/1600 MeV−2, b = 100. The χ2, Eq. (2.15), is then
minimized this with respect to aρ, asym, apair, and M by
a standard minimization procedure. Thus for each set of
aρ, asym, apair, and M the energies A−1Ei are minimized with
respect to the parameters Rn(p) and tn(p) of the density,
and subsequently Eq. (2.15) is minimized with respect to
aρ, asym, apair, and M . This procedure gives us aρ, asym, apair,
and M , as well as Rn(p) and tn(p) and thus ρA−1. The parameter
values are displayed in Table I. It is seen that for K = 100
and 400 MeV, the absolute values for the parameter M are
large. It is instructive to look at the values of M from nuclear
matter calculations. For this purpose in Fig. 1 we plot the
equation of state of symmetric nuclear matter for four realistic

TABLE I. The parameter values for various fits to binding
energies and rms radii for type I energy functional. For details, see
text.

K

(MeV)
M

(MeV)
aρ

(MeV)
asym

(MeV)
apair

(MeV)
ρx

(fm−3)
χ 2

100 −21.029 36.958 26.127 42.250 0.12 0.837
−20.077 37.160 26.210 41.930 0.09 0.847
−19.643 36.818 26.249 41.818 0.06 0.861
−18.887 36.774 26.330 42.187 0.03 0.882

200 −7.239 39.084 25.775 41.055 0.12 0.659
−8.207 39.449 25.770 40.506 0.09 0.650
−8.667 39.604 25.749 40.313 0.06 0.645
−8.675 39.742 25.757 40.201 0.03 0.644

250 −0.672 39.997 25.616 40.329 0.12 0.613
−2.714 40.300 25.550 40.108 0.09 0.605
−3.605 40.589 25.522 39.841 0.06 0.599
−4.035 40.670 25.478 39.712 0.03 0.595

300 5.887 40.969 25.508 40.118 0.12 0.592
2.700 41.061 25.396 39.752 0.09 0.584
1.207 41.252 25.318 39.382 0.06 0.579
0.445 41.355 25.244 39.036 0.03 0.575

400 14.815 39.460 24.828 42.887 0.12 0.689
12.884 41.887 25.097 38.970 0.09 0.583
10.436 42.088 24.948 38.372 0.06 0.581
9.028 42.184 24.812 37.762 0.03 0.580

nuclear Hamiltonians corresponding to the various Urbana and
Argonne two-and three-body interactions from the published
results [38–41]. The curves are obtained by fitting the data to
Eq. (2.4a) in the density range 0.05 � ρ � 0.30 fm−3.
This gives (a) UV14+UVII: M = 0.276 MeV, K =
200.7 MeV, ρ0 = 0.175 fm−3; (b) AV14+UVII: M =
0.343 MeV, K = 206.2 MeV, ρ0 = 0.196 fm−3; (c)
UV14+TNI: M = −4.337 MeV, K = 263.5 MeV, ρ0 =
0.159 fm−3; (d) V18+UIX∗+Relativistic and other Correc-
tions: M = −3.505 MeV, K = 257.2 MeV, ρ0 = 0.159 fm−3.

ρ (fm-3)

0.05 0.10 0.15 0.20 0.25 0.30 0.35

ε (
ρ)

 (
M

eV
)

-18

-16

-14

-12

-10

-8

-6

-4

 (c)

(b)

(a)

(d)

FIG. 1. Energy of nuclear matter as a function of the density ρ in
fm−3 for four realistic Hamiltonians. See text for further explanation.
The solid curve is the result of our calculations, Eq. (2.4) for M =
−4.035 MeV, K = 250 MeV, and ρ0 = 0.160 fm−3.
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TABLE II. Binding energy per nucleon for 32 nuclei for type I
energy functional. The experimental values are from Ref. [48]. All
numbers are in MeV.

Nuclei K =
200 MeV

K =
250 MeV

K =
300 MeV

Experiment

10B 5.797 5.830 5.868 6.475
11C 6.373 6.397 6.422 6.676
12C 7.429 7.441 7.452 7.680
15O 7.103 7.117 7.132 7.464
16O 7.774 7.782 7.789 7.976
20Ne 8.031 8.035 8.040 8.032
23Na 8.071 8.076 8.083 8.111
27Si 8.052 8.055 8.059 8.124
28Si 8.353 8.353 8.355 8.448
31S 8.197 8.198 8.201 8.282
32S 8.450 8.449 8.450 8.493
39Ca 8.372 8.370 8.371 8.369
40Ca 8.564 8.561 8.560 8.551
44Ca 8.742 8.741 8.742 8.658
48Ca 8.571 8.575 8.580 8.666
50V 8.711 8.710 8.711 8.696
51V 8.754 8.753 8.754 8.742
58Ni 8.739 8.734 8.731 8.732
88Y 8.724 8.720 8.718 8.683
89Y 8.734 8.731 8.730 8.714

100Mo 8.654 8.654 8.654 8.605
122Sn 8.491 8.491 8.492 8.488
138La 8.381 8.380 8.380 8.375
139La 8.383 8.373 8.373 8.378
150Nd 8.267 8.267 8.289 8.250
169Tm 8.146 8.145 8.143 8.115
174Yb 8.101 8.101 8.101 8.084
198Hg 7.915 7.913 7.911 7.912
207Pb 7.831 7.831 7.831 7.870
208Pb 7.823 7.823 7.824 7.867
238U 7.579 7.581 7.582 7.570
243Am 7.546 7.546 7.546 7.530

Since we consider values of K much outside the range of K

of these interactions we have allowed M to vary freely in the
fitting procedure.

