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Relativity and the low-energy nd Ay puzzle
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W. Glöckle
Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

W. N. Polyzou
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA

H. Kamada
Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

(Received 3 January 2008; published 27 March 2008)

We solve the Faddeev equation in an exactly Poincaré invariant formulation of the three-nucleon problem.
The dynamical input is a relativistic nucleon-nucleon (NN ) interaction that is exactly on-shell equivalent to
the high-precision CD Bonn NN interaction. S-matrix cluster properties dictate how the two-body dynamics is
embedded in the three-nucleon mass operator (rest Hamiltonian). We find that for neutron laboratory energies
above ≈20 MeV relativistic effects on Ay are negligible. For energies below ≈20 MeV dynamical effects lower
the nucleon analyzing power maximum slightly by ≈2% and Wigner rotations lower it further up to ≈10%,
thereby increasing disagreement between data and theory. This indicates that three-nucleon forces (3NF) must
provide an even larger increase of the Ay maximum than expected up to now.
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I. INTRODUCTION

High-precision nucleon-nucleon (NN ) interactions such
as AV18 [1], CDBonn [2], and Nijm I, II, and 93 [3]
accurately describe the NN data set up to about 350 MeV.
When these interactions are used to predict binding ener-
gies of three-nucleon (3N ) systems they underestimate the
experimental bindings of 3H and 3He by about 0.5–1 MeV
[4,5]. This missing binding energy can be cured by in-
troducing a three-nucleon force (3NF) into the nuclear
Hamiltonian [5].

The study of elastic nucleon-deuteron (Nd) scattering and
nucleon-induced deuteron breakup also revealed a number of
cases where the nonrelativistic description based on pairwise
interactions is insufficient to explain the data. Generally,
the studied discrepancies between a theory based on NN

interactions only and experiment become larger with increas-
ing energy of the 3N system. Adding a 3NF that includes
long-range 2π exchange to the pairwise interactions leads in
some cases to a better description of the data. The parameters
of such a 3NF must be separately adjusted to the experimental
binding of 3H and 3He [6–8] for each NN interaction. The
elastic Nd angular distribution in the region of its minimum
and at backward angles is the best studied example [6,8].
The clear discrepancy in these angular regions at energies
below ≈100 MeV nucleon laboratory energy between a theory
based on NN interactions only and the cross-section data
can be removed by adding modern 3NFs based on chiral
effective field theory [9] to the nuclear Hamiltonian. At
energies higher than ≈100 MeV current 3NFs [10,11] only
partially improve the description of cross-section data, and the

remaining discrepancies, which increase with energy, indicate
the possibility of relativistic effects [12–14]. The need for
a relativistic description of 3N scattering was also raised
when precise measurements of the total cross section for
neutron-deuteron (nd) scattering [15] were analyzed within
the framework of nonrelativistic Faddeev calculations [16].
The NN interactions alone were insufficient to describe the
data above ≈100 MeV.

In few-body models, off-shell effects, relativistic effects,
and three-body force contributions cannot be cleanly sepa-
rated. This is because different two-body interactions that give
the same two-body S matrix are related by a unitary scattering
equivalence [17]. To maintain this equivalence at the three-
body level requires additional three-body interactions [18] in
one of the Hamiltonians. Since relativistic two-body models
are fit to the same data as the corresponding nonrelativistic
models, there is a similar on-shell two-body scattering equiva-
lence. Although the relativistic and nonrelativistic three-body
predictions will be different one can in principle make up
the difference (in a chosen frame) with a suitable three-body
interaction. So, although it is possible to simulate “relativistic
effects” with a three-body interaction, a Poincaré invariant
treatment of the dynamics provides the most direct way to
model the consequences of imposing Poincaré invariance and
S-matrix cluster properties.

In this paper we investigate one particular representation
of the Poincaré invariant three-body problem. We compare
the predictions of relativistic and nonrelativistic three-body
calculations where the input two-body interactions give the
same two-body S-matrix, have the same internal two-body
wave functions, and have a kinematic three-dimensional
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Euclidean symmetry. The relativistic and nonrelativistic
models differ in how these interactions appear in the three-
body problem. In addition, the internal and single-particle
variables are related by Galilean boosts in the nonrelativistic
case and Lorentz boosts in the relativistic case. In the
nonrelativistic case the two-body interactions for each pair
are added to the center-of-mass kinetic energy operator. In
the relativistic case, the nonlinear relation between the two-
and three-body mass operators must be respected to obtain a
scattering matrix that clusters into a product of the identity and
the input two-body S matrix [19]. This nonlinear dependence
of the three-body invariant mass operator on the two-body
interaction has dynamical consequences for the three-body
system, which complicates the structure of the Faddeev
kernel.

In Ref. [20] we used a Poincaré invariant formulation of
the 3N scattering problem. A technique for constructing the
relativistic nucleon-nucleon interaction from a standard high-
precision interaction was given in Ref. [21]. We used the same
technique to construct the transition operators that appear in
the kernel of the relativistic Faddeev equation. Application to
a 3N bound state supported the relativistic effects previously
found in Ref. [22].

Realistic NN interactions are fit by properly transforming
experimental data to the center-of-momentum frame and
fitting S-matrix elements computed by using the nonrelativistic
Schrödinger equation to these data. Although the same data
could be precisely fit by using S-matrix elements computed
from a relativistic Schrödinger equation, this has not been
done [23] with the same precision used to construct realistic
interactions.

In Ref. [21], instead, an analytical scale transformation
of momenta was used to relate NN interactions in the
nonrelativistic and relativistic Schrödinger equations in such a
way that the two-body scattering matrix elements are identified
as Snr(Ec.m.) = Sr (Ec.m.) = Sexp(Ec.m.) as functions of the
center-of-momentum energy [24]. In this work we use an
alternative procedure [25] that generates a relativistic nucleon-
nucleon interaction with the property that the relativistic and
nonrelativistic two-body S matrices satisfy Sr (k2) = Snr(k2) =
Sexp(k2), where Sexp(k2) is the experimental two-body S

matrix, and k2 is the c.m. momentum of one of the particles.
When high-precision potentials are determined [26] by

properly Lorentz transforming scattering data from the lab-
oratory frame to the center-of-momentum frame the Lorentz
invariant scalar product ptarget · pbeam = mEb = 2k2 + m2 is
used to relate the laboratory beam energy Eb to the c.m.
momentum k2. The potential is determined by comparing
the transformed experimental scattering observables to the
scattering observables computed by using the nonrelativistic
Lippmann-Schwinger equation, identifying the k2 appearing
in the Lippmann-Schwinger equation with the k2 computed
from the invariant ptarget · pbeam. With this procedure the result-
ing interactions are constructed so that the S-matrix elements
in the relativistic and nonrelativistic cases are identified as
functions of k2 rather than c.m. energy. Though the difference
in the two approaches leads to a small mismatch in the
relativistic and nonrelativistic momentum, the interactions

generated by the analytic scale transformation provide a
useful first step to investigate the effects of the nonlinear
relation between the three-body mass operator and two-body
interactions.

In our initial studies [20,27,28] the interaction generated
by the analytic scale transformation was used to study the
changes in elastic nd scattering and breakup observables when
the nonrelativistic form of the kinetic energy is replaced by
the relativistic one and a proper treatment of the dynamics is
included. We found that the elastic scattering cross section is
only slightly influenced by relativity. Only at backward angles
and higher energies are the elastic cross sections increased by
relativity.

Because of the selectivity of the breakup reaction, however,
regions of phase space were found at higher energies of the
incoming nucleon where relativity leads to a characteristic
pattern by which it changes the nonrelativistic breakup cross
section. Namely, in this region of phase space fixing the angle
of the first detected nucleon and changing the angle of the
second nucleon provides variations of the nonrelativistic cross
section by relativity, increasing or decreasing it by a factor
up to ≈2. For spin observables the implemented relativistic
features lead only to small effects.

Recently, an interesting estimate of “relativistic correc-
tions” has been performed and its effect on low-energy
nd analyzing power Ay has been estimated by using the
plane-wave impulse approximation [29]. The estimate is based
on a perturbative realization of the Poincaré Lie algebra to
leading order in 1/c2 [30]. A large increase by ≈10% of the
Ay maximum at laboratory energy En = 3 MeV has been
found. The authors comment that their estimates are both
exploratory and incomplete. In addition to the absence of
final-state interaction, there are a number of other important
differences from an exact formulation of this problem. Such a
large effect, which would significantly reduce the discrepancy
between theory and data in the region of the Ay maximum,
calls for a relativistic study in an exactly Poincaré invariant
treatment of the three-nucleon dynamics.

Our previous study [20], performed without inclusion
of Wigner rotations, is too limited for spin observables.
Therefore, to make definite conclusions for Ay we perform
a complete dynamical calculation including the effects of
Wigner rotations. We focus on that issue and do not include
3NFs.

The paper is organized as follows. In Sec. II we discuss
the construction of our Poincaré invariant dynamical model.
This includes a discussion of how high-precision interactions
are used to construct the three-body mass operator (rest
Hamiltonian). In Sec. III we discuss spin observables in
Poincaré invariant quantum theory. In Sec. IV we discuss the
formulation of the Faddeev equation to construct scattering
observables for this three-nucleon mass operator. This includes
an exact treatment of the Faddeev kernel, which avoids the
approximations used in Refs. [20,27,28]. We also solve the
relativistic 3N Faddeev equation with and without Wigner
spin rotations and show and discuss results for the neutron
analyzing power Ay . Section V contains a summary and
conclusions.
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II. POINCARé INVARIANT DYNAMICS

In quantum theory the principle of special relativity requires
that the probabilities computed for equivalent experiments
done in different inertial coordinate systems be identical.
Since inertial coordinate systems are related by Poincaré
transformations, it follows [31] that equivalent states in
different inertial coordinate systems are related by a unitary
representation, U (�, a), of the Poincaré group. This emphasis
on the invariance of experimental measurements in different
inertial frames is different than the covariance requirements
that are historically motivated by the way symmetries are
realized in classical wave equations.

Since any representation of the Poincaré group can be
decomposed into a direct integral of irreducible representa-
tions, one way to construct Poincaré invariant dynamics is to
build it out of irreducible representations. The transformation
properties of irreducible representations are well known and
completely determined by group theoretical considerations.
The dynamics is contained in the spectrum of the physical
mass and spin operators, which determines the values and
multiplicities of the Casimir invariants that appear in this
decomposition.

Our construction begins with one-particle representations,
which are irreducible representations. The particle’s mass and
spin fix the eigenvalues of the two Casimir invariants of the
Poincaré group. For computations it is necessary to choose
a basis for the irreducible representation space. This is done
by choosing a maximal set of commuting Hermitian functions
of the infinitesimal Poincaré generators. In addition to the
mass and spin, it is possible to find four additional mutually
commuting noninvariant functions of the generators. There
is a second set of four operators that are conjugate to the
noninvariant commuting observables. These operators change
the eigenvalues and determine the spectrum of the commuting
observables. All ten generators can be expressed as functions
of these eight noninvariant operators and the two Casimir
operators. The irreducible representation space,H, is the space
of square integrable functions of the eigenvalues of the four
commuting operators [32].

Our choice of basis for irreducible representation spaces
is the simultaneous eigenstates of the linear momentum p
and the three-component of the canonical spin, jcz, which
is the observable corresponding to the spin measured in the
particle’s rest frame if the particle is transformed to its rest
frame with a rotationless Lorentz transformation. In this basis
the irreducible unitary representation of the Poincaré group
is [32]

U (�, a)|(j,m)p, µ〉 =
∑
µ′

|(j,m)p′, µ′〉eip′ ·a
√

ω(p′)
ω(p)

×D
j

µ′µ[B−1(p′/m)�B(p/m)], (1)

where p′ = �p,ω(p) =
√

p · p + m2, and B(p/m) is the
rotationless Lorentz transformation that takes a particle of
mass m at rest to momentum p. The quantity Rw(�,p) :=
B−1(p′/m)�B(p/m) is the standard rotationless-boost
Wigner rotation. The representation given in Eq. (1) is unitary
for states with a δ(p − p′) normalization in the momentum. The

important observation is that all mass m > 0 spin j irreducible
representations of the Poincaré group in the {p, jcz} basis have
this form.

The two- or three-nucleon Hilbert space is the tensor prod-
uct of two or three single-nucleon irreducible representation
spaces: H ⊗ H or H ⊗ H ⊗ H. On each of these spaces

U0(�, a) = U (�, a) ⊗ U (�, a),
(2)

U0(�, a) = U (�, a) ⊗ U (�, a) ⊗ U (�, a)

define kinematic representations of the Poincaré group. These
representations are reducible and do not contain any dy-
namics. We build dynamical irreducible representations by
adding suitable interactions to the mass Casimir operator
of noninteracting irreducible representations. The first step
needed to introduce interactions is then to decompose these
noninteracting tensor product representations into a direct
integral of irreducible representations. This is accomplished
with Poincaré group Clebsch-Gordan coefficients in our
chosen {p, jcz} basis. The Poincaré group Clebsch-Gordan
coefficients are the expansion coefficients of a linear com-
bination of tensor product states that transform irreducibly.
The desired noninteracting irreducible states are computed
by (1) constructing rest eigenstates of the two-body system,
(2) decomposing them into irreducible representations under
SU(2) rotations, and (3) boosting the result to an arbitrary
frame. The resulting Clebsch-Gordan coefficients in this basis
are [19,32,33]

〈p1, µ1, p2, µ2|(j, k)p, µ; l, s〉
=

∑
µlµsµ

′
1µ

′
2

δ(p − p1 − p2)
δ[k − k(p1, p2)]

k2
N−1(p1, p2)

× (l, µl, s, µs |j, µ)(j1, µ
′
1, j2, µ

′
2|s, µs)

×Ylµl
[k̂(p1, p2)]Dj1

µ′
1µ1

[Rw(B(p/m120), k1)]

×D
j2

µ′
2µ2

[Rw(B(p/m120), k2)] (3)

=
∫

dk̂
∑

µlµsµ
′
1µ

′
2

δ(p1 − p1(p,k))δ(p2 − p2(p,k))N(p1,p2)

× (l, µl, s, µs |j, µ)(j1, µ
′
1, j2, µ

′
2|s, µs)Ylµl

(k̂)

×D
j1

µ′
1µ1

[Rw(B(p/m120), k1)]

×D
j2

µ′
2µ2

[Rw(B(p/m120), k2)]. (4)

In these expressions

pµ = p
µ

1 + p
µ

2 ,

m2
120 = −p2, (5)

kµ = B−1(p/m120)µν
1
2 (p1 − p2)ν,

N−2(p1, p2) = ω(k)ω(k)[ω(p1) + ω(p2)]

ω(p1)ω(p2)[ω(k) + ω(k)]
, (6)

and the two-body invariant mass

m120 := 2
√

k2 + m2 = 2ω(k) (7)

is replaced by the continuous variable k :=
√

k2. The quantum
numbers l and s are kinematically invariant quantities that
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distinguish multiple copies of representations with the same
mass (k) and spin. For a two-nucleon system they have the
same spectrum as the orbital and spin angular momentum
operators in a partial-wave representation of the nonrelativistic
basis.

An irreducible representation is also obtained by changing
the order of the spin couplings in Eqs. (3) and (4), where the
orbital angular momentum is first coupled to one of the spins,
j2 + l = I , and then the result is coupled to the second spin.
j1 + I = j . This representation is constructed by making the
replacements∑

s,µs

(j1, µ
′
1, j2, µ

′
2|s, µs)(l, µl, s, µs |j, µ)

→
∑
I,µI

(l, µ′
l , j2, µ2|I, µI )(I, µI , j1, µ

′
1|j, µ) (8)

in Eq. (3) or (4). In this representation the degeneracy
parameters (l, s) are replaced by (l, I ). When we construct
three-body irreducible representations by successive pairwise
coupling we use the coupling from Eq. (3) in the first
Clebsch-Gordan coefficient and the coupling from Eq. (8)
in the second Clebsch-Gordan coefficient. This allows us to
identify the quantum numbers of the relativistic irreducible
basis with the quantum numbers that we used in previous
nonrelativistic calculations [34,35].

Three-particle irreducible representations for systems of
noninteracting particles can be constructed by successive
pairwise coupling of irreducible representations:

〈p1, µ1, p2, µ2, p3, µ3|(J, q)P, µ; λ, I, j23, k23, l23, s23〉

=
∫

dp23

j23∑
µ23=−j23

〈p2, µ2, p3, µ3|(j23, k23)p23, µ23; l23, s23〉

× 〈p1, µ1, p23, µ23|(J, q)P, µ; λ, I 〉. (9)

For three-nucleon scattering or bound-state problems it is
sufficient and convenient to work in the three-body center-
of-momentum frame. This simplifies the coefficients; the
Wigner rotations in the second Clebsch-Gordan coefficient
in Eq. (9) become the identity and the normalization factor
N (p23, p1) → 1. Both of these factors are nontrivial in the
first coefficient. The form of these coefficients for the case
that particle 1 is a spectator (for details see Ref. [20]) using a
shorthand notation is

〈p1, µ
′
1, p2, µ

′
2, p3, µ

′
3|(J, q)P = 0, µ; λ, I, j23, k23, l23, s23〉

= δ(0 − q1 − q2 − q3)
1

N (q2, q3)

δ(q1 − q)

q2

δ[k(q2, q3) − k]

k2

×
∑

µ2µ3µs

∑
µlµλµI

(
1

2
, µ2,

1

2
, µ3

∣∣∣∣ s, µs

)
(l, µl, s, µs, |j, µj )

×
(

λ,µλ,
1

2
, µ′

1

∣∣∣∣ I, µI

)
(j, µj , I, µI |J,µ)Yλµλ

(q̂1)

×Ylµl
[k̂(q2, q3)]D

1
2

µ′
2µ2

[Rw(B(−q1/m023), k2(q2, q3))]

×D
1
2

µ′
3µ3

[Rw(B(−q1/m023), k3(q2, q3))]. (10)

where

[qi, ω(qi)] = B−1(P/M)pi, i ∈ {1, 2, 3},
(11)

[ki , ω(ki)] = B−1(−qk/mij )pi,∑
i

qi = 0, M =
3∑

i=1

√
m2 + q2

i . (12)

The important property of the states

|(j, k)p, µ; l, s〉 (13)

and

|(J, q)P, µ; λ, I, j23, k23, l23, s23〉 (14)

is that they transform irreducibly. The mass and spin are given
by

m120 = 2
√

m2 + k2, j, (15)

M =
√

4m2 + 4k2 + q2 +
√

m2 + q2, J, (16)

respectively.
To use these representations to construct dynamical repre-

sentations an interaction is added to the two- or three-body
invariant mass operator of the form

〈(j, k)p, µ · · · |v| · · · p′, µ′(j ′, k′)〉
= δµµ′δjj ′δ(p − p′)〈k, · · · ‖vj‖ · · ·′ , k′〉 (17)

for N = 2 or

〈(J, q)P, µ · · · |V | · · · P′, µ′(J ′, q ′)〉
= δµµ′δJJ ′δ(P − P′)〈k, q, · · · ‖V J ‖ · · ·′ , k′, q ′〉 (18)

for N = 3. Diagonalizing m12 = m120 + v or M = M0 + V

in the noninteracting irreducible basis gives simultaneous
eigenstates of m12, p, j 2, jz for N = 2 and of M, P, J 2, Jz for
N = 3. In both the two- and three-body case these eigenstates,
|(j12, λm12 )p12, µ12, · · ·〉 and |(J, λM )P, µ, · · ·〉, where λm12

and λM are the eigenvalues of m12 and M , are complete on the
two- and three-body Hilbert spaces, respectively.

The dynamical representation of the Poincaré group is
defined by requiring that these eigenstates transform like
Eq. (1) with the mass being replaced by the mass eigenvalues
λM or λm12 . This representation is unitary and defines the
dynamics of the system. With our choice of irreducible
basis, {p, jcz}, the resulting irreducible representations of the
Poincaré group have a mass-independent representation of
the three-dimensional Euclidean subgroup, which Dirac [36]
called an “instant-form dynamics.”

For the three-nucleon case there remains the problem of
how to construct realistic NN interactions. For two-body
interactions the relation

H 2
12 − p2 = m2

12 = 4(k2 + m2) + 4mvNN

= 4m(k2/m + vNN︸ ︷︷ ︸
hnr=Hnr− p2

4m

+m) (19)

implies that the square of the two-body mass operator has a
simple relation to the nonrelativistic rest Hamiltonian with a
“realistic” NN interaction [25], provided one identifies the
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spectrally equivalent relative momenta, k2. In the relativistic
case, k := B−1(p/m120) 1

2 (p1 − p2), one has

k ≡ k(p1, p2) = 1

2

×
(

p1 − p2 − p
ω(p2) − ω(p1)

ω(p2) + ω(p1) +
√

[ω(p2) + ω(p1)]2 − p2

)
,

(20)

whereas in the nonrelativistic case, k = B−1
g (p/2m) 1

2 (p1 −
p2), and

k = 1

2

[(
p1 − p

2m
m
)

−
(

p2 − p
2m

m
)]

= 1

2
(p1 − p2), (21)

where B(p/m120) is a rotationless Lorentz boost and Bg(p/2m)
is the corresponding Galilean boost.

The Kato-Birman invariance principle [37–39] implies that
the Møller wave operators satisfy

�±(H,H0): = s − lim
t→±∞ eiHte−iH0t

= s − lim
t→±∞ eif (H )t e−if (H0)t

= �±(f (H ), f (H0)), (22)

where f (x) is any piecewise differentiable function of bounded
variation with positive derivative [39]. The functions f (x) =
x2 and f (x) = x1/2 satisfy the conditions of the Kato-Birman
theorem. Using Eq. (22) along with the kinematic Euclidean
invariance of the Hamiltonians Hr and Hnr gives the following
relation between the two-body scattering wave operators:

�±(Hr,Hr0) = �±
(
H 2

r , H 2
r0

) = �±
(
M2

r ,M2
r0

)
= �±(Mr,Mr0). (23)

However, the identification from Eq. (19) along with the
reparametrization t → t ′ = 4mt gives

�±
(
M2

r ,M2
r0

) = s − lim
t→±∞ eihnr4mte−hnr04mt

= s − lim
t ′→±∞

eihnrt
′
e−hnr0t

′ = �±nr(hnr, hnr0).

(24)

Writing both wave operators as direct integrals over k2 =
mh0nr = (M2

0 − 4m2)/4 leads to the identifications

�±(Hnr,H0nr) = �±(hnr, h0nr) =
∫

⊕
�̂±(k2)dk2

= �±(Hr,H0r ) = �±
(
M2

nr,M
2
0nr

)
(25)

and

S(k2) = �
†
r+(k2)�r−(k2) = �

†
nr+(k2)�nr−(k2). (26)

The identification of the relativistic and nonrelativistic wave
operators as functions of k2 ensures that the relativistic two-
body model is fit to the same two-body S-matrix (experimental
data) as the nonrelativistic model provided the interactions are
related by Eq. (19). The identification of the wave operators
also implies the identity of the scattering wave functions as a
function of k. The identity of the bound-state wave functions
is also due to Eq. (19).

In our calculations we use the interaction v defined by v :=
m12 − m120, which we construct [40] from the NN interaction
in Eq. (19) by iterating

{m120, v} = 4mvNN − v2 (27)

in the irreducible plane-wave basis. Because m12 and m2
12 have

the same eigenvectors, the k dependence of the wave functions
constructed from m12 are also identical to the corresponding
nonrelativistic wave functions.

Equation (27) in the irreducible plane-wave basis has the
form

〈k, l, s|vj |k′, l′, s ′〉

= 2m
〈k, l, s|vj

NN |k′, l′, s ′〉
ω(k) + ω(k′)

−
∑
l′′s ′′

∫
k′′2dk′′

× 〈k, l, s|vj |k′′, l′′, s ′′〉〈k′′, l′′, s ′′|vj |k′, l′, s ′〉
2ω(k) + 2ω(k′)

. (28)

The iteration converges quickly for realistic interactions
[40]. Although a mathematical proof of convergence of the
iteration of Eq. (28) is lacking, the results of the iterations
are easily tested because the resulting m120 + v must have
the same eigenfunctions as the nonrelativistic two-body
Hamiltonian.

We applied this approach using the CD Bonn potential
as the nonrelativistic interaction vNN (k, k′). In our previous
studies [20,27,28] we used the momentum transformation of
Ref. [24] and in addition restricted our calculation to leading
order terms in the p/ω and v/ω expansions only:

V (k, k′; q) = v(k, k′)
(

1 − q2

8ω(k)ω(k′)

)
. (29)

We checked that in most cases this simple approximation leads
to practically the same results as the exact approach applied in
the present study.

Once the two-body mass operator is constructed, the three-
body mass operator for the interacting (ij ) pair is the well-
defined nonlinear function of the two-body mass:

M(ij )(k) =
√

(mij0 + vij )2 + q2
k +

√
m2 + q2

k, (30)

where vij is embedded in the three-body Hilbert space so
it commutes with qk . If this is interpreted as the rest energy
operator, the interacting pair and spectator energies are additive
in the rest frame. This implies that the S-matrix clusters
properly in the rest frame while the invariance of S-matrix
in all frames ensures that this property extends to all inertial
coordinate systems.

Pairwise interactions in the three-body system are defined
by

V(ij )(k) = M(ij )(k) − M0

=
√

(mij0 + vij )2 + q2 −
√

m2
ij0 + q2. (31)

For any pair of particles these interactions commute with
kinematic momentum and spin and are independent of the
momentum and magnetic quantum numbers. This ensures that
the sum of the interactions has the general form of Eq. (18).

034004-5



H. WITAŁA et al. PHYSICAL REVIEW C 77, 034004 (2008)

A generalization of the method used in Eqs. (27) and (28)
can be used to construct V(ij )(k) by iterating{√

m2
ij0 + q2, V(ij )(k)

}
= v2 + {mij0, v} − V 2

(ij )(k). (32)

Specifically,

〈k, · · · |V(ij )(k)(q2)|k′, · · ·〉
= 1√

m2
ij0(k) + q2 +

√
m2

ij0(k′) + q2

×
[
〈k, · · · |v2|k′, · · ·〉 + 2(ω(k) + ω(k′))〈k|v|k′〉

−
∑
l′′s ′′

∫
〈k, · · · |V(ij )(k)(q2)|k′′, · · ·〉k′′2dk′′〈k′′, · · · |

×V(ij )(k)(q2)|k′, · · ·〉
]

. (33)

This iteration also converges and is used to construct interac-
tions Vij for each pair of particles.

The three-body mass (rest energy) operator is

M = M0 + V12 + V23 + V31, (34)

where M0 is the three-body kinematic invariant mass given by

M0 =
√

m2
120 + q2 +

√
m2 + q2. (35)

Our relativistic Faddeev equation is based on this mass
operator [Eq. (34)] with two-body interactions constructed
from the CD Bonn interaction using Eqs. (27), (28), (32),
and (33).

Finally, just as in the nonrelativistic case, there is a natural
order of coupling of the irreducible representations for com-
puting each pairwise interaction. The change of basis relating
different orders of coupling is needed for the implementation
of the Faddeev equation as an integral equation. The required
basis change only changes the invariant degeneracy quantum
numbers associated with each order of coupling:

〈(jm)P, µ(ab)(c)|(j ′m′)P′, µ′(de)(f )〉
= δ(P − P′)δjj ′δµµ′Rjm[(ab)(c); (de)(f )]. (36)

The invariants Rjm[(ab)(c); (de)(f )] are Racah coefficients
for the Poincaré group. They are constructed by using
four Poincaré Clebsch-Gordan coefficients. We compute this
quantity using the Balian-Brezin method [41], where the
variables associated with one order of coupling are expressed
in terms of the variables associated with another order of
coupling. The invariant coefficient, Rjm[(ab)(c); (de)(f )], can
be computed by evaluating the expression at zero momentum,
averaging over the magnetic quantum numbers, and evaluating
the resulting expression at any kinematically allowed set of
momenta [42,43]. These Racah coefficients contain Wigner
rotations and Jacobians that do not appear in the nonrelativistic
permutation operators. Explicit expressions are given in
Appendix B.

III. SPIN OBSERVABLES

In a Poincaré invariant quantum theory or relativistic
quantum field theory the spin of a particle can be defined
as the angular momentum that is measured in the particle’s
rest frame. For any nonzero momentum p, different Lorentz
transformations can be used to transform a particle at rest
to a frame where the particle has momentum p. Because the
commutator of two rotationless boost generators,

[Kj,Kk] = −iεjklJl, (37)

is a rotation generator, the spin of the particle with momentum
p depends on the choice of Lorentz transformation that
transforms the particle’s momentum from zero to p. To have
an unambiguous definition of the spin it is necessary to choose
a standard set of p-dependent Lorentz boosts, B(p/m)µν , that
transform a particle of mass m at rest to momentum p. Then
the spin of the particle can be unambiguously defined as the
value of the spin measured in the particles rest frame if it is
transformed to the rest frame by using the standard Lorentz
transformation. With this definition, if two spins are equal in
one frame they are equal in all frames.

The choice of standard boost is not unique because if
R(p/m) is any p-dependent rotation and

B ′(p/m) := B(p/m)R(p/m) (38)

then both B−1(p/m)µν and B−1′(p/m)µν both transform p to
zero.

Each choice of boost leads to a different spin operator,
corresponding to a different prescription for measuring the
spin in an arbitrary frame. The rotation

R(p/m) = B−1(p/m)B ′(p/m) (39)

that relates different boosts is called a generalized Melosh
rotation [32,44].

The spin operator jx associated with a boost Bx(p/m) is
defined as the following function of the Poincaré generators:

(0, jx) = B−1
x (p/m)µνW

µ/m, (40)

where Wµ = 1
2εµαβγ pαMβγ is the Pauli-Lubanski vector, Mβγ

is the relativistic angular momentum tensor, and Bx(p/m) is
the boost matrix with the parameters p/m and m replaced by
the mass and momentum operators.

Although this quantity has the appearance of a four-vector
it is not because of the operator dependence of the arguments
of the boost. Instead, under Lorentz transformations the spin
transforms like

U †(�, 0)jxU (�, 0) = Rwx(�,p)jx, (41)

where

Rwx(�,p) := B−1
x (�p/m)�Bx(p/m) (42)

is the Wigner rotation associated with the boost Bx(p/m). It is
a consequence of the Poincaré commutation relations that the
components of any of these spin observables satisfy the SU(2)
commutation relations

[jxl, jxm]− = iεlmnjxn (43)
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for any x. The operator j2 is independent of the choice of
boost because the generalized Melosh rotations leave the scalar
product of two vectors unchanged. The spin defined with the
textbook rotationless or canonical boost is called the canonical
spin.

It is natural to ask how these different types of spins are
measured in the laboratory. Spins of isolated elementary or
composite particles are measured in the laboratory through
their response to classical electromagnetic fields. In the one-
photon exchange approximation the photon couples to matrix
elements of a covariant current operator. Imposing Poincaré
covariance, current conservation, and discrete symmetries
allows one to express all current matrix elements in terms of an
independent set of matrix elements, which have a one-to-one
correspondence with invariant form factors. All conventional
form factors can be expressed in terms of Breit frame matrix
elements with canonical spin and a quantization axis parallel
to the Breit frame momentum transfer.

In the SL(2, C) representation canonical boosts are repre-
sented by positive Hermitian matrices. They have the general
form

B(p/m) = exp(σ · ρ/2), (44)

where ρ is the rapidity of the Lorentz transformation and σ are
the Pauli matrices. In this paper all of our spins are canonical
spins. The SO(1, 3) representation of canonical boosts are the
standard rotationless boosts.

Given a definition of the form factors in terms of inde-
pendent current matrix elements in a given basis, it is also
possible to express them in terms of current matrix elements
in any other standard frame by using any other basis [45]. For
example, the expression in terms of Breit frame canonical spin
matrix elements can be replaced by a different independent set
of laboratory frame helicity spin matrix elements. In quantum
field theory the choice of boost is built into conventions used
to define the Dirac spinors. The relation of the invariant form
factors to current matrix elements with different choices of spin
determines the relationship between different spin observables
and experiment.

The spin degrees of freedom of the asymptotic incoming or
outgoing particles are most conveniently expressed in terms
of traces of density matrices, which is a reflection of the
fact that realistic initial and/or final states are generally not
pure states. Scattering spin observables in cross sections are
formally defined by [34]

〈O〉 = Tr(Sf T SiT
†)

Tr(T T †)
, (45)

where T is the invariant scattering amplitude for the reaction
under consideration. The connection between the invariant
scattering amplitude defined in the particle data book [46]
and the transition amplitudes constructed by solving our
formulation of the relativistic Faddeev equations is given in
Ref. [47].

The quantities S have the form

S =
∑

saSa, (46)

where the index runs over all Ni or Nf initial or final sets
of magnetic quantum numbers, Sa are a basis for Ni × Ni or
Nf × Nf matrices that are orthonormal with respect to the
trace norm, and sa are constant coefficients [34].

If the initial and final asymptotic states are represented in a
canonical spin basis, then the magnetic quantum numbers that
appear in the invariant amplitudes T transform with Wigner
rotations under Lorentz transformations. The result is that the
spin observable 〈O〉 will not be invariant unless the matrices
Sa or coefficients sa are defined to transform in a manner that
leaves the observable invariant.

Any spin observable can be made Lorentz invariant, by
defining the invariant observable as its value in a given frame
if it is transformed to the frame with a specific Lorentz boost.
This can be used to get an invariant definition of the vector or
tensor polarizations.

In this paper invariant spin observables are defined to be the
values of the observable in the laboratory frame (rest frame of
the target). To evaluate the corresponding spin observable it is
only necessary to evaluate the expression

〈O〉 = Tr(Sf T SiT
†)

Tr(T T †)
(47)

for the values of the invariant amplitudes with laboratory
kinematics.

This observable is equal its value evaluated in other frames
by using the formula

〈O〉 = T r(Sf D†MD′SiD
′†M†D)

Tr(MM†)
, (48)

where the invariant amplitudes are evaluated in the other frame
and D and D′ are products of Wigner D functions of the
Wigner rotations associated with the boost from the laboratory
frame to the other frame.

Our specific interest in this paper is the observable Ay with
polarized incoming nucleon. The convention used to define
Ay is the Madison convention, where the laboratory frame
scattering plane is in the xz plane. The observable Ay is
defined as

〈Ay〉 = Tr[T (σy × Id )T †]

Tr(T T †)
. (49)

Because the Wigner rotation for canonical boost along the
direction of a particle’s momentum is the identity, σy is
unchanged and so Ay can also be evaluated in the c.m. frame
without making any compensating Wigner rotations.

IV. FADDEEV EQUATION

The nucleon-deuteron scattering with neutron and protons
interacting through a NN interaction vNN alone is described
in terms of a breakup operator T satisfying the Faddeev-type
integral equation [34,48]

T |φ〉 = tP |φ〉 + tPG0T |φ〉. (50)

The two-nucleon (2N ) t matrix results from solving the
Lippmann-Schwinger equation with the interaction vNN . The
permutation operator P = P12P23 + P13P23 is given in terms
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of the transposition Pij that interchanges nucleons i and j .
The incoming state |φ〉 = |q0〉|φd〉 describes the free nucleon-
deuteron motion with relative momentum q0 and the deuteron
state vector |φd〉. Finally, G0 is the resolvent of the three-body
center-of-mass kinetic energy.

The elastic nd scattering transition operator U is given in
terms of T by [34,48]

U = PG−1
0 + PT . (51)

This is our standard nonrelativistic formulation, which is
equivalent to the nonrelativistic 3N Schrödinger equation
plus boundary conditions. The formal structure of these
equations in the relativistic case remains the same but the
ingredients change. As explained in Ref. [22] the relativistic
3N rest Hamiltonian (mass operator) has the same form as
the nonrelativistic one; only the momentum dependence of the
kinetic energy changes and the relation of the pair interactions
in the three-body problem to the pair interactions in the
two-body problem changes. Consequently, all the formal steps
leading to Eqs. (50) and (51) remain the same.

The free relativistic invariant mass of three identical
nucleons in their c.m. system has the form given by Eq. (35)
whereas the free two-body mass operator has the form of
Eq. (7).

As introduced in Ref. [19] the pair forces in the relativistic
3N 2 + 1 mass operator are given by Eq. (31), where V =
V (q2) reduces to the interaction v for q = 0.

The transition matrix that appears in the kernel of the
Faddeev equation (50) is obtained by solving the Lippmann-
Schwinger equation, which must be solved as a function
of q2:

t(k, k′; q2) = V (k, k′; q2) +
∫

d3k′′

× V (k, k′′; q2)t(k′′, k′; q2)√
(2ω(k′)2 + q2 −

√
(2ω(k′′ )2 + q2 + iε

.

(52)

The input two-body interactions are computed by solving
Eqs. (32) and (33).

The new relativistic ingredients in Eqs. (50) and (51) will
therefore be the t operator [Eq. (52)] (expressed in partial
waves) and the resolvent of the 3N invariant mass,

G0 = 1

E + iε − M0
, (53)

where M0 is given by Eq. (35), E, the total 3N c.m. energy
expressed in terms of the initial neutron momentum q0 relative
to the deuteron, is

E =
√

(Md )2 + q2
0 +

√
m2 + q2

0, (54)

and Md is the deuteron rest mass.
Currently, Eq. (50) in its nonrelativistic form is numerically

solved for any NN interaction by using a momentum space
partial-wave decomposition. Details are presented in Ref. [48].
This turns Eq. (50) into a coupled set of two-dimensional
integral equations. As shown in Ref. [20], in the relativistic
case we can keep the same formal structure, though the

permutation operators are replaced by the corresponding
Racah coefficients [Eq. (36)] for the Poincaré group. These
coefficients include both Jacobians and Wigner rotations that
do not appear in the nonrelativistic permutation operators
[34,35]. These coefficients are computed in Appendix B
by using methods that we have applied to compute the
nonrelativistic permutation operators.

In the nonrelativistic case the partial-wave projected mo-
mentum space basis is∣∣pq(ls)j

(
λ 1

2

)
IJ

(
t 1

2

)
T
〉
, (55)

where p and q are the magnitudes of standard Jacobi momenta
(see Refs. [34,35]), obtained by transforming single-particle
momenta to the rest frame of a two- or three-body system using
Galilean boosts, the (ls)j two-body quantum numbers have
obvious meaning, (λ1/2)I refer to the third nucleon (described
by the momentum q), J is the total 3N angular momentum,
and the rest are isospin quantum numbers. In the relativistic
case this basis is replaced by the irreducible plane-wave states
defined in Eq. (10).

The basis states [Eq. (10)] are used for the evaluation of
the partial-wave representation of the permutation operator
P with Wigner rotations of spin states for nucleons 2 and
3 included. In the relativistic case we adopt the following
shorthand notation for the irreducible three-body states, which
also includes isospin quantum numbers coupled in the same
order:

|k, q, α〉: = ∣∣kq(ls)j
(
λ, 1

2

)
IJ

(
t 1

2

)
T
〉

= ∣∣(J, q)P, µ; λ, I, j23, k23, l23, s23
〉∣∣(t 1

2

)
T
〉
. (56)

Equipped with that, projecting Eq. (50) onto the basis states
|k, q, α〉 one encounters as in the nonrelativistic notation [35]

1〈kqα|P |k′q ′α′〉1 = 1〈kqα|k′q ′α′〉2 + 1〈kqα|k′q ′α′〉3

= 21〈kqα|k′q ′α′〉2. (57)

This is evaluated by inserting the complete basis of states
|p1, µ1, p2, µ2, p3, µ3〉 and using Eq. (10). It can be expressed
in a form that closely resembles the one appearing in the
nonrelativistic regime [34,35]:

1〈kqα|P |k′q ′α′〉1 =
∫ 1

−1
dx

δ(k − π1)

k2

δ(k′ − π2)

k′2

× 1

N1(q,q ′,x)

1

N2(q,q ′,x)
GBB

αα′(q,q ′,x),

(58)

where all ingredients are given in Appendix B.
Because of the short-range nature of the NN interaction it

can be considered negligible beyond a certain value jmax of
the total angular momentum in the two-nucleon subsystem.
Generally, with increasing energy jmax will also increase. For
j > jmax we set the t matrix to zero, which yields a finite
number of coupled channels for each total angular momentum
J and total parity π = (−)l+λ of the 3N system. To achieve
converged results at our energies we used all partial-wave
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FIG. 1. (Color online) The nucleon analyzing power Ay for nd

elastic scattering at various laboratory energies Elab
n of the incoming

neutron. The dotted line is the result of the nonrelativistic Faddeev
calculation with the CD Bonn potential. The relativistic predictions
without and with Wigner spin rotations are shown by the dashed and
solid lines, respectively. The nd data at 5 and 8.5 MeV are from
Ref. [49] and at 13 MeV are from Ref. [50].

states with total angular momenta of the 2N subsystem up to
jmax = 5 and took into account all total angular momenta of
the 3N system up to J = 25/2. This leads to a system of up
to 143 coupled integral equations in two continuous variables
for a given J and parity.

V. RESULTS AND DISCUSSION

The subject of the present study is to investigate the
influence of relativity on the nd elastic scattering nucleon
analyzing power Ay at low energies. We define the invariant
observable Ay to be the value measured in the laboratory frame
(target at rest).

To this aim we solved Faddeev equations at a number of
the incoming neutron laboratory energies En = 5, 8.5, and
13 MeV. To check the energy dependence of the effect we
added two additional energies En = 35 and 65 MeV. To see
the importance of specific relativistic features we solved the
equation in the relativistic case with and without Wigner
rotations. This allowed us to see which effects, dynamical
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FIG. 2. (Color online) The nucleon analyzing power Ay for nd

elastic scattering at Elab
n = 35 and 65 MeV. The dotted line is the

result of the nonrelativistic Faddeev calculation with the CD Bonn
potential. The relativistic predictions without and with Wigner spin
rotations are shown by the dashed and solid lines, respectively. All
theoretical predictions are practically overlapping. The pd data at
35 MeV are from Ref. [51] and at 65 MeV are from Ref. [52].

corrections (induced by the momentum dependence of the
two-body force together with kinematical relativistic effects
coming from the use of the Poincaré Jacobi variables) or
Wigner rotations, dominate for Ay .

