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Strongly paired fermions: Cold atoms and neutron matter
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Experiments with cold Fermi atoms can be tuned to probe strongly-interacting fluids that are very similar
to the low-density neutron matter found in the crusts of neutron stars. In contrast to traditional superfluids and
superconductors, matter in this regime is very strongly paired, with gaps of the order of the Fermi energy. We
compute the T = 0 equation of state and pairing gap for cold atoms and low-density neutron matter as a function
of the Fermi momentum times the scattering length. Results of quantum Monte Carlo calculations show that
the equations of state are very similar. The neutron matter pairing gap at low densities is found to be very large
but, except at the smallest densities, significantly suppressed relative to cold atoms because of the finite effective
range in the neutron-neutron interaction.
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Strongly-paired fermions are important in many contexts:
cold Fermi atom experiments, low-density neutron matter, and
QCD at the very high baryon densities potentially found in
the center of massive neutron stars. Developing a quantitative
understanding of strongly-paired Fermi systems is important
since they offer a unique regime for quantum many-body
physics, relevant in very different physical settings including
the structure and cooling of neutron stars. Constraining neutron
matter properties can also be important in understanding the
exterior of neutron-rich nuclei by constraining parameters of
nuclear density functionals.

Cold-atom experiments can provide direct tests of the
equation of state and the pairing gap in the strongly-paired
regime, and hence provide a crucial benchmark of many-body
theories in these systems. We consider a system of two fermion
species and a simple Hamiltonian of the form

H = − h̄2

2m

∑
i

∇2
i +

∑
i<j

v(rij ), (1)

where i and j represent spin up and down particles, respec-
tively. In cold atoms the interaction v(r) can be tuned through
Feshbach resonances to be very attractive, and to produce a
specific scattering length. By varying the scattering length one
can sweep through various values of Fermi momentum kF

times scattering length a from the BCS side (small −kF a)
to unitarity (−kF a = ∞) and beyond. In many experiments
6Li atoms are used, and the effective range re between the
atoms is nearly zero. A variety of beautiful experiments have
been performed recently on cold atoms in the strongly paired
regime [1–10].

The neutron-neutron interaction, in contrast, is generally
quite complicated, with one-pion exchange at large distances,
intermediate range spin-dependent attraction dominated by
two-pion exchange, and a short-range repulsion. At very low
densities, though, as found in neutron star crusts or the exterior
of neutron-rich nuclei, the scattering length and effective range
are most crucial to the physical properties of the system. The
presence of a short-range repulsive core is important primarily
in that it prevents collapse to a higher-density state.

A strongly attractive zero-range interaction was proposed
as a simple model of neutron matter even before the recent
remarkable cold atom experiments [11]. In low-density neu-
tron matter the scattering length is very large, ≈ −18.5 fm,
much larger than the typical separation between neutron pairs.
The effective range is much smaller than the scattering length,
re ≈ 2.7 fm, so |re/a| ≈ 0.15, but only at very low densities is
the effective range much smaller than the interparticle spacing.

To the extent that the effects of finite range in the interaction
can be neglected, cold atoms and neutron matter are ‘universal’
in the sense that the properties of the system depend only
upon the product of the Fermi momentum and the scattering
length. Experiments have been performed that probe the sound
velocity [1] and collective excitations [2], superfluidity [3] and
critical temperature [4], phase separation and phase diagram
[5–9] and RF response [10].

We have performed fixed-node quantum Monte Carlo
(QMC) calculations for both cold atoms and neutron matter.
In each case, the trial wave function is taken to be of the
Jastrow-BCS form with fixed particle number and periodic
boundary conditions:

�T =

∏

i<j

f (rij )


A

[∏
φ(rij )

]
. (2)

The BCS pairing function φ(r) is parametrized with a short-
and long-range part as in [12]. Since the ground-state energy in
a fixed-node calculation is an upper bound to the true ground
state energy, we optimize the parameters to obtain the lowest
fixed-node ground-state energy, as in [12].

The interaction for cold atoms is taken as v(r) =
−v0

2h̄2

m

µ2

cosh2(µr)
, with µ = 24/r0, or an effective range of r0/12,

with 1/ρ = (4/3)πr3
0 . The interaction range is small enough

not to significantly affect the energy or pairing gap from the
BCS regime to unitarity. For the neutron-neutron interaction,
we take the s-wave part of the AV18 [13] interaction. This
interaction fits nucleon-nucleon scattering very well at both
low- and high-energies. For our purposes the important thing
is that the scattering length and effective range are correctly
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FIG. 1. (Color online) Zero-temperature equation of state for cold
atoms and neutron matter. Near zero density we show the analytical
expansion of the ground-state energy of a normal fluid, and at high
density we show the cold atom result at unitarity (kF a = ∞, arrow).
QMC calculations are shown as circles and squares for neutron matter
and cold atoms, respectively.

described. We use this interaction only between spin up-down
pairs, which sets the interaction in the L = 1,M = ±1 pairs
to zero. We correct for the artificial attraction in the L =
1,M = 0 pairs perturbatively. This correction is 10% for the
ground-state energy at the largest densities considered, and
typically much smaller. The correction to the pairing gap is
always smaller than the statistical error in the calculation.

The T = 0 equations of state for cold atoms and neutron
matter are compared in Fig. 1. The horizontal axis is kF a, with
the equivalent Fermi momentum kF for neutron matter shown
along the top. The vertical axis is the ratio of the ground-state
energy to the free Fermi gas energy (EFG) at the same density;
it must go to one at very low densities and decrease as
the density increases and the interactions become important.
The curve at lower densities shows the analytical result
[14] for normal matter: E/EFG = 1 + 10

9π
akF + 4

21π2 (11 −
2 ln 2)(akF )2. This curve should be valid at very low densities.
While it ignores the contributions of superfluidity, these are
exponentially small in (1/kF a).

The neutron matter and cold atom equations of state are
very similar even for densities where the effective range is
comparable to the interparticle spacing. Hence cold atom
experiments can tell us something rather directly about the
neutron matter equation of state. Near kF a = −10 the energy
per particle is not too far from QMC calculations [12,15] and
measurements [16] of the ratio ξ of the unitary gas energy to
EFG; previous calculations give ξ = 0.42(1). Extrapolations
of recent QMC calculations to re = 0 and also AFMC
calculations suggest that ξ = 0.40(1) [17] (arrow in Fig. 1).

The results near kF a = −10 for neutron matter are compat-
ible with previous calculations of the neutron matter equation
of state at somewhat higher densities (kF � 1 fm−1) [18–20].
Results shown are for 66 particles in periodic boundary
conditions; calculations have also been performed near N =
20, 44, and 90. Based on these results, finite-size effects for
N = 66 and beyond are expected to be quite small, of the order

of a couple percent. Calculations of the cold atom equation
of state are very similar to those reported previously in [15]
and [21]; the energies reported here are slightly lower (up
to ≈ 10% in some cases) because of larger system sizes and
better optimizations.

Realistic microscopic calculations that incorporate strong
pairing thus provide important constraints on the neutron
matter equation of state in the subnuclear saturation density
regime. Skyrme models or more generally density functionals
are used, for example, to determine the structure of neutron
star crusts [22] and the neutron skin thickness of nuclei [23].
A realistic treatment of these problems should incorporate
the physics of the rapid transition of neutron matter from
nearly free particles to a strongly-paired system at very low
densities.

The pairing gap is the other fundamental zero-temperature
property of superfluid systems. Calculations of the s-wave
pairing gap in neutron matter have varied enormously over the
past 20 years [24,25]. The difficulties in accurately calculating
corrections to the BCS pairing gaps in the strongly-paired
regime are significant, and hence calculations of the pairing
gap [24–30] can differ by large factors (from 4 to 10) in the low-
density regime. Cold atom experiments can provide a critical
test of theories of the pairing gap in this regime. We first
compare our calculations of the pairing gap in cold atoms and
neutron matter, and then compare with previous results.

We calculate the pairing gap from the odd-even energy
staggering � = E(N + 1) − (E(N ) + E(N + 2))/2, where
N is an even number of particles. Finite-size effects for the
pairing gap are considerably larger than for the ground state
energy. In order to estimate the convergence of the gap to the
continuum value with increasing N we have solved the BCS
equations:

�(k) = −
∑

k′
〈k|V |k′〉 �(k′)

2
√

ε(k′)2 + �(k′)2
,

(3)

〈N〉 =
∑

k

[
1 − ε(k)√

ε(k)2 + �(k)2

]

in periodic boundary conditions for different 〈N〉.
The line in Fig. 2 is the continuum BCS result for kF a =

−10, and the open symbols are the solutions of the BCS
equations for different 〈N〉. The continuum results are nearly
identical for the AV18 interaction and the simple cosh potential
adjusted to yield the same scattering length and effective range.
For the finite systems BCS results are shown for the cosh
potential. Unlike the case of cold atoms near unitarity, where
−kF a � 1 and re ≈ 0, the BCS gap shows sizable oscillations
for small numbers of particles. The BCS value approaches the
continuum limit (straight line) near N = 66, and oscillations
from that point on are fairly small, comparable in size to the
statistical error in the QMC calculations. We also show as
solid points the gaps obtained from particle-projected BCS
wave functions in variational Monte Carlo calculations and
the odd-even staggering formula. The projection to definite
particle number is a small effect.

The lower points in Fig. 2 are QMC results for kF a = −10.
At very small values of N the gap is quite large, as is also seen
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FIG. 2. (Color online) Neutron matter pairing gap at kF a = −10
versus particle number in periodic boundary conditions, BCS and
QMC calculations.

in the BCS calculations. This is due to the coarse description
of the Fermi surface in such small systems; the momentum
grid spacing in occupied states is similar in magnitude to the
Fermi momentum. When the pairing is very strong, as in cold
atoms in the unitary regime, this coarse description is not too
critical. However for weaker coupling or the larger effective
range in neutron matter this becomes more important. The gap
in both BCS and QMC calculations reaches a minimum near
44 particles (near the midpoint between closed shells at 38
and 54), and then increases to values near the continuum limit.
Pairing gap results for N = 66–92 are consistent within the
statistical errors.

For all values of N the gap is considerably smaller than
the BCS results. For comparison, at unitarity in cold atoms
BCS calculations give a gap of 0.69EF while the QMC result
is 0.50(3)EF . [31] These calculations are in good agreement
with recent polarized cold atom experiments [9,32]. For cold
atoms the BCS equations will produce the exact gap in the

FIG. 3. (Color online) Superfluid pairing gap versus kF a for cold
atoms (re ≈ 0) and neutron matter (|re/a| ≈ 0.15). BCS (solid lines)
and QMC results (points) are shown.

FIG. 4. (Color online) Superfluid pairing gap versus kF a for
neutron matter compared to previous results.

BEC limit where the pairs are strongly bound. No such limit
is relevant for a finite-range interaction.

In Fig. 3 we plot the pairing gap as a function of kF a for both
cold atoms and neutron matter. BCS calculations are shown
as solid lines, and QMC results are shown as points with
error bars. QMC pairing gaps are shown from calculations
of N = 66–68 particles. For cold atoms away from unitarity
the pairing gaps are smaller than calculated previously [21]
due to more complete optimizations and because these larger
simulations reduce the finite-size effects. For very weak
coupling, −kF a � 1, the pairing gap is expected to be reduced
from the BCS value by the polarization corrections calculated
by Gorkov [33]�/�BCS = (1/4e)1/3. Because of finite-size
effects, it is difficult to calculate pairing gaps using QMC
in the weak coupling regime. The QMC calculations at the
lowest density, kF a = −1, are roughly consistent with this
reduction from the BCS value. At slightly larger yet still
small densities, where −kF a = O(1) but kF re � 1 for neutron
matter, one would expect the pairing gap to be similar for cold
atoms and neutron matter. The results at kF a = −2.5, where
kF re ≈ 0.35, support this expectation. Beyond that density
the effective range becomes important and the QMC results
are significantly reduced in relation to the cold atoms where
re ≈ 0.

These results for the pairing gap are compared to selected
previous results in Fig. 4. The results of our calculations are
much larger than the diagrammatic [26–28] and renormaliza-
tion group [29] approaches. As these approaches assume a
well-defined Fermi surface or calculate polarization correc-
tions based upon single-particle excitations it is not clear how
well they can describe neutron matter in the strongly-paired
regime, or the similar pairing found in cold atoms.

The results here are significantly smaller than the AFDMC
results of Fabrocini et al. [30]. These calculations are some-
what similar to those reported here. The disadvantage of the
AFDMC approach is that it does not provide a variational
bound to the energy, and hence the wave functions are chosen
from another approach. In the calculation of Ref. [30] the wave
function was taken from a correlated basis function approach
that included a BCS initial state. The pairing in that variational
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state is unusually large, and in fact increases as a fraction of EF

when the density is lowered. The advantage of the AFDMC
approach is that it includes the full interaction rather than
the simple s-wave interaction used here. AFDMC calculations
with larger particle numbers are underway. [34]

In summary, we have calculated the T = 0 equations of
state and pairing gaps for cold atoms and neutron matter. These
systems are quite similar in that both are very strongly paired,
and both have pairing gaps of the order of the Fermi energy.
Experiments on the cold-atom equation of state would be very
valuable in constraining the neutron matter equation of state.
Pairing gaps in neutron matter are found to be suppressed
compared to cold atoms and BCS theory, but much larger than
in most other approaches. Again, cold-atom experiments could
provide very valuable tests of many-body theories. It could be
very important to explore finite-range effects experimentally
using other atomic systems.

Note added in proof. We recently became aware of new
calculations of the equation of state and pairing gap for cold
atoms using auxiliary field Quantum Monte Carlo techniques
[35]. Their results are similar to, but slightly different than,
those presented here.

A.G. wishes to express his gratitude to V. R. Pandharipande
for initial guidance. The authors would also like to thank
K. E. Schmidt for valuable discussions. The work of A.G.
and J.C. is supported by the Nuclear Physics Office of the
US Department of Energy and by the LDRD program at Los
Alamos National Laboratory. The work on neutron matter
is supported by the UNEDF SCIDAC program of the US
Department of Energy. Computing resources were provided at
LANL and NERSC through the LANL Open Supercomputing
Program and SCIDAC. The work of A.G. was supported in
part by NSF Grant Nos. PHY03-55014 and PHY05-00914.

[1] J. Joseph, B. Clancy, L. Luo, J. Kinast, A. Turlapov, and J. E.
Thomas, Phys. Rev. Lett. 98, 170401 (2007).

[2] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin,
J. H. Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 203201
(2004).

[3] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.
Schunck, and W. Ketterle, Nature (London) 435, 1047 (2005).

[4] L. Luo, B. Clancy, J. Joseph, J. Kinast, and J. E. Thomas, Phys.
Rev. Lett. 98, 080402 (2007).

[5] G. B. Partridge, W. Li, R. I. Kamar, Y. A. Liao, and R. G. Hulet,
Science 311, 503 (2006).

[6] G. B. Partridge, W. Li, Y. A. Liao, R. G. Hulet, M. Haque, and
H. T. C. Stoof, Phys. Rev. Lett. 97, 190407 (2006).

[7] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle,
Science 311, 492 (2006).

[8] Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and
W. Ketterle, Phys. Rev. Lett. 97, 030401 (2006).

[9] Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle,
arXiv:0709.3027 (2007).

[10] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim,
J. Hecker Denschlag, and R. Grimm, Science 305, 1128
(2004).

[11] G. F. Bertsch, Many-Body Challenge Problem, see R. F. Bishop,
Int. J. Mod. Phys. B 15, 10, iii (2001).

[12] J. Carlson, S. Y. Chang, V. R. Pandharipande, and K. E. Schmidt,
Phys. Rev. Lett. 91, 050401 (2003).

[13] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[14] W. Lenz, Z. Phys. 56, 778 (1929); T. D. Lee and C. N. Yang,
Phys. Rev. 105, 1119 (1957).

[15] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,
Phys. Rev. Lett. 93, 200404 (2004).

[16] S. Giorgini, L. P. Pitaevskii, and S. Stringari, arXiv:0706.3360
(2007).

[17] S. Zhang, K. E. Schmidt, and J. Carlson (private
communication).

[18] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev.
C 58, 1804 (1998).

[19] J. Carlson, J. Morales, Jr., V. R. Pandharipande, and D. G.
Ravenhall, Phys. Rev. C 68, 025802 (2003).

[20] A. Schwenk and C. J. Pethick, Phys. Rev. Lett. 95, 160401
(2005).

[21] S. Y. Chang, V. R. Pandharipande, J. Carlson, and K. E. Schmidt,
Phys. Rev. A 70, 043602 (2004).

[22] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. Ellis, Phys.
Rep. 411, 325 (2005).

[23] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[24] U. Lombardo and H.-J. Schulze, Lecture Notes in Physics

(Springer-Verlag, Berlin, 2001), Vol. 578, p. 30.
[25] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607

(2003).
[26] J. M. C. Chen, J. W. Clark, R. D. Davé, and V. V. Khodel, Nucl.
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