For K = 100 and 400 MeV, the values of M are much
too large. However the χ2 values for K between 200 and
400 MeV vary only slightly. It is clear that compression
modulus is quite insensitive, as also observed in earlier studies,
to the static properties of nuclei.

The binding energies and rms radii are quite insensitive to
the value of ρx . Thus at K = 250 MeV, changing ρx from 0.12
to 0.03 the χ2 decreases only by 3%, whereas, in this range,
the value of M increases by 83%. The only parameter which
is sensitive to K and ρx is M . For a given ρx the relationship
between K and M is quite linear. Other parameters are seen
to vary very slowly but systematically, except aρ at ρx = 0.09
and K = 100 MeV.

The binding energies per nucleon (BE/nucleon) are shown
in Table II for K = 200, 250, and 300 MeV. It is seen that
BE/nucleon increases as K increases, though insignificantly,
up to 31S followed by a transition region which extends till 50V

TABLE III. The experimental rms radii are taken from Ref. [47],
error bars in square brackets and [46], error bar in parenthesis. The
theoretical point rms radii are folded with the proton form factor.
All rms radii are in fm. Calculations are for type I energy functional.

Nuclei K =
200 MeV

K =
250 MeV

K =
300 MeV

Experiment

10B 2.414 2.425 2.435 2.450(120)
11C 2.467 2.477 2.486 –
12C 2.513 2.522 2.530 2.472(15)
15O 2.649 2.655 2.661 –
16O 2.688 2.694 2.699 2.728(8)
20Ne 2.839 2.843 2.846 2.992(8)
23Na 2.939 2.942 2.944 2.986 [9]
27Si 3.068 3.069 3.071 –
28Si 3.094 3.097 3.098 3.086(18)
31S 3.182 3.183 3.183 –
32S 3.208 3.208 3.208 3.239(30)
39Ca 3.388 3.387 3.386 –
40Ca 3.410 3.409 3.407 3.485 [3]
44Ca 3.496 3.494 3.492 3.523 [5]
48Ca 3.577 3.575 3.572 3.484 [5]
50V 3.626 3.622 3.619 –
51V 3.645 3.641 3.639 3.615(31)
58Ni 3.789 3.784 3.780 3.783 [4]
88Y 4.279 4.272 4.265 –
89Y 4.293 4.285 4.278 4.240(20)

100Mo 4.443 4.434 4.427 4.443 [4]
122Sn 4.721 4.710 4.702 4.663 [1]
138La 4.908 4.896 4.886 4.853 [8]
139La 4.918 4.906 4.896 4.861 [8]
150Nd 5.033 5.021 5.011 5.015(37)
169Tm 5.233 5.218 5.206 5.226 [4]
174Yb 5.279 5.264 5.252 5.312 [42]
198Hg 5.505 5.488 5.474 5.441 [2]
207Pb 5.580 5.563 5.549 5.504 [2]
208Pb 5.587 5.571 5.557 5.505 [2]
238U 5.834 5.815 5.800 5.859 [4]
243Am 5.877 5.858 5.842 5.905 [4]

and then it decreases as a function of K , again insignificantly,
ultimately leveling off in the high mass number region. The
same trend is obtained in case of rms radii as seen from
Tables III, however, in this case no leveling off takes place
in the high mass number region. In case of Hartree-Fock
calculations with phenomenological effective interactions no
such systematic trend have been observed as a function of
K [25,26]. Further the differences in BE/nucleon and charge
rms radii for different K are larger sometime by one order
of magnitude compared to the results shown in Tables II
and III. The reason for this discrepancy can be attributed to
the consequence of having different ρ0 and uv for different
values of K in the effective interactions displayed in Table IV,
and also because they belong to different families or types
of the interactions. The values of K, ρ0 and uv are taken
from [25]. The values of K span a region of 193 to 356 MeV
with ρ0 changing from 0.206 to 0.145 fm−3, which is typically
a characteristic of such interactions. The interaction B1 is that
of Brink and Boeker with a zero range spin-orbit force [49],
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TABLE IV. The parameter values for various fits to binding energies and rms radii for type II energy functional.
Note the very large values of χ 2 for B1′. For details, see text.

Interaction ρ0 uv K ρx aρ MeV asym MeV apair MeV χ 2

B1′ 0.206 15.70 193 0.12 33.049 20.571 63.515 56.04
0.09 35.054 20.703 61.057 54.86
0.06 36.786 20.880 57.661 53.82
0.03 38.236 21.041 54.110 53.11

D1′ 0.168 16.30 228 0.12 41.278 27.028 50.309 0.852
0.09 43.308 27.233 47.688 0.714
0.06 44.965 27.394 45.124 0.698
0.03 46.162 27.509 42.768 0.749

Sk′
a 0.155 16.00 263 0.12 38.380 26.037 42.435 0.736

0.09 39.754 26.158 41.125 0.717
0.06 40.691 26.225 39.864 0.727
0.03 41.187 26.263 39.306 0.740

SIV′ 0.152 15.98 325 0.12 34.784 25.676 44.823 1.004
0.09 35.161 25.694 44.629 0.968
0.06 35.156 25.703 44.570 0.968
0.03 34.759 25.696 44.906 1.008