Figures 1 and 2 illustrate the results. When only dyna-
mical effects are taken into account (i.e., Wigner rota-
tions are neglected) then at low energies of the incoming
neutron the relativistic and nonrelativistic predictions are
practically the same with the exception of the angular region
close to the maximum of Ay , where the relativistic prediction
is ≈2% below the nonrelativistic one (see Fig. 1). This small
effect disappears at higher energies (see Fig. 2). Including
Wigner rotations significantly lowers the values of Ay in a
large region of angles around the maximum. The changes in
the maximum are up to ≈10%. Again, when the energy of
the incoming neutron increases nonrelativistic and relativistic
predictions are practically identical.

The large changes of Ay occur in a region of energies where
this observable is extremely sensitive to changes in 3P0,

3 P1,
and 3P2 − 3F2 NN force components [53]. At energies where
this sensitivity dies out the relativistic effects for Ay also
become negligible. This allows us to conclude that the large
effects seen for Ay at low energies are due to amplification
of changes of the 3Pj contributions from relativity by a large
sensitivity of Ay to P waves.

In a recent study [29] the changes of Ay from relativity by
10% at Elab

n = 3 MeV have been reported. Very probably the
opposite sign of the effect found in that study can be attributed
to the impulse approximation used when calculating Ay .
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VI. SUMMARY AND OUTLOOK

We numerically solved the 3N Faddeev equation for nd

scattering including relativistic kinematics, dynamical rela-
tivistic effects, and Wigner rotations at the neutron laboratory
energies Elab

n = 5, 8.5, 13, 35, and 65 MeV. As dynamical
input we took the nonrelativistic NN potential CD Bonn
and generated in the 2N c.m. system an exactly on-shell
equivalent relativistic interaction v, by solving numerically
the nonlinear quadratic equation relating matrix elements
of the nonrelativistic and relativistic potentials. We checked
that the approximate procedure using an analytical scale
transformation of momenta applied in our previous studies
provides practically the same results as the present exact
approach. In addition a similar nonlinear equation [Eq. (32)]
was used to generate the momentum-dependent two-body
interaction embedded in the three-particle Hilbert space.

We found that at low energies the effects of Wigner rotations
are most important for the analyzing power. They lower the
maximum of Ay by up to ≈10%. The dynamical relativistic
effects are of minor importance for Ay and provide small
changes of Ay in a region close to its maximum. They lower
Ay by only ≈2%. The relativistic effects disappear at higher
energies.

Wigner rotations are negligible for the cross section
and all other spin observables in elastic Nd scattering
with the exception of four low-energy spin correlations
Cz,yz, Cx,xy, Cy,xx−yy , and Cy,yy and four low-energy spin

transfer coefficients: those from deuteron to deuteron, K
y ′z′
z

and K
x ′y ′
x , and those from deuteron to neutron, Kz′

yz and Kx ′
xy .

Very probably this can be traced back as in the case of Ay to
their sensitivity to 3P waves.

These results shed new light on the low-energy analyzing
power puzzle. It is known that the existing discrepancies
between Ay data and theoretical predictions based only on NN

potentials cannot be removed when the current three-nucleon
force, mostly of 2π -exchange character [10,11], is included
in the nuclear Hamiltonian. This indicated that additional 3N

forces should be added to the 2π -exchange-type forces. Such
forces provided by χPT in NNLO and NNNLO orders are
expected to provide the solution for the Ay puzzle [9,54]. It
seems that in view of the present result they must increase
the maximum of Ay more than expected up to now. However,
Ay is a very sensitive observable and our approach, using the
irreducible {p, jcz} basis, is only one of many possible basis
choices that lead to Poincaré invariant dynamical theories that
are two-body scattering equivalent, which may give different
three-body predictions.
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APPENDIX A: SPINORS

In our calculations SL(2, C) matrices are used to represent
Wigner rotations and Lorentz transformations. In this way spin
algebra is reduced to working with 2 × 2 complex matrices,
and there is no need for representations in terms of Euler
angles. The relevant relations are given in this Appendix.

The coordinates of a four-vector pµ can be labeled by the
2 × 2 Hermitian matrix P :

P := pµσµ =
(

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
, (A1)

where σµ are the identity and the three Pauli matrices. The
components of pµ can be extracted from the matrix P by
using

pµ = 1
2 Tr (σµP ) = 1

2 Tr (Pσµ). (A2)

Because

det(P ) = (p0)2 − ( 
p )2 = −ηµνp
µpν = m2 (A3)

and

P = P † (A4)

for real pµ, it follows that any linear transformation that
preserves the Hermiticity and determinant of P is a real
Lorentz transformation. It is easy to show that if A is a complex
2 × 2 matrix with det(A) = 1 then the transformation

P → P ′ = APA† (A5)

has both of these properties:

det(P ′) = det(P ) and P = P † → P ′ = P ′†. (A6)

The most general 2 × 2 matrix with determinant 1 can be
written as

A = ±e
i
2 σ ·z, (A7)

where z = θ − iρ. If ρ = 0 then A = U (θ ) is unitary and
corresponds to an SU(2) rotation through an angle |θ | about
the θ̂ axis. If θ = 0 then A is a positive Hermitian matrix that
corresponds to a rotationless (canonical) Lorentz boost with
rapidity |ρ| in the direction ρ̂.

The rotation U (θ) is given by

A → U (θ) = σ0 cos(θ/2) + iσ · θ̂ sin(θ/2). (A8)

The axis of rotation can be extracted by using

θ̂ = −i
Tr[σU (θ)]

|Tr[σU (θ)]| (A9)

and the angle of rotation can be extracted from

θ = 2 tan−1

(
Tr[−iσ · θ̂U (θ)]

Tr[U (θ)]

)
. (A10)

The rotationless boost that transforms a particle of mass
m at rest to total momentum p can be labeled by the final
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four-velocity q := p/m:

A → B(q) = σ0 cosh(ρ/2) + σ · p̂ sinh(ρ/2), (A11)

where ρ = p̂ρ is the rapidity of the Lorentz boost, which is
related to q by

cosh(ρ/2) =
√

q0 + 1

2
=

√
p0 + m

2m
(A12)

and

sinh(ρ/2) = |q|√
2(q0 + 1)

= |p|√
2m(p0 + m)

. (A13)

B(q) satisfies

B(q)

(
m 0
0 m

)
B†(q) =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
= P,

(A14)

where

p0 = ω(p) =
√

m2 + p · p. (A15)

This rotationless boost is called the canonical boost. The
inverse transformation is obtained by reversing the sign of
q or p.

The Wigner D functions are homogeneous polynomials of
degree 2j in the coefficients of the SL(2, C) matrices Aij :

Dj
µν(A): =

2j∑
α=0

[(j + µ)!(j − µ)!(j + ν)!(j − ν)!]1/2

(j + µ − α)!α!(α − µ + ν)!(j − ν − α)!

×A
j+µ−α

11 Aα
12A

α−µ+ν

21 A
j−ν−α

22 . (A16)

These are representations of both SL(2, C) and SU(2). The
j = 1/2 representation is just the matrix A.

