Toward ¹⁰⁰Sn: Studies of excitation functions for the reaction between ⁵⁸Ni and ⁵⁴Fe ions

A. Korgul,^{1,2,3,4} K. P. Rykaczewski,⁵ C. J. Gross,⁵ R. K. Grzywacz,³ S. N. Liddick,^{3,6} C. Mazzocchi,^{3,7} J. C. Batchelder,⁸

C. R. Bingham,³ I. G. Darby,³ C. Goodin,⁴ J. H. Hamilton,⁴ J. K. Hwang,⁴ S. V. Ilyushkin,⁹ W. Królas,¹⁰ and J. A. Winger^{2,8,11}

¹Institute of Experimental Physics, Warsaw University, PL 00-681 Warszawa, Poland

²Joint Institute for Heavy-Ion Research, Oak Ridge, Tennessee 37831, USA

³Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

⁴Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

⁵Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

⁶UNIRIB, Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA

⁷IFGA, University of Milan and INFN, I-20133 Milano, Italy

⁸UNIRIB, Oak Ridge Associated, Oak Ridge, Tennessee 37831, USA

⁹Department of Physics and Astronomy, Mississippi State, Mississippi 39762, USA

¹⁰Institute of Nuclear Physics, Polish Academy of Sciences, PL 31-342 Kraków, Poland

¹¹Department of Physics and Astronomy, Mississippi State University, Mississippi 39762, USA

(Received 6 November 2007; published 7 March 2008)

Production of nuclei above ¹⁰⁰Sn in fusion-evaporation reactions between ⁵⁸Ni and ⁵⁴Fe ions was studied at Oak Ridge National Laboratory by means of the recoil mass spectrometer and charged particle detection. The beam energy was varied to optimize the yields for the two-, three- and four-particle evaporation channels. Experimental results verified the predictions of the statistical model code HIVAP. The optimum energy for the ⁵⁴Fe(⁵⁸Ni,4n)¹⁰⁸Xe reaction channel that allows one to study the ¹⁰⁸Xe-¹⁰⁴Te-¹⁰⁰Sn α decay chain is deduced as 240 MeV.

DOI: 10.1103/PhysRevC.77.034301

PACS number(s): 29.30.Ep, 23.60.+e, 25.70.Gh, 27.60.+j

I. INTRODUCTION

The region of nuclei around the doubly magic ¹⁰⁰Sn is unique in the nuclear landscape. It allows us to study the structure of nuclei near closed shells (N = Z = 50) located in the vicinity of the proton drip line. The decay properties of proton-rich nuclei near ¹⁰⁰Sn also have an astrophysical importance related to the final phase of nucleosynthesis within the rapid proton capture (rp) process. The fast charge particle decays of antimony and tellurium isotopes lead to a Sn-Sb-Te cycle terminating the rp-process and preventing the creation of elements above Z = 52 via subsequent proton capture [1,2]. In this work, we investigate the yields of nuclei above ¹⁰⁰Sn to establish the optimum way to observe the ¹⁰⁸Xe-¹⁰⁴Te-¹⁰⁰Sn α decay chain.

Doubly magic ¹⁰⁰Sn and its nearest neighbors are very difficult to reach experimentally. Only 11 and 24 ions of ¹⁰⁰Sn were first identified among the fragmentation products of 1 GeV/nucleon ¹²⁴Xe [3] and 63 MeV/nucleon ¹¹²Sn [4,5] beams, respectively. The estimated production cross sections were as low as 12 and 120 pb for these ¹²⁴Xe [3] and ¹¹²Sn [4,5] beams, respectively. Further fragmentation-based attempts did not result in increased statistics of ¹⁰⁰Sn events [6,7]. One event of ¹⁰⁰Sn identified among the 1 GeV/nucleon ¹¹²Sn fragmentation products [7] corresponds to a production cross section of ~2 pb.