SIII′ 0.145 15.87 356 0.12 38.570 29.455 48.906 1.274
0.09 39.523 29.374 50.988 1.271
0.06 39.463 29.535 49.543 1.280
0.03 39.786 29.470 50.414 1.292

D1 of Gogny [50], Ska of Köhler [51], and the Skyrme forces
SIV and SIII of Orsay group [36]. In order to emulate these
interactions in our formalism, at least partially, we use the
values of K, ρ0 and uv from Table IV and obtain a fit to the
static properties of nuclei following the procedure outlined
earlier for all 32 nuclei. Since these effective interactions [26]
do not contain large anharmonicity we restrict the value of M

at −4 MeV. This restriction, though guided by the curve (d) in
Fig. 1 is somewhat ad hoc; we believe it is representative of
the interactions we are aiming to emulate. To distinguish the
original interactions with the emulated interactions we denote
them with a prime in the table. The values of the parameters and
χ2 are given in Table IV. To distinguish the two calculations,
we name them as type I (Table I) and type II (Table IV) energy

functional calculations. In Tables V and VI, we give the binding
energies and rms radii for type II energy functional.

A qualitative and startling difference between the results of
the two calculations is found in the values of KA, the effective
compression modulus. Using Eqs. (2.8) to (2.14) we plot in
Figs. 2(a)–2(c), KA as a function of K for all the 32 nuclei
for type I functional and for 122Sn (dashed curve) and 208Pb
(solid curve) for type II functional for different modes of
compression or dilation of the nucleus [44]. These calculations
are performed by assuming

δR

R
= α

δt

t
(2.16)
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FIG. 2. The effective compression modulus KA as a function of K for all the 32 nuclei for α = 1 (a), α = 1/3 (b), and α = 2.0 (c). The
filled and open circles are the values of KA as a function of K for 208Pb and 122Sn computed by partially mimicking the various effective
interactions (see text for details). The lines represent the best fit.
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TABLE V. Same as in Table II. Calculations are for type II
energy functional.

Nuclei K =
228 MeV

K =
263 MeV

K =
356 MeV

Experiment

10B 5.643 5.752 5.340 6.475
11C 6.295 6.344 6.101 6.676
12C 7.426 7.418 7.349 7.680
15O 7.035 7.084 6.916 7.464
16O 7.753 7.766 7.702 7.976
20Ne 8.007 8.025 7.702 8.032
23Na 8.024 8.062 7.973 8.111
27Si 8.016 8.047 7.981 8.124
28Si 8.335 8.351 8.324 8.448
31S 8.197 8.194 8.147 8.282
32S 8.437 8.449 8.433 8.493
39Ca 8.359 8.372 8.355 8.369
40Ca 8.561 8.566 8.569 8.551
44Ca 8.731 8.741 8.726 8.658
48Ca 8.533 8.562 8.491 8.666
50V 8.699 8.710 8.691 8.696
51V 8.743 8.753 8.736 8.742
58Ni 8.753 8.744 8.777 8.732
88Y 8.736 8.727 8.750 8.683
89Y 8.746 8.714 8.757 8.714

100Mo 8.658 8.605 8.653 8.605
122Sn 8.492 8.489 8.482 8.488
138La 8.388 8.375 8.390 8.375
139La 8.378 8.373 8.376 8.378
150Nd 8.263 8.263 8.249 8.250
169Tm 8.156 8.148 8.164 8.115
174Yb 8.106 8.102 8.106 8.084
198Hg 7.924 7.917 7.937 7.912
207Pb 7.832 7.831 7.833 7.870
208Pb 7.822 7.823 7.820 7.867
238U 7.571 7.578 7.563 7.570
243Am 7.543 7.546 7.546 7.530

for different values of α. Here R, δR, t , and δt are the averages
over neutrons and protons. α = 1 gives equal emphasis to R

and t in the scaling of the density, Fig. 2(a). Figure 2(b),
α = 1/3, corresponds to situation where by and large only
the surface is participating in the compression or dilation of
the nucleus, and α = 2, Fig. 2(c), corresponds to vibrations
more in the bulk region. In all three figures it is seen that there
are large regions where KA is much less sensitive to K for
type I functional as compared to type II functional. It slowly
decreases with increasing K and then increases gradually for
large K . For type II functional, the solid curves for 208Pb follow
the same trend as found in earlier Hartree-Fock calculations
with the effective interactions [26] mentioned earlier. Quite
contrary to type I curves, here we see that KA has a strong
dependence and increases linearly with K . The two situations
have implications not only on the polarizing effect of the
� on core nuclei, but possibly also on the extraction of K

from the giant monopole resonance energies [25,26,42]. The
implication for the monopole resonances requires a separate
study and is clearly outside the scope of the present work.
Nonetheless, we would like to understand a little more on

TABLE VI. Same as in Table III. Calculations are for type II
energy functional.

