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Addendum to triton and hypertriton binding energies calculated from SU6 quark-model
baryon-baryon interactions
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Previously we calculated the binding energies of the triton and hypertriton, using an SU6 quark-model
interaction obtained by a resonating-group method of two baryon clusters. In contrast to the previous calculations
employing the energy-dependent interaction kernel, we present new results using a renormalized interaction that is
energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than
the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence
correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for
by three-body forces is about 350 keV.
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The QCD-inspired spin-flavor SU6 quark model (QM)
for the baryon-baryon interaction, developed by the Kyoto-
Niigata group, has achieved accurate descriptions of available
NN and YN experimental data [1]. In particular, the most
recent model fss2 produces accuracy comparable to modern
realistic meson-exchange NN potentials. Since the QM
description of the short-range part is quite different from that
of meson-exchange potentials, it is interesting to apply the
QM interaction to calculate some properties of three-baryon
systems, for example, the binding energies of the triton (3H)
and the hypertriton (3

�H). For this purpose, we developed in
Refs. [2,3] a three-cluster equation, called an εK prescrip-
tion, which employs energy-dependent two-cluster exchange
kernels of the resonating-group method (RGM). Applying the
εK formulation to the case of the quark-exchange kernels,
we obtained the following results for fss2: The triton binding
energy is Bt = 8.518 MeV [4,5], and the � separation energy
of 3

�H is B� = 289 keV [6]. The calculation for 3H assumes
charge independence of the NN interaction. Correcting for the
well-known charge dependence of about 190 keV, we find that
this result indicates a value of approximately 8.3 MeV, which
lies in between standard results from meson-exchange models
(up to approximately 8.0 MeV) and the experimental value of
8.482 MeV. For the 3

�H result, it should be noted that most
of the Nijmegen models fail to reproduce enough separation
energy of �, except for the NSC89 and more recent soft-core
models NSC97 (e) and (f) [7,8], whereas our value is larger
than the experimental value of 130 ± 50 keV.
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Recently, important progress has been made in applying
an energy-independent RGM kernel to the 3α system [9]
and other three-cluster systems [10], through a standard
procedure [11] of eliminating the energy dependence of the
RGM kernel. This renormalized kernel will naturally give
results different from the εK prescription when it is applied
to the few-body systems interacting via the QM baryon-
baryon interactions. We will report these new results in this
paper.

The energy-independent renormalized RGM kernel V RGM

for a two-cluster system reads

V RGM = VD + G + W, (1)

where VD is the direct potential and G is the sum of the
exchange kinetic-energy and interaction kernels. It is the
kernel W that appears through the elimination of the energy
dependence, and it is given by

W = �
1√

1 − K
h

1√
1 − K

� − h. (2)

Here K is the exchange normalization kernel, h denotes
h0 + VD + G with h0 being the kinetic energy for the two-
cluster relative motion, and � = 1 − |u〉〈u| is a two-cluster
Pauli projection operator, where |u〉 is a Pauli-forbidden state
satisfying K|u〉 = |u〉. An advantage of using the V RGM is
that the two-cluster RGM equation takes the form of the usual
Schrödinger equation in the Pauli-allowed model space, and
the relative wave function is properly normalized [11]. This
Schrödinger-type equation for the relative wave function gives
the same asymptotic behavior as the original RGM equation,
thus preserving the phase shifts and physical observables for
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the two-cluster system. The difference between the previous
energy-dependent RGM kernel, V RGM(ε) = VD + G + εK ,
and V RGM in Eq. (1) is essentially a replacement of �(εK)�
with W . Here ε is the two-cluster relative energy measured
from its threshold. The value is however not defined in the
three-cluster system and it was determined in a self-consistent
procedure in the εK treatment.

The three-cluster equation to be solved reads

P
[
E − H0 − V RGM

α − V RGM
β − V RGM

γ

]
P� = 0, (3)

where α, β, and γ denote three independent pairs of two-
cluster subsystems; H0 is the free three-body kinetic-energy
operator; and V RGM

α stands for the RGM kernel in Eq. (1)
for the α pair, etc. The three-body operator P projects on
the Pauli-allowed space with a proper symmetry of clusters,
and it is constructed from the orthogonality constraint that
each pair of two-cluster subsystems is free from any Pauli-
forbidden states [12–14]. This definition of the three-cluster
Pauli-allowed space may not be exactly equivalent to the
standard definition given by the three-cluster normalization
kernel. We however employed this orthogonality condition in
the εK prescription. See Refs. [2,3] for details. We use the
same definition of P in this paper as well.

Table I lists the three-nucleon bound-state properties
predicted by the Faddeev calculations with fss2. The np

interaction is employed in the isospin basis. The momentum
discretization points for solving the Faddeev equation are the
same as in Ref. [4]. The charge root mean square (rms) radii
of 3H and 3He are calculated with the finite-size corrections of
the proton and neutron through [17]

〈r2〉3H = [RC(3H)]2 + (0.8750)2 + 2(−0.1161),
(4)

〈r2〉3He = [RC(3He)]2 + (0.8750)2 + 1
2 (−0.1161),

TABLE I. The energy and charge rms radius of the three-
nucleon ground state calculated by using the energy-independent
renormalized RGM kernel derived from the QM fss2 potential. The
column n gives the number of three-nucleon channels, including
the two-nucleon systems up to the total angular momentum J . The
proton and neutron size corrections for the rms radii are made
by using Eq. (4). The column EεK (3H) denotes the triton energy
obtained by the εK prescription [4,5]. The experimental values are
Eexp(3H) = −8.482 MeV and

√
〈r2〉3H = 1.755 ± 0.086 fm [15] and√〈r2〉3He = 1.959 ± 0.030 fm [15], 1.9642 ± 0.0011 fm [16].

n E(3H) EεK (3H)
√

〈r2〉3H

√〈r2〉3He

(MeV) (MeV) (fm) (fm)

2(S) −7.952 −7.807 1.80 1.95
5(S, D) −8.261 −8.189 1.76 1.92

10(J � 1) −7.962 −8.017 1.77 1.95
18(J � 2) −8.228 −8.439 1.75 1.93
26(J � 3) −8.313 −8.503 1.75 1.92
34(J � 4) −8.322 −8.514 1.75 1.92
42(J � 5) −8.326 −8.517 1.75 1.92
50(J � 6) −8.326 −8.518 1.75 1.92

where RC
2, given in units of square femtometers, stands for

the squared charge radius for each isospin state of the point
nucleons.

To calculate RC
2 from the Faddeev components, previously

we first calculated the charge form factor and then derived the
RC

2 value by differentiating it with respect to the squared mo-
mentum transfer at zero momentum. This time, we improved
the method by taking the second-order differentiation of the
momentum-space Faddeev components using the fifth-order
spline interpolation formula. This approach leads to a stable
rms radius within four digits, whereas in the previous method
even the third digit fluctuates. In the present calculation, the
Coulomb force and the relativistic correction terms [18] of the
charge current operator are entirely neglected.

The final fss2 prediction for the triton energy is
−8.326 MeV, which is higher by 192 keV than the EεK

value −8.518 MeV. Compared to the experimental value
Eexp(3H) = −8.482 MeV, the calculated value is too high by
156 keV. In fact, we have to take into account the effect of
the charge dependence of the two-nucleon force, which is
estimated to result in an energy loss of about 190 keV [19].
Therefore our calculation using the QM potential misses the
triton binding energy by 346 keV (≈350 keV). Comparing the
energy convergence between the present and EεK methods in
Table I, we note that, in the present treatment, the 5-channel
calculation already gives energy close to the converged value.
Namely, the energy gain from the 5-channel to 50-channel
calculation is only 65 keV, whereas it is 329 keV in the
εK prescription. We will see that this is also the case in the
hypertriton calculation.

For a realistic calculation of the 3H binding energy, it is
important to use an NN interaction that reproduces various
deuteron properties and some typical NN scattering data,
such as the ε1 parameter, which are strongly correlated to
the D-state probability, PD , of the deuteron [20]. The effective
range parameters of 1S0 scattering also play an essential role.
To demonstrate the correlation between Bt and PD , we display
in Fig. 1 the updated energies of fss2 and FSS together with the
values calculated by various realistic NN potentials. Here the
FSS [27], an earlier version of fss2, less accurately reproduces
the NN phase shifts. We find that fss2 gives a larger binding
energy than the modern realistic meson-exchange potentials
such as Bonn-C and AV18, whereas the result of FSS is not very
far from that of Bonn-C. It is interesting to note that our QM
points are apparently off the line on which the data points of
the modern meson-exchange potentials fall. The five-channel
calculation of the model QCM-A by Takeuchi et al. [28] gives
almost the same result as Bonn-C.

The results of the hypertriton Faddeev calculations are listed
in Table II for the model fss2. The � separation energy of
the hypertriton is B� = 262 keV, which is 27 keV less than
the εK value, 289 keV. So far all the Faddeev calculations,
using the energy-independent renormalized RGM kernels,
yield less binding than the εK prescription, as long as the
full model space with enough angular momenta is taken into
account. Compared with the experimental value, B�

exp =
130 ± 50 keV, the model fss2 gives an overbinding of 82–
182 keV. In spite of the large experimental error bar, we may
conclude that the �N interaction of fss2 is probably slightly
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FIG. 1. Calculated 3H binding energies Bt as a function of the
deuteron D-state probability PD . Calculations are made in the isospin
basis, by using the np interaction, for fss2, FSS, Bonn-A, Bonn-B,
Boon-C, and Chiral (denoted by black circles). The group including
CD-Bonn, Nijmegen I, and AV18 (denoted by black diamonds) takes
into account the effect of charge dependence of the interaction. In
the Paris and RSC results (denoted by the open diamonds), the
1S0 interaction is determined from the pp scattering data. Those
energies denoted by black circles go down by about 190 keV when
the charge dependence of the NN force is taken into account.
The calculated values are taken from Refs. [19,20] 6 (RSC, Paris,
Bonn-A, Bonn-B, and Bonn-C), [21,22] (AV18), [21,23] (CD-Bonn),
[24,25] (Nijmegen), and [26] (Chiral). The experimental value, Bt =
8.482 MeV, is shown by the dashed line.

too attractive. The accuracy of the present-day YN interaction
makes it impossible for us to discuss the effect of the �NN

three-body force and the charge-symmetry breaking effect of
the �p and �n interactions.

TABLE II. Hypertriton (3
�H) properties calculated by using

the energy-independent renormalized RGM kernels derived from
the QM fss2 potential. The momentum discretization points used
in the Faddeev calculations are the same as in Ref. [6]. The
deuteron binding energy given by fss2 is εd = 2.2247 MeV (εexp

d =
2.2246 MeV). The column n stands for the number of three-
baryon channels, including the two-baryon systems up to the total
angular momentum J , the column E lists the 3

�H energy measured
from the N + N + � threshold, and the column B� is the �

separation energy. The column BεK
� is the energy obtained in the

εK prescription. The column P� denotes the probability, given
in percent, of the �NN admixture. The experimental value is
B

exp
� = 130 ± 50 keV.

n E B� BεK
� P�

(MeV) (keV) (keV) (%)

6(S) −2.392 167 137 0.566
15(SD) −2.451 226 198 0.775
30(J � 1) −2.404 179 178 0.679
54(J � 2) −2.467 243 273 0.792
78(J � 3) −2.483 259 285 0.824
102(J � 4) −2.486 261 288 0.828
126(J � 5) −2.487 262 289 0.830
150(J � 6) −2.487 262 289 0.830

We again confirm in Table II that the 15-channel calculation
with S and D states only is a good approximation to the
full calculation. The value of B� is 226 keV in the 15-
channel calculation, and the energy gain extended to the full
calculations is only 36 keV. The corresponding energy gain in
the previous εK prescription is as large as 91 keV. The NN

(εNN ) and �N (ε�N ) expectation values defined by εBN =
〈P�|h0(BN) + V RGM

BN |P�〉/〈P�|P�〉 and the admixture of
the �NN component (P�) are not much different from the
previous values in the εK prescription. The converged value
of P� is 0.83% for fss2 versus the previous value of 0.80%.
The decomposition of the εNN value into the kinetic-energy
and potential-energy contributions is 19.034−20.723 =
−1.689 MeV, which was previously 19.376–21.032 =
−1.657 MeV.

As to the overbinding of the model fss2, we have discussed
in Ref. [6] that a slight increase of the κ-meson mass will
improve the fit to the experimental value, without changing
good reproduction of the low-energy �N cross-section data.
If we modify the κ-meson mass from the value used in fss2,
mκ = 936 MeV, to 995 MeV, we would obtain B� = 134 keV
with P� = 0.56%, which is very close to the NSC89 prediction
B� = 143 keV with P� = 0.5% [7,8]. The effective range
parameters calculated with this modified interaction are as =
−2.18 fm, rs = 3.03 fm, at = −1.78 fm, and rt = 2.88 fm.
The phase-shift difference is only 2.2◦ at plab = 200 MeV/c.

Rather moderate modification of the present results from
the previous εK prescription is related to a simple structure of
the quark-exchange normalization kernel �K� in the Pauli-
allowed space. For the NN interaction, � = 1 since there is no
Pauli-forbidden state. For the positive-parity states, the largest
eigenvalue of K in absolute magnitude is 1/9 for the (0s)
harmonic-oscillator state. Although almost Pauli-forbidden
states appear in the P states, such partial waves give minor
contributions to the binding energy of the triton. For the
�N -�N interaction, we have a Pauli-forbidden state classified
by the SU3 label (11)s . Once this component is properly
eliminated, the eigenvalues of �K� also become very small.
These are the main reasons why the present treatment by the
energy-independent renormalized RGM kernel gives results
that are not very much different from the previous energy-
dependent εK prescription. However, the difference between
�(εK)� and W sometimes becomes large in nuclear cluster
systems, because the number of Pauli-forbidden states in
general increases and they play more complicated roles in
determining the structure of nuclear systems. For example, the
ground-state energy of 9Be, calculated in an nαα microscopic
three-cluster model, is −2.61 MeV, whereas it turns out to
be −2.16 MeV in the renormalized RGM approach [10] and
−3.86 MeV in the εK prescription [29].

In summary, we have recalculated the triton and hypertriton
binding energies in a new semimicroscopic three-cluster
equation, using the energy-independent renormalized RGM
kernels of the quark-model baryon-baryon interactions. This
formulation produces slightly less attractive effect on the three-
baryon systems, compared to the previous energy-dependent
treatment of the two-cluster RGM kernels. For the triton
binding energy, the fss2 quark model gives 8.326 MeV,
which is 156 keV smaller than the experimental value of
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8.482 MeV. By taking into account the charge-dependence
correction of 190 keV, we conclude that the quark-model
potential underbinds the triton by approximately 350 keV. Thus
the energy to be accounted for by three-nucleon forces may not
be as large as 0.5–1 MeV, which most standard meson-
exchange potentials [21] predict. These different predictions
for the contributions of the three-body force prompt us to
examine what results the present quark-model NN interaction
produce in other three-nucleon observables, especially in the
nd and pd scatterings. This will be examined soon and
reported elsewhere. For the � separation energy of the hyper-
triton, the overbinding of the model fss2 is slightly reduced.

We still have large ambiguities in 1S and 3S �N interactions,
before further details, such as the charge-symmetry breaking
of �p,�n interactions, and the �NN three-body force, come
into play. The comparison of the fss2 value, 262 keV, with
the experimental one, Bexp

� = 130 ± 50 keV, indicates that the
1S interaction of fss2 is still too attractive, which could be
corrected by choosing a slightly heavier κ-meson mass.
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172501 (2002).

[9] Y. Suzuki, H. Matsumura, M. Orabi, Y. Fujiwara,
P. Descouvemont, M. Theeten, and D. Baye, Phys. Lett. B659,
160 (2008).

[10] M. Theeten, H. Matsumura, M. Orabi, D. Baye,
P. Descouvemont, Y. Fujiwara, and Y. Suzuki, Phys. Rev.
C 76, 054003 (2007).

[11] W. Timm, H. R. Fiebig, and H. Friedrich, Phys. Rev. C 25, 79
(1982).

[12] H. Horiuchi, Prog. Theor. Phys. 51, 1266 (1974).
[13] H. Horiuchi, Prog. