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Statistical interpretation of multiplicity distributions and forward-backward multiplicity
correlations in relativistic heavy ion collisions
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It is shown in this Brief Report that purely statistical considerations are possible to understand both the
multiplicity distributions and forward-backward multiplicity correlations measured recently in the highest energy
relativistic heavy ion collisions. It is necessary to study carefully whether the observed strong forward-backward
correlations come mainly from the overall multiplicity fluctuations or not before we can draw any conclusion on
dynamical long-range correlations.
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Recently the PHENIX Collaboration at BNL’s Relativistic
Heavy Ion Collider (RHIC) measured inclusive charged par-
ticle multiplicity distributions as a function of pseudorapidity
window size [1]. It was found that the multiplicity distributions
in Au+Au collisions at

√
sNN = 200 GeV are well described

by the negative binomial distributions (NBD)

Pk,n̄(n) = (n + k − 1)!

n!(k − 1)!

(n̄/k)n

(1 + n̄/k)n+k
, (1)

similar to those in hadron-hadron collisions [2]. Here n̄ is the
mean of the distribution and the parameter k describes the
shape of the distribution. The negative binomial is wider than
Poisson as long as k is positive and finite, and it reduces to
the Poisson distribution in the limit k → ∞. The dispersion of
negative binomial satisfies

σ 2(n)

n̄2
= 1

n̄
+ 1

k
. (2)

PHENIX measured charged multiplicity distributions and
fitted them with negative binomial distributions in pseudo-
rapidity window sizes δη from 0.066 to 0.7 with a step size of
0.022 in all centrality bins. A typical fitting result for 0–10%
most central collisions is reproduced here in Table I.

A notable feature of the fitting results is that the parameter k

remains nearly constant when δη is around 0.3 or larger, which
is also true for other centralities [1]. This is very different
from what has been observed in pp̄ collisions [2], where the
parameter k increases almost linearly with the pseudorapidity
interval size δη until the largest measured interval δη = 10.0.
The linear evolution of k with δη has been described by
two-particle short-range correlations [1,3]. We suggest in this
paper that the observed constant parameter k of the negative
binomial fit of multiplicity distributions as a function of
pseudorapidity interval sizes can be taken as an indication
of independent particle production in Au+Au collisions at
RHIC, which will in turn determine the forward-backward
multiplicity correlation strength at RHIC.

Suppose that we have a knowledge of the overall mul-
tiplicity probability distribution P (n) of a certain pseudora-
pidity interval. By assuming negative binomial multiplicity
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distribution and uncorrelated particle emission, it is easy to
calculate the parameter k for any subinterval inside the original
interval [4]. Let us arbitrarily divide the original interval into
two sub-intervals. The populations in the original interval is n

and in the two subintervals are n1 and n2, respectively, which
satisfy n = n1 + n2. The joint probability distribution of n1

and n2 is

P (n1, n2) = P (n1|n)P (n), (3)

where P (n1|n) is the conditional probability for finding n1

given the total is n . Assume that the particles are not correlated.
They have fixed probability p to fall into the one subinterval
and probability q = 1 − p to fall into the other subinterval.
The number of observations in both sub-intervals follow the
binomial statistics [5,6]

P (n1|n) = n!

n1!(n − n1)!
pn1q(n−n1). (4)

For easy calculation, following Ref. [4], we redefine the
negative binomial distribution Eq. (1) in terms of a Poisson
transform

Pk,n̄(n) =
∫ ∞

0
dxf (x)

(xn̄)ne−xn̄

n!
, (5)

with f (x) = kk

�(k)x
k−1e−kx . The probability of observing par-

ticles in one of the subintervals is

P (n1) =
∞∑

n2=0

P (n1, n2) =
∞∑

n2=0

P (n1|n)P (n)

=
∞∑

n2=0

∫ ∞

0
dxf (x)

(xn̄)ne−xn̄

n!

n!

n1!n2!
pn1qn2

=
∫ ∞

0
dxf (x)

(xpn̄)n1e−xpn̄

n1!

( ∞∑
n2=0

(xqn̄)n2e−xqn̄

n2!