Nuclei K =
228 MeV

K =
263 MeV

K =
356 MeV

Experiment

10B 2.455 2.408 2.376 2.450(120)
11C 2.506 2.462 2.430 –
12C 2.550 2.508 2.480 2.472(15)
15O 2.680 2.644 2.620 –
16O 2.717 2.684 2.662 2.728(8)
20Ne 2.862 2.836 2.819 2.992(8)
23Na 2.968 2.937 2.924 2.986 [9]
27Si 3.083 3.067 3.057 –
28Si 3.109 3.095 3.086 3.086(18)
31S 3.193 3.182 3.176 –
32S 3.218 3.208 3.203 3.239(30)
39Ca 3.393 3.390 3.389 –
40Ca 3.414 3.412 3.413 3.485 [3]
44Ca 3.496 3.499 3.504 3.523 [5]
48Ca 3.574 3.581 3.590 3.484 [5]
50V 3.622 3.630 3.637 –
51V 3.640 3.649 3.658 3.615(31)
58Ni 3.781 3.793 3.804 3.783 [4]
88Y 4.257 4.288 4.311 –
89Y 4.270 4.301 4.325 4.240(20)

100Mo 4.416 4.423 4.481 4.443 [4]
122Sn 4.687 4.732 4.766 4.663 [1]
138La 4.870 4.920 4.957 4.853 [8]
139La 4.879 4.930 4.967 4.861 [8]
150Nd 4.992 5.047 5.086 5.015(37)
169Tm 5.186 5.246 5.287 5.226 [4]
174Yb 5.231 5.292 5.335 5.312 [42]
198Hg 5.452 5.518 5.563 5.441 [2]
207Pb 5.525 5.594 5.641 5.504 [2]
208Pb 5.533 5.602 5.649 5.505 [2]
238U 5.773 5.849 5.899 5.859 [4]
243Am 5.816 5.891 5.942 5.905 [4]

such diverse behavior of KA as function of K . We find
that it is related in a crucial way with the properties of
nuclear surface. We examine this briefly in what follows
now.

In Fig. 3 we plot ε(ρ) as function of ρ for K between 200
and 300 MeV for type I functional. It is seen that the values of
ε(ρ) change their trends for ρ < 0.07 fm−3. For example, at
lower densities ε(ρ) for K = 200 becomes larger compared to
other values of K . This occurs because M dominates at lower
densities. Our ε(ρ) for K = 250 MeV is also plotted in Fig. 1
to compare it with the ε(ρ) of Argonne AV18+UIX [38,39,41]
ε(ρ). It is useful to define a local compression modulus for
any value of ρ,Kl = 9ρ2d2ε(ρ)dρ2. In Fig. 4, Kl is plotted as
function of ρ. It is seen that for K = 200 MeV, Kl increases
as ρ decreases from ρ = 0.2 fm−3. On the other hand for
K = 300 MeV there is a rapid drop all along the values of ρ

as it decreases. Thus, in nuclei the surface contribution of Kl

compensates for the bulk modulus of the bulk or the interior
region in order to fit the static properties of nuclei. This then
leads to an almost constant KA as shown in Figs. 2(a)–2(c) in
certain regions and weak dependence in other regions.
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FIG. 3. The curves represent the equation of state of symmetric
nuclear matter as a function of density ρ for various K .

For the present study our results for both the types of energy
functional are quite reasonable as we are interested in the
differences of A−1E and A−1Ê, and in changes of the rms radii
in the presence of �. This is evident from Tables I to VI. The
only exception being BI ′ which has very large values of χ2.
It is well known that the interaction of Brink and Boeker [49]
does not give a good account of the binding energies and rms
radii [25].

It is not difficult to envisage that with further corrections of
shell effects, deformation, pairing correlations and an added
density dependent term in the asymmetry energy, our approach
may compete with other modern mass formulae which use
Skyrme density functional [52,53].

III. HYPERNUCLEI

The total hypernuclear energy of Eq. (1.1) requires the
calculation of E�[ρ]. This may be calculated either by a
phenomenological approach such as that of Millener et al. [54]
or, as in the present work, by a more microscopic approach
using a local density approximation. For this purpose, we make
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FIG. 4. Kl as a function of ρ for various values of K .

use of semirealistic �N plus dispersive and two-pion exchange
�NN interactions which are generally consistent with meson
theoretic models and which satisfactorily describe the s-shell
hypernuclei binding energies and low energy �p scattering
data. Though, these calculations have been performed earlier
[3,7,8], but we carry them out here in a more consistent manner,
i.e., s-shell hypernuclei and �-binding to nuclear matter D(ρ)
are calculated using the same level of approximation. We
thus neglect the three-body correlations in s-shell hypernuclei
since technique for incorporating these in nuclear matter is
not yet developed. The calculations for heavier hypernuclei
and core polarization effects are described in Sec. (III B). For
the nucleonic part of the Hamiltonian we use the AV18 + UIX
interaction [38] for the s-shell hypernuclei and use the model
of the previous section for heavier hypernuclei.

A. �p scattering, s-shell hypernuclei and
�-binding in nuclear matter

For the �N interaction, we use

V�N = [
Vc(r) − V̄ T 2

π (r)
]

(1 − ε + εPx) + 1
4VσT 2

π (r)�σ� · �σN,

(3.1)

where Px is Majorana space-exchange operator and ε is the
corresponding exchange parameter. Vc(r) is a Woods-Saxon
core which generates a repulsion of more than 2000 MeV at
the center V̄ and Vσ are respectively the spin-average and spin
dependent strengths, and Tπ is a one-pion tensor shape factor
with cutoff. The parameters of our interaction are constrained
to fit the low energy �p scattering including the F/B ratio
[56]. This determine V̄ and ε. We use V̄ = 6.15 MeV and
ε = 0.29 which also has a bearing to � single particle energies
[9]. The value of ε is somewhat higher than employed in
Refs. [7,8,57], but is consistent with the F/B ratio. Vσ

is essentially fixed by the energy splitting of the mass 4
hypernuclear system, however it is correlated with the spin
dependence of three-body �NN interaction. We use a value
of Vσ = 0.176 as found in [8].

The V�NN interaction consists of a two-pion exchange and
a dispersive part:

V�NN = V 2π
�NN + V DS

�NN, (3.2)

V 2π
�NN = − 1

6Cp �τN1 · �τN2

{
XN1�,XN2�

}
, (3.3)

V DS
�NN = Wo

∑
cycl

T 2
π

(
rN1�

)
T 2

π

(
rN2�

)[
1 + 1

6 �σ� · (�σ1 + �σ2)
]
.

(3.4)

The curly bracket in Eq. (3.3) represents the anticommutator
and the factors XN� are given by

XN� = Tπ (rN�)SN� + Yπ (rN�)(�σ� · �σ�),

where Yπ is the radial function associated with the Yukawa part
of the one-pion exchange potential with a cut off and SN� is
the usual tensor term. V�NN arise mainly from the elimination
of � degrees of freedom and is found essential for a consistent
phenomenology of s-shell hypernuclei, when use is made
of V�N which accounts for low energy �p scattering data.
We use the following values for the V�NN interaction
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TABLE VII. Comparison of calculated and experimental bind-
ing energies of s-shell hypernuclei. Rows two and three give the
average values of 4

�H and 4
�He.

Hypernucleus Calculated B� in MeV Experiment B� in MeV

3
�H 0.24 ± 0.03 0.13 ± 0.05
4
�H, 4

�He 1.66 ± 0.05 2.22 ± 0.04
4
�H∗, 4

�He∗ 0.93 ± 0.06 1.12 ± 0.06
5
�He 3.27 ± 0.10 3.12 ± 0.02

parameters:

Cp = 2.0 MeV and Wo = 0.01 MeV. (3.5)

The above values of the parameters then give, to some extent,
a reasonable account of s-shell hypernuclear binding energies,
Table VII. The mass 3 system is overbound and the ground state
of the mass 4 system is underboud. This is probably the price
one has to pay for the consistency (without the three-body
correlations) with the nuclear matter calculations which are
more important to the present study.

B. Calculation of E� and core polarization

The details of the calculations of E� for a given core
nucleus density distribution are described in Refs. [9,27,28]
where it was shown that the s.p. data can be well described
using �N plus dispersive �NN and two-pion exchange �NN

forces. We briefly outline this procedure. We use a variational
wave function to calculate the �-binding to nuclear matter,
D(ρ, k�) at a density ρ and for a � momentum k�. The various
expectation values are calculated using the Fermi hypernetted
chain (FHNC) approximation (for details see Refs. [9,55]).
The single particle potential felt by � inside a nucleus is then
approximated as

UA−1
� (r) = D(ρA−1, k� = 0) ≡ D(ρA−1(r)), (3.6)

where the density ρA−1 of the core nuclei is obtained as a
result of the minimization procedure described in Sec. II.
In this respect, our calculation of E� is different from that
of Ref. [9], where the densities ρA−1 were obtained from
electron scattering data. The dependence of UA−1

� on k�, is
simulated though an effective mass m∗

� which, in the present
approach results from the exchange part of the �N force which
arises from K,K∗ exchange. E�(ρA−1) for a given �� is then
obtained from solution of the radial Schrödinger equation[

− h̄

2µ∗
λ(ρ(r))

d2

dr2
+ h̄2��(��+1)

2µ∗
�(ρ(r))r2

+ UA−1
� (r)

]
φ��

= E�φ��
. (3.7)

The dependence of E� on ρA−1 arises through the depen-
dence of UA−1

� and of µ∗
� on ρA−1, where µ∗

� is the effective
reduced mass of the effective mass of � and the mass of the
core nucleus. This is given by

1

µ∗
�

= 1

MA−1
+ 1

m∗
�(ρ(r))

, (3.8)

where MA−1 is the mass of the core-nucleus.

ρ (fm-3)

0.00 0.05 0.10 0.15 0.20

- D
Λ 

( M
eV

)

-30

-20

-10

0

ρ0ρm

FIG. 5. The solid curve represents the � binding to nuclear matter
–D�.

D(ρ) is shown in Fig. 5 and m∗
�/m� as function of density

is shown in Fig. 6. As argued in Refs. [9,27,28] D(ρ) must
have “saturation” properties in the sense that it should have
a maximum ρm near ρ0 in order to allow a satisfactory fit to
the s.p. data. This observation has also been made by Millener
et al. [54] in their purely phenomenological approach and also
by Lombard et al. in their relativistic mean-field calculations
[58]. Microscopically this maximum is due to the competition
between the attractive contribution of direct �N force and
the repulsive contributions of the �N exchange and the three-
body �NN forces. To obtain the energy of the hypernucleus
including core polarization we minimize

A
�E[ρA−1] = AE[ρA−1] + E�[ρA−1] (3.9)

with respect to the parameters Rn(p) and tn(p) of ρA−1. This
gives a slightly changed core density ρ̂A−1 and the core energy
A−1E[ρ̂A−1] due to the presence of the �. The results for the
� s.p. are shown in Fig. 7 for K = 250 MeV for type I energy
functional. The results for other values of K are not very
different.
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FIG. 6. The effective mass of � as a function of density ρ.
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FIG. 7. � single particle energies (B�) as a function of mass
number for different angular momentum states. The experimental
points are from Ref. [45]. The dashed curves represent the results of
the calculation as explained in the text.

The core polarization energy is defined as

�E = A−1E[ρ̂A−1] − A−1E[ρA−1]. (3.10)

This is positive since the minimum of A−1E alone is
obtained for ρA−1. The change in the rms is defined as

�R = 〈r2〉1/2
A−1 − 〈r2〉1/2

A−1 (3.11)

where r and r̂ refer to the absence and presence of the
� particle, respectively. �R will be positive or negative
depending upon the contraction or expansion of the core
nucleus.

IV. CORE POLARIZATION RESULTS AND DISCUSSION

Figures 8 and 9 show our results for the core polarization
energy �E and the change in the core radius �R for K =
200, 250, and 300 MeV for type I functional. These calcula-
tions are performed for D(ρ) and � effective mass of Figs. 5
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FIG. 8. Polarization Energy in MeV as a function of mass number
for type I energy functional for various values of K .
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FIG. 9. Change in rms radii as a function of mass number for
type I energy functional for various values of K .

and 6, respectively. It is observed that both �E and �R are
quite small. Since these quantities are differences of two large
quantities great care was required in minimizing the energy.
An accuracy of up to seven significant digits was needed in the
energy calculations for heavy nuclei to arrive at a meaningful
result. As a result there were small kinks in both the curves,
i.e., for �E and �R. There is no reason for the appearance
of the kinks, except due to the accuracy of the calculations,
since we do not include shell effects and the pairing energy
does not depend on the density. For presentation purposes we
have smoothed out the kinks without sacrificing the contents
and the physical effects represented by the curves. No such
smoothing was needed in case of the linear behavior of D(ρ)
as a function of ρ. There, both �E and �R are much larger
(see Figs. 10 and 11).

It is seen in Fig. 9 that �R is negative for all the nuclei
which correspond an outflow of nucleons from the interior
to the surface. This is in contrast to a nonsaturating D(ρ) =
D0ρ/ρ0 (with D0 = 30 MeV = empirical well depth) where
the proportionality to ρ arises microscopically from a direct
nonexchange �N force. Such a D(ρ), as is well known, favors
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FIG. 10. Polarization energy in MeV as a function of mass
number with D� = 30ρ/ρ0 for type I energy functional.
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FIG. 11. Changes in rms radii as a function of mass number with
D� = 30ρ/ρ0 for type I functional.

a contraction of the nucleus since the � binding will increase
if ρ increases throughout the nucleus. On the other hand, for
a “saturating” D(ρ), with ρm fairly close to ρ0 , changes of
ρ in the nuclear interior are much more energy neutral for
the �, whereas an increase of ρ in the surface increases the
contribution of D(ρ) to the � binding, thus favoring a flow
of nucleons from the interior to the surface. The driving force
tending to increase the � binding is thus expected to be smaller
than for D(ρ) ∝ ρ, and correspondingly both �E and |�R|
are expected to be less. This is in fact the case as depicted for
�E in Fig. 8 and for |�R| in Fig. 9, where �E ≈ 0.03 MeV
and |�R| ≈ 0.008 fm around A ≈ 50. It is important to note
that the “driving force” of the �, giving the core polarization,
is determined by the derivative of D(ρ) with respect to ρ and
not by its absolute value. The � exerts a deforming force in the
sense that it tends to change the nuclear density to the value ρm

[where D(ρ) is maximum]. On the other hand, the nucleus tries
to keep the density inside the nucleus near ρ0, the equilibrium
density. Thus there is trade off with the consequence that the
density of the nucleus inside the nucleus decreases resulting
in a net flow of matter from interior to exterior region. On the
other hand in the surface region, where the density is less than
ρ0 the � particle will tend to increase the density resulting
in a somewhat smaller surface thickness. For a nonsaturating
D(ρ) = 30ρ/ρ0, the � tries to increase the density of nucleus
in all the regions causing a significant reduction in the rms
radii. Also the core polarization energies will be much larger.
In Figs. 10 and 11 we present our results for �E and �R

for the non-saturating D(ρ). Here, it is clearly seen that core
polarization energies and changes in rms radii are one order of
magnitude larger compared to saturating D(ρ), and also �R

is positive, demonstrating a contraction of the core nucleus.
We make the following observations from Figs. 8–11. These

are (a) the dependence on K of the polarization energies and
the rms radii is very weak, the curves as a function of K are
very close to each other; (b) in Figs. 8 and 9, both, �E and �R

values show an opposite trend as compared to found in earlier
studies, i.e., they are found to be proportional to K instead of
an inverse proportionality. This is seen in Fig. 8 rather clearly.

Figure 9 shows a mixed trend, i.e., in some regions K = 200
and 300 MeV change trends, which can also be attributed to
the accuracy of the calculations. However in Figs. 10 and 11,
the trends as a function of K are opposite to that of Figs. 8
and 9, i.e., both �E and �R are proportional to K−1. (c) In
Fig. 9, the �R shows a distinct minimum around A = 30–40,
and (d) for medium and large A nuclei both the quantities show
an A−1 behavior.