Nearly symmetric fusion-evaporation reactions between heavy ions offer larger cross sections for the production of nuclei in the ¹⁰⁰Sn region. The mass measurement [8] of ¹⁰⁰Sn was based on about ten ions produced in the reaction ⁵⁰Cr+⁵⁸Ni at 255 MeV. The reported cross section value was as high as 40 nb [8]. A lower value of \approx 3 nb was estimated for the production of ¹⁰⁰Sn in the collisions of ⁵⁸Ni and ⁵⁰Cr nuclei from decay studies of proton-rich tin isotopes at the GSI on-line mass separator [9]. It is based on the experimental vields obtained with $\approx 3 \text{ mg/cm}^2$ thick targets for the A = 101–105 tin isotopes including the value of \sim 60 nb derived for ¹⁰¹Sn (see also Ref. [10]). The cross section decrease is nearly logarithmic when approaching ¹⁰⁰Sn [9]. In both studies [8,9], the observed yields of proton-rich tin isotopes were converted into cross section values using the estimated efficiencies of processes involved in the selection of specific isotopes. In particular, the transmission efficiency of the ion optics system is not measured directly, but estimated based on the data from somewhat similar reactions and/or calculated using ion optics simulations. For the on-line mass separator studies, corrections include averaging over target thickness, half-life dependent ion source release efficiency, beam line transmission, and absolute branching ratios calculated for the detected radiation [9,10]. Therefore, differences between quoted "apparent" experimental cross sections might eventually occur.

This work makes use of charge particle decay to establish the optimum conditions for studying exotic proton-rich nuclei near ¹⁰⁰Sn by means of the recoil mass spectrometer (RMS) technique [11]. The analyzed yields for the 2n, 3n, and p3n evaporation channels are used to deduce the optimum beam energy of ⁵⁸Ni projectiles on ⁵⁴Fe targets for producing ¹⁰⁸Xe after 4n evaporation. The α decay of ¹⁰⁸Xe will eventually lead to ¹⁰⁰Sn via a super-allowed α transition from ¹⁰⁴Te [12–15]. The results of the studies presented here have already helped to identify the new α decay branch in the decay of the groundstate proton emitter ¹⁰⁹I [2].

II. EXPERIMENTS

The experiments were performed at the recoil mass spectrometer [11] at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. Beams of ⁵⁸Ni on ⁵⁴Fe targets leading to the compound nucleus ¹¹²Xe were used to produce charge particle emitters above tin isotopes. The nuclei recoiling from the target were separated according to their mass-to-charge (A/O) ratio. Ions in two charge states were transmitted to the RMS final focus (converging ion optics [11]). After passing through the position sensitive microchannel plate detector (MCP) [16], the recoils were implanted into the double-sided silicon strip detector (DSSD). The implantation and decay signals were recorded using digital signal processing in XIA DGF 4C modules [17–20]. For longer lived activities, the standard acquisition mode was used, and the signal time and amplitude were analyzed onboard. A different technique for the signal acquisition mode was developed to study the decays involving the pileup of two α signals such as in the 110 Xe- 106 Te- 102 Sn and 109 Xe- 105 Xe- 101 Sn decay chains [13,19,20].

The energies of ⁵⁸Ni projectiles were varied between 195 and 265 MeV, and the ⁵⁴Fe target thickness was 470 μ g/cm². The ⁵⁸Ni beam energy loss over the thickness of this ⁵⁴Fe target is about 10–11 MeV. The charge states of recoils ranged from 25⁺ to 30⁺. A 20 μ g/cm² carbon charge reset foil was placed about 10 cm after the target [11]. For each beam energy, different settings of the RMS ion optics were tested. The energy and charge states of the recoils were varied to achieve the maximum counting rate of the most exotic known isobar of a given mass *A*, i.e., ¹⁰⁸I (*p*3*n*), ¹⁰⁹I (*p*2*n*), and ¹¹⁰Xe (2*n*). For mass *A* = 109, the observed yields for the new isotope ¹⁰⁹Xe produced in the 3*n* evaporation channel [13] are included in this presentation.

III. CALCULATIONS

To estimate the appropriate beam energy, calculations were performed using a 1994 version of the GSI statistical model code HIVAP [21,22]. This relatively simple-to-use code is widely used in its default version to estimate beam energies and cross sections for experiments on proton-rich nuclei. The default mass table used in these calculations consisted of 1993 experimental masses [23] and Möller *et al.* extrapolations [24], see Table I. The particle separation energies and the shell and pairing corrections were obtained using this mass table (recommended option). The scaling parameter r_0 for level densities was set to 1.153 (recommended) instead of 1.16, which was used originally by Töke and Świątecki [25]. Liquid drop fission barriers [26] were used. However, according to the calculations, the fission probability is small for these light nuclei.