)

=
∫ ∞

0
dxf (x)

(xn̄1)n1e−xn̄1

n1!
. (6)

Mean multiplicities of the two sub-intervals n̄1 = pn̄ and
n̄2 = qn̄ are used in the derivation. Eq. (6) indicates that
the multiplicity distribution in one of the subintervals is
unchanged. P (n1) is also a negative binomial distribution

0556-2813/2008/77(2)/027902(4) 027902-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.027902


BRIEF REPORTS PHYSICAL REVIEW C 77, 027902 (2008)

TABLE I. NBD fit results in centrality 0–10%.〈n̄〉 is the weighted mean of corrected n̄ over all
window positions. 〈k〉 is the weighted mean of corrected k over all window positions. 〈χ2/NDF〉 is
the average of reduced χ 2 of NBD fits over all window positions. 〈NDF〉 is the average of the degree
of freedom of NBD fits over all window positions. δ〈k〉 (total) is total systematic error on 〈k〉. See
Ref. [1] for detail. (Table reproduced from Ref. [1].)

δη 〈n̄〉 〈k〉 〈χ 2/NDF〉(〈NDF〉) δ〈k〉 (total)

0.700 77.535 ± 0.108 114.28 ± 3.21 0.96 (71.0) ±4.89
0.678 75.445 ± 0.106 113.11 ± 3.29 0.89 (69.7) ±6.78
0.656 72.977 ± 0.103 114.40 ± 3.38 0.95 (68.2) ±6.28
0.634 70.485 ± 0.101 114.02 ± 3.42 0.92 (66.7) ±6.43
0.613 67.998 ± 0.099 114.44 ± 3.52 0.94 (65.3) ±5.66
0.591 65.530 ± 0.096 114.28 ± 3.60 0.95 (63.9) ±5.72
0.569 63.050 ± 0.094 114.62 ± 3.71 0.97 (62.3) ±6.05
0.547 60.569 ± 0.091 114.27 ± 3.80 0.96 (60.8) ±6.03
0.525 58.100 ± 0.089 114.38 ± 3.92 0.95 (59.7) ±6.16
0.503 55.637 ± 0.086 114.36 ± 4.03 0.93 (57.8) ±6.29
0.481 53.164 ± 0.084 114.41 ± 4.17 0.94 (56.3) ±6.85
0.459 50.682 ± 0.081 115.19 ± 4.35 0.98 (54.2) ±6.75
0.438 48.209 ± 0.079 114.89 ± 4.51 0.98 (52.4) ±7.37
0.416 45.743 ± 0.076 115.05 ± 4.71 0.98 (50.3) ±7.57
0.394 43.283 ± 0.074 114.86 ± 4.90 0.97 (48.3) ±7.77
0.372 40.838 ± 0.071 115.20 ± 5.17 1.00 (46.2) ±7.83
0.350 38.424 ± 0.049 115.87 ± 3.88 1.04 (44.5) ±6.88
0.328 36.034 ± 0.047 115.35 ± 4.04 1.04 (42.9) ±7.32
0.306 33.665 ± 0.045 114.46 ± 4.21 1.08 (41.2) ±7.74
0.284 31.288 ± 0.043 113.91 ± 4.39 1.09 (39.9) ±7.65
0.263 28.916 ± 0.041 111.53 ± 4.51 1.10 (37.9) ±7.90
0.241 26.542 ± 0.039 109.53 ± 4.67 1.08 (36.3) ±8.04
0.219 24.155 ± 0.030 107.67 ± 4.03 1.11 (34.4) ±8.07
0.197 21.758 ± 0.028 105.84 ± 4.29 1.15 (32.4) ±8.12
0.175 19.355 ± 0.023 102.63 ± 3.96 1.21 (30.1) ±8.69
0.153 16.948 ± 0.021 97.91 ± 4.19 1.25 (27.6) ±8.96
0.131 14.536 ± 0.017 93.93 ± 4.01 1.34 (24.9) ±8.93
0.109 12.119 ± 0.014 87.92 ± 3.81 1.39 (21.9) ±8.94
0.087 9.695 ± 0.011 78.94 ± 3.35 1.34 (18.7) ±8.79
0.066 7.308 ± 0.008 65.53 ± 2.87 1.09 (15.4) ±8.45

with average multiplicity n̄1 and the parameter k in the
original interval and the subinterval are the same. Since the
subinterval is arbitrarily chosen, the results indicate that, for
uncorrelated particle production, the parameter k does not
depend on the phase space interval size or position. This
suggests that the approximately constant k observed by the
PHENIX experiment when pseudorapidity interval size δη is
not too small might be taken as an indication of independent
emission, or no strong correlation when the correlation length
between particles is dramatically reduced. The analyses in
Ref. [1] do suggest smaller correlation length at RHIC
energy than those in p + p and low energy A + A collisions.
If we take the original pseudorapidity interval as the full
pseudorapidity range available for particle production at a
certain collision energy, P (n) is simply the overall multiplicity
distribution. The property of constant parameter k of multiplic-
ity distributions will persist until the largest δη interval which
is more than 10.0 at RHIC. The PHENIX experiment has a
very limited central pseudorapidity coverage |η| � 0.35. It is
interesting to study experimentally whether k is constant for
even larger pseudorapidity intervals. The PHENIX measured

increase of k for small δη intervals might be mainly due to two
particle correlations.