The trends of the curves, as mentioned in the preceding
paragraph, can be largely understood from the behavior of
KA, the effective compression modulus, as functions of K and
A, and also from the saturating and nonsaturating character of
D(ρ) and a delicate balance among them. In fact, both �E

and �R depend directly on KA instead of K . However, this
point needs further investigation and it would be desirable to
establish it in a rigorous way. Though the present treatment
is also rigorous but numerical in nature and thus confined to
specific cases. For type I energy functional, KA changes very
little between K = 100 to 400 MeV and more so between
100 and 300 MeV [see Figs. 2(a)–2(c)]. This makes clear the
clustering of curves for the three values of K = 200, 250, and
300 MeV as a function of A in all the four figures. Secondly
as K increases KA decreases very slowly. This means that
overall core nucleus is “soft” for larger values of K thus giving
somewhat greater values of �E and |�R| due to a relatively
larger response of the core to the �. This explains the behavior
of curves (Figs. 8 and 9) mentioned in (b) in the preceding
paragraph. These curves correspond to the saturating D(ρ) for
which the � particle wave function is relatively pulled out to
the surface region where the local compression modulus Kl

are generally larger for smaller K (see Fig. 4 for the behavior
of Kl as a function of ρ). In Fig. 12, we plot s-state � wave
function φ�(r) as a function of r for 40Ca for K = 200 MeV,
both for saturating and nonsaturating D(ρ). It is seen that
φ�(r) is pulled out for the saturating D(ρ) compared to the
nonsaturating D(ρ), despite the fact that it is more bound by
∼1.5 MeV. Thus for a nonsaturating D(ρ), the � particle
spends more time inside the core region of the nucleus. This,
perhaps, explains the K−1 behavior of �E and �R in Figs. 10
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FIG. 12. The � wave function in s-state for saturating and
nonsaturating D(ρ) for type I functional.
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FIG. 13. The inverse of the effective compression modulus as a
function of the mass number for K = 250 MeV.

and 11, but still the curves are clustered signifying a very weak
dependence on K . The occurrence of minima in �R in Fig. 9
can be understood by realizing that light nuclei consist of large
surface regions, compared to the core, where a considerable
fraction of the densities have values less than ρm. Thus not
having enough nucleons in the core region, the � may shrink
the surface leading to a less expansion of the nucleus. In
fact this phenomenon may also lead to contraction for A less
than 10, as witnessed experimentally in 7

�Li [24] and in the
theoretical studies of s-shell hypernuclei [8] where core radii
in the s-shell region were found to shrink significantly. Finally,
dependence of �E and |�R| on A can be understood as a result
of the core polarization being roughly a “1/A” effect. One �

forcing the core distortion versus A core nucleons responding.
The relative importance of the nuclear core and the surface
region plays an important role. This effect is contained in the
values of KA as seen from Figs. 2(a)–2(c). In Fig. 13, we plot
K−1

A as a function of mass number for K = 250 MeV. It is
amazing to see that K−1

A follows the same trend as �E and
|�R| as a function of A. Nuclei with higher mass number are
in general harder to deform compared to nuclei with lower

A
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FIG. 14. Polarization energy in MeV as a function of mass
number for type II energy functional for various values of K .
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FIG. 15. Change in rms radii as a function of mass number for
type II energy functional for various values of K .

mass number, since they have higher effective compression
modulus. This is related to ratio of number of nucleons in the
core and the surface region.

In Figs. 14 and 15, we give the results for �E and �R for
type II energy functional. These correspond to the saturating
D(ρ) of Fig. 5. In Figs. 2(a)–2(c), we have seen that for
type II energy functional KA strongly depends on K and
is directly proportional as revealed by the solid and dashed
curves for 208Pb and 122Sn nuclei, respectively. This effect is
reflected in Figs. 14 and 15 where the �E and �R curves
are widely spaced for different values of K and their values
are proportional to K−1 for a given A. In this case also both
�E and |�R| are quite small as in Figs. 8 and 9. Results
for nonsaturating D(ρ) are one order of magnitude higher
and their values are on expected lines in accord with previous
studies [11–22]. These are given in Figs. 16 and 17.

We now refer the reader to [11] and [16], where it was found
that in the Hartree-Fock calculations the core polarization
energy increases with A or at least stays constant in the range
8 < A < 40. How do we reconcile or explain this result in

A

0 50 100 150 200 250

∆ E
 (

M
eV

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K = 228 MeV
K = 263 MeV
K = 356 MeV

FIG. 16. Polarization energies as a function of mass number A

for type II density functional with D(ρ) = 30ρ/ρ0 for various values
of K .
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FIG. 17. Changes in rms radii as a function of mass number A

for type II density functional with D(ρ) = 30ρ/ρ0 for various values
of K .

the context of the present work? We believe this is probably
related to the values of KA and/or to the characteristics of
the equation of state and the associated values of Kl for the
effective NN interaction employed in [11,16]. For example, in
the Hartree-Fock calculations of the Saclay group [26] which
use various effective interactions “. . . a 50% variation in A,
say, from A = 100 to A = 200, induces only a variation of
less than 5% in KA.” Does this provide a plausible answer
in terms of the insensitivity of KA as function of A (in the
Hartree-Fock calculations) in combination with other factors?
We have a somewhat similar situation as depicted in Figs. 14
and 15 for type II functional. Here we see that for K =
228 MeV, �E first rises, reaches a peak and then decreases on
expected lines for medium and large A.�R follows the same
pattern. These possibly could also arise due to delicate balance
of competing factors mentioned earlier.

We would like to offer some comments on types I and
II functionals. The behavior of type I functional leads to
circumstances similar to that encountered in condensates of
cold atoms in a magnetic trap. It has been shown that, in
certain frequency range, there is no connection between the
frequencies of monopole vibrations of a finite quantum system
(of a Bosonic condensate) with the compression modulus of the
corresponding infinite matter [59,60]. An analogous situation
is encountered here. The near independence of KA from K

implies that the core polarization energies and changes in rms
radii due to presence of � are weakly dependent on K in the
range 200 to 300 MeV. Thus, they are insensitive to the values
of K as the binding energies and rms radii of nuclei are. In this
respect the physics of nuclei with type I functional is similar
to that of condensates in a magnetic trap. The situation with
type II functional is quite different. Though, the binding
energies and rms radii are more or less independent of K , but
�E and �R depend sensitively on K . The present study cannot
shed any light as to which type of functional correspond to
reality. There is another interesting observation regarding our
functionals; KA is roughly proportional to A, Figs. 2(a)–2(c),
more so for type I functional. Thus lighter nuclei are “softer”
to deform compared to heavier nuclei. This is probably related

TABLE VIII. Results for a few ��-hypernuclei demonstrating
the core polarization effects.

Hypernuclei Saturating D(ρ) Nonsaturating D(ρ)

�E (MeV) �R (fm) �E (MeV) �R (fm)

18
��O 0.142 −0.0127 2.340 0.0846
42
��Ca 0.131 −0.0158 1.575 0.0587
91
��Y 0.088 −0.0123 0.850 0.0386
210
��Pb 0.037 −0.0072 0.390 0.0234

to some function of the ratio of number of nucleons in the
surface to core region. It is not an “1/A” effect in the usual
sense, like the center of mass correction in the calculation of
energies with translationally noninvariant wave functions.

We would like to emphasize that our conclusion ρm < ρ0 is
not based upon the � s.p. data alone. In the framework of the
present study, a consistent account of s-shell hypernuclei, �p

scattering, D(ρ0) along with � s.p. data, requires ρm < ρ0. We
do not establish it as an absolute law.

For illustrative purposes we also give in Table VIII a few
results for ��-hypernuclei neglecting �� interaction, both
for saturating as well as nonsaturating D(ρ). It is seen that the
effect of polarization enhances by a factor of 3 to 4 compared
to single �-hypernuclei, however, the effect with the saturating
D(ρ) is still small. Also, as in single �-hypernuclei, the effect
with the nonsaturating D(ρ) is one order of magnitude larger.
In Fig. 18 we plot the densities of 40Ca with and without the
two �s. It demonstrates the flow of nuclear matter from the
interior to the surface region. In a later publication, we shall
take up the hypernuclei 6

��He in a fully variational framework
and 13

��B in the present framework using realistic �� and
other interactions.

Lastly, we comment on an inconsequential minor incon-
sistency in the context of the present work. This results by
assuming that asym is independent of ρ. Information on the ρ
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FIG. 18. The nucleon single particle densities for the nucleus 40Ca
(solid line) and the hypernucleus 42

��Ca (dashed line). It may be seen
that the presence of �s causes flow of matter from the interior to the
exterior region.
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dependence of asym requires additional experimental data, in
particular accurate measurement of rms radii of the neutron
distributions. As shown in [61] the difference between ρn(r)
and ρp(r) is quite small for any reasonable assumption about
the ρ dependence of asym and can be neglected for the purposes
of this paper. Assuming the neutron and proton distributions
to be the same, i.e. ρp(r) = (N/A) ρ(r), ρp(r) = (Z/A)ρ(r)
is consistent with assuming asym to be independent of ρ and
also neglecting the effect of coulomb forces on ρp(r) and thus
on the difference between ρn(r) and ρp(r). By themselves,
the coulomb forces give a slightly more extended ρp(r) than
ρn(r) in the surface region. In the tail region we find that the
neutron density dominates as the proton distribution is slightly
sharper than neutron distribution. With asym independent of
ρ and ρn(r) = ρp(r), the asymmetry energy is then just
asym(N − Z)2/A. Calculations with these modifications were
also carried out for a few test cases. No significant changes
were found in the results. In fact, our calculation for KA, (2.16),
follow this procedure where we take an average of the neutron
and proton densities.

V. CONCLUSIONS

We have developed a variational local density theory to
calculate the changes that a � particle induces in nuclei. The
theory is severely constrained by the �-single particle data,
s-shell hypernuclei binding energies, low energy �p scattering
and the nuclear binding energies and rms radii. Our main
conclusions are as follows:

(i) It is demonstrated that the effective compression
modulus, KA usually employed in the calculations of
breathing modes of nuclei has a direct bearings on the
core polarization effects. It may have very weak (with
slight decrease with K), totally independent or strong

dependence with direct proportionality to K depending
upon the type of energy density functionals employed
in the calculation.

(ii) Overall, the core polarization energies are quite small;
this in turn justifies a large number of calculations on �-
hypernuclei where core polarization energies have been
completely neglected. This also lends support that �-
hpernuclei constitute a simple system where the single
particle picture is valid to a good approximation.

(iii) Though the � interacts strongly with the core nucleus,
it induces only a small change due to the “saturation”
properties of D(ρ). From this aspect, the � may be
considered as a weakly interacting probe. To exploit
this situation and make progress in this direction, we
have to wait for new developments in the field, both
experimental as well as theoretical.

(iv) There are strong indications that the � causes a flow of
nuclear matter from the interior to the exterior regions
in nuclei. This may have interesting consequences for
hypernuclei with several �’s.

(v) The theory developed here can be easily extended
to multi-�-hypernuclei. However, we have to include
multi-� correlations within a variational framework if
realistic �� interactions are employed.
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