IV. RESULTS

Examples of results for the production of A = 110 isobars in the 2n, 3n, and 4n reaction channels are displayed in Fig. 1. The beam energies E_M are given at the middle of the target

FIG. 1. (Color online) Cross section distribution obtained using a 1994 version of the HIVAP code for 110 Xe, 109 Xe, and 108 Xe produced in the 58 Ni+ 54 Fe reaction.

(calculated from the initial beam energy E_B reduced by 5 MeV), while the calculated cross sections are averaged over the 10 MeV range. One notices a nearly flat profile for the cross section over a wide beam energy range for 110 Xe produced in the 2n evaporation channel in the ${}^{58}\text{Ni}+{}^{54}\text{Fe}$ reaction. It suggests a beam energy E_B around 235–240 MeV as an optimum choice for production of ¹¹⁰Xe and ¹⁰⁹Xe, and the energy of ~ 270 MeV for production of ¹⁰⁸Xe. However, the experimental yields, see Fig. 2, clearly indicate narrower distributions, with the beam energy E_B that maximizes the production of ¹¹⁰Xe being lower by as much as 20–30 MeV. Nearly the same beam energy corresponds to the optimum production of the less exotic 110 I in the (pn) channel. The experimental yields were corrected for the total efficiency of our setup. The α and proton detection efficiencies of the DSSD were simulated with GEANT [27]. For example, for deeply implanted 65 MeV recoils of ¹¹⁰Xe and 70 MeV recoils of 109 I, detection efficiencies for the 3.72 MeV α particles and 0.81 MeV protons were calculated to be $(85\pm2)\%$ and $(97\pm3)\%$, respectively. The errors result from the energy spread of the recoils. The RMS transmission was measured earlier for recoils produced using a 212 MeV ⁵⁸Ni beam and a 400 μ g/cm^{2²28}Si target with a 900 μ g/cm² Ta front layer, by correlating the γ - γ coincidences recorded at the target with the number of RMS-transmitted ions. Efficiencies of 5.2% and 4.1% were obtained for the 3p (⁸³Y) and $\alpha 2p$ (⁸⁰Sr) evaporations channels [11], which are similar enough to the reactions in the presented work. Therefore, a constant efficiency of $(5\pm 1)\%$ was adopted for the transmission of all recoils in two charge states to the implantation detectors in the RMS final focus. The 20% uncertainty should adequately reflect differences in reaction kinematics and target variations between the past and present work. The observed yields given in ions/s at 1 pnA beam intensity given in Fig. 2 were converted into cross sections (left vertical axis) averaged over the 470 μ g/cm² target thickness. The relative 20% error resulting

TABLE I. Neutron (S_n) , proton (S_p) , and $\alpha(S_\alpha)$ separation energies (in MeV) used as the input values in two sets of the HIVAP code calculations described in the text. The updated S_n , S_p , S_α values are based on Refs. [9,13,28–31]. The mass excess values (ME) correspond to the updated separation energies.

Nuclide	Default values			Updated values			
	S _n	S_p	S_{lpha}	S _n	S_p	S_{α}	ME
¹¹⁰ Xe	13.88	0.61	-4.44	14.37	1.58	-3.89	-51.90
¹⁰⁹ Xe	12.07	0.19	-4.69	12.07	0.24	-4.22	-45.60
¹⁰⁵ Te	11.80	0.38	-4.92	11.80	0.35	-4.90	-52.24
¹⁰³ Sn	10.27	4.11	-0.48	10.05	3.54	-0.47	-66.96
¹⁰² Sn	13.26	3.63	-0.29	13.49	3.66	-0.05	-64.98

from the transmission efficiency estimate of $(5\pm1)\%$ is not included in the error bars displayed in the Figs. 2–4. This means that all experimental cross section points can be moved up or down simultaneously, within $\pm 20\%$ of their values, with respect to the calculated values. However, it does not change the shape of the experimental excitation function or the derived optimum beam energy.

We have repeated the HIVAP calculations using updated mass values [28] and recent experimental results [9,13,29–31]. The relevant changes to the input mass values are listed in Table I. The recalculated distributions drop more quickly for higher beam energies and better fit the experimental data for

FIG. 2. (Color online) Experimental yields (right axis) for *pn* and 2*n* fusion-evaporation channels in the ⁵⁸Ni+⁵⁴Fe reaction (solid symbols) vs projectile energy in the middle of the target. These yields were converted into cross section values (left axis). The predictions of the statistical model code HIVAP (open symbols) obtained with updated input mass values (see Table I) are compared with our experimental data. The error bars of the experimental points, some of them smaller than the symbols used, include the statistical uncertainties of the observed number of counts and the particle detection efficiency, while the 20% relative error of the constant (5±1%) RMS transmission is not included; see text for more details.

the ¹¹⁰Xe and ¹¹⁰I, as seen in Fig. 2. This indicates that our results depend strongly on the mass values used.

The measurements performed for ¹¹⁰Xe and ¹¹⁰I recoils guided our study of A = 109 activities. The experimental yield curves obtained for ¹⁰⁹I and ¹⁰⁹Te, see Fig. 3, suggested a

FIG. 3. (Color online) Comparison of the experimental data (solid symbols) for the production of ¹⁰⁹Te, ¹⁰⁹I, and ¹⁰⁹Xe in the fusion reaction ⁵⁸Ni+⁵⁴Fe, and respective cross section values predicted with the statistical model code HIVAP (open symbols) using the updated particle separation energy values. The error bars of the experimental points, some of them smaller than the symbols used, include the statistical uncertainties of the observed number of counts and the particle detection efficiency, while the 20% relative error of the constant (5±1)% RMS transmission is not included; see text for more details.

FIG. 4. (Color online) Experimental yields (solid symbols) for four-particle evaporation products from the fusion reaction ⁵⁸Ni+⁵⁴Fe and HIVAP predictions (open symbols) obtained with updated particle separation energy values. The error bars of the experimental points, some of them smaller than the symbols used, include the statistical uncertainties of the observed number of counts and the particle detection efficiency, while the 20% relative error of the constant (5±1)% RMS transmission is not included; see text for more details.

beam energy E_B of 220–225 MeV, close to the maximum for ¹⁰⁹I and ¹⁰⁹Te. The search for ¹⁰⁹Xe was performed with beam energy E_B of 222 MeV and was indeed successful [13]. The HIVAP calculations with modified masses for A = 109isobars are shown for comparison in Fig. 3. The experimental optimum beam energies are nearly reproduced. Interestingly, the optimum beam energy (optimum excitation energy of the compound nucleus ¹¹²Xe) is practically the same, E_B of 220–225 MeV for production of ¹⁰⁹I and ¹⁰⁹Xe, similar to the excitation functions for ¹¹⁰I and ¹¹⁰Te peaking at the same beam energy E_B of about 200 MeV.

Similar studies were performed for the A = 108 isobars, see Fig. 4. The agreement between the measured yield curves converted into cross section and the calculated cross section values for ¹⁰⁸Te and ¹⁰⁸I is even better. Calculations still indicate a beam energy E_B of about 265 MeV as the best choice for the production of ¹⁰⁸Xe. However, based on the results of the mass A = 110 and A = 109 isobars, we estimate that a beam energy around 240 MeV will maximize the production of the A = 108 isobar ¹⁰⁸Xe in the ⁵⁸Ni+⁵⁴Fe reaction. The cross section for the 4*n* evaporation channel can be expected at the (sub)nanobarn level, see Fig. 4. At $\sigma = 1$ nb, the implantation of about 20 ¹⁰⁸Xe ions can be achieved in 100 hr with 50 pnA beam intensity and a 300 μ g/cm² ⁵⁴Fe target. The targets rotating with the speed corresponding to a linear velocity for the irradiated spot of about 0.3 m/s can withstand this high beam intensity, see, e.g., Ref. [32]. The predicted half-lives of ¹⁰⁸Xe and ¹⁰⁴Te are of the order of 50 μ s and 10 ns, respectively [14,15]. Using digital pulse processing and recording decay signal waveforms, one should be able to identify the pileup of two α signals at the sum energy around 10 MeV [15].