If the overall multiplicity distribution is not known or it is
not a negative binomial distribution, but the first two moments
of the distribution are known, the relations above can be
reformulated [7]. Again, let P (n) be the overall multiplicity
distribution and δx an arbitrary phase space interval. The
probability of a particle falling into δx is p . For uncorrelated
particle emission, the variance of observing n1 particles in δx

is

σ 2(n1) = n2
1 − n̄2

1

=
∞∑

n=0

P (n) ·
[

n∑
n1=0

n2
1

(
n

n1

)
pn1 (1 − p)n−n1

]
− n̄2

1

= p2 · (n2 − n̄) + p · n̄ − n̄2
1. (7)

Since p = n̄1/n̄, Eq. (7) can be written as

σ 2(n1)

n̄2
1

− 1

n̄1
= σ 2(n)

n̄2
− 1

n̄
, (8)
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indicating that, for uncorrelated particle production, the
multiplicity fluctuations in a small phase space interval
(local fluctuations) are largely determined by the overall
multiplicity fluctuations (global fluctuations). On the other
hand, the satisfaction of Eq. (8) might suggest independent
particle production. If P (n) is a negative binomial distribution,
considering Eq. (2), Eq. (8) is the same as constant parameter
k in the overall and the subintervals.

The overall multiplicity fluctuations in nucleus-nucleus
collisions, which have broader distributions comparing with
the Poisson distributions, originate predominantly from the nu-
clear geometry, i.e., fluctuations in the number of participating
nucleons or the number of binary collisions. The k parameter
measured by PHENIX for 0–5% centrality is about three times
of that for 0–10% centrality [1], indicating the importance of
centrality cut for the shape of the distributions. The multiplicity
distribution is much narrower or has fewer fluctuations when
a severe centrality cut is used. The overall multiplicity
fluctuations will in turn manifest as large fluctuations in
restricted regions of phase space even if the particles are
produced with little correlations.

Since the multiplicity distributions and the forward-
backward multiplicity correlations are closely related, it is
interesting to see how the forward-backward multiplicity
correlations will be according to this picture of uncorrelated
particle production in heavy ion collisions.

Correlations among particles emitted at various values of
rapidity are important probes of the mechanisms of particle
production in high-energy reactions. Many experiments show
strong short-range correlations, indicating final state particles
to be grouped in clusters over a range of about one unit in
rapidity [2,8]. Besides these short-range correlations, long-
range correlations have been studied with forward-backward
multiplicity correlations in e+e− annihilation [9] and hadron-
hadron collisions [10]. More recently, forward-backward mul-
tiplicity correlations in heavy ion collisions have been studied
by the STAR collaboration at RHIC in Au+Au collisions at
center of mass energy 200 GeV [11]. The strength of the
correlations between the event multiplicity in the forward
hemisphere nF and that in the backward hemisphere nB can
be defined as [10]

b = σ (nF , nB )

σ (nF )σ (nB)
= 〈(nF − 〈nF 〉)(nB − 〈nB〉)〉

[〈(nF − 〈nF 〉)2〉〈(nB − 〈nB〉)2〉]1/2
. (9)

The forward-backward intervals are generally two symmetric,
nonoverlapping intervals around midrapidity. In the STAR
measurements, the interval width δη is chosen as 0.2 and the
distance between the forward and backward bin centers �η

ranging from 0.2 to 1.8. The STAR results for 0–10% most
central collisions are reproduced here in Fig. 1. STAR observed
that the correlation strength b in central collisions is larger than
that in pp collisions and it is essentially constant as a function
of �η in all measured centralities [11]. The results suggest
that the correlations between the forward and backward
hemisphere are strong, and the correlations do not decrease
when the distances between the forward and backward bins are
increased. The measured correlation strength b is divided into
contributions from both the short- and long-range correlations,
see Fig. 1. The short-range correlations are expected to

FIG. 1. Forward-backward correlation strength b as a function of
the distance between the forward and backward pseudorapidity bin
centers �η for 0–10% most central collisions. The total correlation
strength is divided into the short- and long-range correlations. Data
and analysis are from Ref. [11].

decrease exponentially with increasing �η. The long-range
correlation part is obtained by subtracting the short range
component from the measured correlation strength. Since b

is flat, the long-range correlations increase with �η.
Instead of taking it as a sum of short- and long-range

components, the constant b as a function of �η can also
be understood by assuming uncorrelated emission of charged
particles. For independent emission, one has [10]

b = σ 2(nFB) − n̄FB

σ 2(nFB) + n̄FB

, (10)

where nFB = nF + nB is the combined multiplicity in the
forward and backward intervals, and nF ≈ nB ≈ 1

2nFB is
assumed. If the distribution of nFB is a negative binomial
distribution, Eq. (10) becomes [12]

b = n̄FB

n̄FB + 2k
, (11)

with k the negative binomial parameter. Equations (10) and
(11) indicate, for uncorrelated emission, the forward-backward
correlation strength b depends only on the average multiplicity
and the fluctuations of multiplicity in the combined forward
and backward intervals. For the central rapidity region |η| < 1
measured in STAR, the average multiplicity is approximately
constant when the pseudorapidity interval size δη is the same
[13]. The parameter k is the same for any phase space interval
for independent particle production. Thus, from Eq. (11),
b does not depend on the position of the forward and backward
phase space intervals in central rapidity region, i.e., it is flat as
a function of �η. This conclusion can be got similarly from
Eq. (10) by considering Eq. (8). In this case, the forward-
backward multiplicity correlation strength b is mainly de-
termined by the overall multiplicity fluctuations which have
large contributions from fluctuations in nuclear geometry. This
idea was used originally in explaining the much stronger
forward-backward multiplicity correlations in hadron-hadron
collisions than that in e+e− annihilation [5,6,14].
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From the PHENIX results of multiplicity distributions we
can make a crude estimate of how large the correlation strength
b will be by assuming uncorrelated particle production. Take
0–10% centrality as an example. From Table I, for δη =
0.2, n̄F ≈ 22 and k as a function of δη has a saturation value
of about 114. Since charged tracks in the PHENIX paper [1]
are only from �φ < π/2, while the STAR experiment has full
azimuthal coverage [11], we estimate the combined average
multiplicity in forward and backward intervals for STAR as
n̄FB ≈ 22 × 4 × 2. The k parameter assumes to be the same
as the PHENIX value because it does not depend on the
phase space intervals according to our assumptions. With the
above values of n̄FB and k, we get b � 0.44 from Eq. (11).
It is slightly lower than that from the STAR measurements.
Purely statistical considerations do result in strong forward-
backward correlations and they are flat as a function of �η

in central rapidity region. Since different centrality selection
criterions are used in STAR and PHENIX [1,11], which might
cause different overall multiplicity distributions for a given
centrality. Collision centrality is determined by the off-line
cuts on the TPC charged particle multiplicity in STAR, while
by the correlations between BBC charges versus ZDC energy
in PHENIX. It is better to measure the multiplicity distributions
and the forward-backward multiplicity correlations both in the
same experiment and find out whether those strong forward-
backward correlations are mainly from the overall multiplicity
fluctuations or not before we can draw any conclusion on
dynamical long-range correlations [15,16].

A interesting test is to measure the forward-backward
correlations for both 0–10% centrality and 0–5% centrality. In
the uncorrelated emission picture, correlation strength b would
be less for 0–5% centrality because the overall multiplicity

fluctuations are much reduced by narrowing the centrality
window. For instance, for 0–5% centrality, PHENIX measured
nFB ≈ 24 × 4 × 2 and k ≈ 360 [1], which leads to b ≈ 0.25.
It is much less than that for 0–10% centrality. However, if the
correlations are of dynamical origin, the forward-backward
correlation strength might increase from 0–10% to 0–5%
because the collisions become more violent.

In summary, we argued in this paper that the large
and flat forward-backward multiplicity correlation strength
as a function of the forward and backward pseudorapidity
interval gap size in central rapidity region can be understood
naturally from simple statistical considerations of uncorrelated
production of charged particles in the highest energy Au+Au
collisions at RHIC. This idea is supported by the constant
negative binomial parameter k of multiplicity distributions
as a function of pseudorapidity interval size measured in
the same reactions. The observed large local multiplicity
fluctuations in small phase space intervals are to a large
extent determined by the overall multiplicity fluctuations. In
nucleus-nucleus collisions, the overall multiplicity fluctuations
are closely related to fluctuations in nuclear geometry. It
is better to measure both the multiplicity distributions and
the forward-backward multiplicity correlations in the same
experiment to decide whether the observed strong correlations
are mainly from the overall multiplicity fluctuations or not.
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[8] L. Foà, Phys. Rep. 22, 1 (1975).

[9] R. Akers et al. (OPAL Collaboration), Phys. Lett. B320, 417
(1994).
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