APPENDIX B: PERMUTATION OPERATOR

Using Eq. (10) twice for the bra state 1〈k, q, α| and the
ket state |k′, q ′, α′〉2 one gets for the matrix element of the
permutation operator in our partial wave basis

1〈k, q, α|P |k′, q,′ α′〉1 = 21〈k, q, α|k′, q ′, α′〉2

= 2
∑

m1m2m3

∑
µ2µ3µs

∑
µlµλµI µ

∑
µ′

2µ
′
3µs′

∑
µl′µλ′µI ′µ′

×
(

λµλ

1

2
,m1,

∣∣∣∣I, µI

)
(j, µ, I, µI |J,M)

×
(

1

2
, µ2,

1

2
, µ3

∣∣∣∣ s, µs

)
(l, µl, s, µs |j, µ)

×
(

λ′, µλ′ ,
1

2
,m2,

∣∣∣∣I ′, µI ′

)
(j ′, µ′, I ′, µI ′ |J,M)

×
(

1

2
, µ′

2,
1

2
, µ′

3

∣∣∣∣s ′, µs ′

)
(l′, µl′ , s

′, µs ′ |j ′, µ′)

×
∫

dq̂ dq̂′ 1

N (q′,−q − q′)
1

N (−q − q′, q)

× δ(k − |k(q′,−q − q′)|)
k2

δ(k′ − |k(−q − q′, q)|)
k′2

×Y ∗
λµλ

(q̂)Y ∗
lµl

(k̂(q′,−q − q′))Yλ′µλ′ (q̂′)Yl′µl′ (k̂(−q − q′,q))

×D
1
2 ∗
m2µ2 [Rw(B(−q/2ωm(k)), (k(q′,−q − q′), ωm(k))]

×D
1
2 ∗
m3µ3[Rw(B(−q/2ωm(k)), (−k(q′,−q − q′),ωm(k))]

×D
1
2

m3µ
′
2
[Rw(B(−q′/2ωm(k)), (k(−q − q′, q), ωm(k))]

×D
1
2

m1µ
′
3
[Rw(B(−q′/2ωm(k)), (−k(−q − q′, q),ωm(k))]

× 1

〈(
t
1

2

)
T

∣∣∣∣
(

t ′
1

2

)
T

〉
2

, (B1)

with
k(q′,−q − q′) ≡ q′ + 1

2 q[1 + y1(q, q ′, x)],
(B2)

k(−q − q′, q) ≡ −q − 1
2 q′[1 + y2(q, q ′, x)].

In Eq. (B2)

y1(q, q ′, x) = Eq′ − Eq+q′

Eq′ + Eq+q′ + √
(Eq′ + Eq+q′)2 − q2

, (B3)

with x = q̂ · q̂ ′, y2(q, q ′, x) = y1(q ′, q, x), and Eq ≡ ωm(q).
Proceeding as in Refs. [41–43] one gets the follow-

ing expression for the matrix element of the permutation
operator P :

1〈k, qα|P |k′, q ′α′〉1

=
∫ 1

−1
dx

δ(k − π1)

k2

δ(k′ − π2)

k′2

× 1

N1(q, q ′, x)

1

N2(q, q ′, x)
GBB

αα′ (q, q ′, x), (B4)

with
π1 =

√
q ′2 + 1

4q2(1 + y1)2 + qq ′x(1 + y1),

π2 =
√

q2 + 1
4q ′2(1 + y2)2 + qq ′x(1 + y2),

(B5)
N1(q, q ′, x) ≡ N (q′,−q − q′),
N2(q, q ′, x) ≡ N (−q − q′, q),

and

GBB
αα′ (qq ′x)

= 4π3/2

2J + 1
(−1)t

′
δT T ′δMT MT ′

√
t̂ t̂ ′

{
1/2 1/2 t

1/2 T t ′

}

×
√

λ̂
∑
µ2µ3

(
1

2
µ2

1

2
µ3

∣∣∣∣ sµ2 + µ3

)

×
∑
µ′

2

(∑
m3

D1/2
m3µ3

∗
[Rw(B(−q/2ωm(k)), (−k, ωm(k))]

×D
1/2
m3µ

′
2
[Rw(B(q′/2ωm(k′)), (k′,ωm(k′))]

)

×
∑
µ′

3

(
1

2
,µ′

2,
1

2
,µ′

3

∣∣∣∣ s ′,µ′
2 + µ′

3

)

×
∑
m1

(
λ0

1

2
,m1,

∣∣∣∣I,m1

)
D

1/2
m1µ

′
3

× [Rw(B(−q′/2ωm(k′)), (−k′, ωm(k′))]
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×
∑

µ

(l, µ − µ2 − µ3, s, µ2 + µ3|j, µ)

× (−)µ−µ2−µ3Yl − (µ−µ2−µ3)(p̂)

× (j, µ, I,m1|J,µ + m1)

×
∑
µ′

(l′, µ′ − µ′
2 − µ′

3, s
′, µ′

2 + µ′
3|j ′, µ′)

×Yl′µ′−µ′
2−µ′

3
(p̂′)

× (j ′, µ′, I ′, µ + m1 − µ′|J,µ + m1)

×
∑
m2

(
λ′, µ + m1 − µ′

−m2,
1

2
,m2

∣∣∣∣I ′, µ + m1 − µ′
)

×D1/2
m2µ2

∗
[Rw(B(−q/2ωm(k)),

× (k, ωm(k))]Yλ′µ+m1−µ′−m2 (q̂′). (B6)

We use standard notation l̂ ≡ 2l + 1. It is assumed that the
z-axis is along q and the momentum q′ lies in the x − z plane,
which leads to the following components of the q, q′, k, and
k′ vectors:

q = [0, 0, q],

q′ = [q ′√1 − x2, 0, q ′x],

k = [q ′√1 − x2, 0, q ′x + 1
2q(1 + y1(q, q ′, x))],

k′ = [− 1
2q ′(1 + y2(q, q ′, x))

√
1 − x2, 0,

− q − 1
2q ′(1 + y2(q, q ′, x))x

]
. (B7)

Though the direct evaluation of Euler angles as arguments
of the Wigner D functions could be used as in Ref. [20], here
we use the SL(2, C) representations of Lorentz transfomations
discussed in Appendix A. This leads to

D1/2[Rw(B(−q/M0), (k,m))]

= B(p2/m)B(−q/M0)B(k/m)

=
√

E0 + M0

2M0

√
ω(k) + m

ω(p2) + m

− k · q√
2M0(E0 + M0)(ω(k) + m)(ω(p2) + m)

+ ik × q · σ
1√

2M0(E0 + M0)(ω(k) + m)(ω(p2) + m)
,

(B8)

where

E0 =
√

M2
0 + q2, (B9)

M0 = 2ω(k), (B10)

p2(k,−q) = k − q
(

ω(k)

M0
− k · q

1

M0(E0 + M0)

)
. (B11)
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W. Glöckle, Phys. Rev. C 23, 1790 (1981).

[11] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S.C. Pieper, and
R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

[12] K. Ermisch et al., Phys. Rev. C 68, 051001(R) (2003).
[13] K. Ermisch et al., Phys. Rev. C 71, 064004 (2005).
[14] Y. Maeda et al., Phys. Rev. C 76, 014004 (2007).
[15] W. P. Abfalterer et al., Phys. Rev. Lett. 81, 57 (1998).
[16] H. Witała, H. Kamada, A. Nogga, W. Glöckle, Ch. Elster, and
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