V. SUMMARY

In summary, the previous attempts to directly produce ¹⁰⁰Sn nuclei in fragmentation or in fusion-evaporation reactions were briefly reviewed. An alternative method to reach ¹⁰⁰Sn via the α decay chain ¹⁰⁸Xe-¹⁰⁴Te-¹⁰⁰Sn at the recoil mass separator was considered. The yields of the neighboring nuclei, ¹¹⁰Xe, 110 I, 109 Xe, 109 II, 109 Te, 108 I, and 108 Te were measured using the RMS technique. The experimental yields were converted into cross section values and compared to the predictions of the statistical model code HIVAP. Better agreement with experimental data was achieved after updating the mass table used in the calculations. The experimental results indicate that it is possible to produce the most proton-rich isobar through the *xn* evaporation channel by choosing the optimum beam energy maximizing the yields for less exotic isobars. A ⁵⁸Ni beam energy of \sim 240 MeV corresponding to the ¹¹²Xe excitation energy of 58 MeV is proposed for production of ¹⁰⁰Sn populated via the super-allowed α decay chain from the 4*n* evaporation product 108 Xe. Despite the short half-lives predicted for the 108 Xe and 104 Te α emitters, the detection of the sum α signal identifying the ¹⁰⁸Xe-¹⁰⁴Te-¹⁰⁰Sn decay chain is possible during an \sim 5 day experiment with a 50 pnA beam at the HRIBF recoil mass spectrometer.

ACKNOWLEDGMENTS

This work was supported in part by the US DOE under Grant Nos. DE-AC05-060R23100, DE-FG02-96ER40983, DE-AC05-000R22725, DE-FG02-96ER41006, and DE-FG05-88ER40407, the UNIRIB Consortium, the U.K. EPSRC, and the Foundation for Polish Science.

- [1] H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).
- [2] C. Mazzocchi et al., Phys. Rev. Lett. 98, 212501 (2007).
- [3] R. Schneider et al., Z. Phys. A 384, 241 (1994).
- [4] M. Lewitowicz et al., Phys. Lett. B332, 20 (1994).
- [5] K. Rykaczewski et al., Phys. Rev. C 52, R2310 (1995).
- [6] R. Grzywacz et al., Phys. Rev. C 55, 1126 (1997).
- [7] A. Stolz et al., Phys. Rev. C 65, 064603 (2002).
- [8] M. Chartier et al., Phys. Rev. Lett. 77, 2400 (1996).
- [9] M. Karny et al., Eur. Phys. J. A 25, s01, 135 (2005).

- [10] O. Kavatsyuk et al., Eur. Phys. J. A 31, 319 (2007).
- [11] C. J. Gross *et al.*, Nucl. Instrum. Methods Phys. Res. A **450**, 12 (2000).
- [12] R. D. Macfarlane and A. Siivola, Phys. Rev. Lett. 14, 114 (1965).
- [13] S. N. Liddick et al., Phys. Rev. Lett. 97, 082501 (2006).
- [14] C. Xu and Z. Ren, Phys. Rev. C 74, 037302 (2006).
- [15] P. Mohr, Eur. Phys. J. A **31**, 23 (2007).
- [16] D. Shapira *et al.*, Nucl. Instrum. Methods Phys. Res. A **454**, 409 (2000).

- [17] W. K. Warburton *et al.*, Nucl. Instrum. Methods Phys. Res. A 422, 41 (1999).
- [18] R. K. Grzywacz, Nucl. Instrum. Methods Phys. Res. B 204, 649 (2003).
- [19] R. K. Grzywacz *et al.*, Nucl. Instrum. Methods Phys. Res. B 261, 1103 (2007).
- [20] S. N. Liddick et al., Eur. Phys. J. Special Topics 150, 131 (2007).
- [21] W. Reisdorf et al., Z. Phys. A 300, 227 (1981).
- [22] W. Reisdorf and M. Schädel, Z. Phys. A 343, 47 (1992).
- [23] G. Audi and A. H. Wapstra, Nucl. Phys. A565, 1 (1993).
- [24] P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).

- [25] J. Töke and W. J. Swiatecki, Nucl. Phys. A372, 141 (1981).
- [26] S. Cohen, F. Plasil, and W. J. Swiatecki, Ann. Phys. (NY) 82, 557 (1974).
- [27] S. Agostinelli *et al.*, Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).
- [28] G. Audi et al., Nucl. Phys. A729, 337 (2003).
- [29] Z. Janas et al., Eur. Phys. J. A 23, 135 (2005).
- [30] M. Karny et al., Eur. Phys. J. A 27, 129 (2006).
- [31] O. Kavatsyuk et al., Eur. Phys. J. A 25, 211 (2005).
- [32] K. P. Rykaczewski, C. J. Gross, and R. K. Grzywacz, AIP Conf. Proc. 961, 12 (2007).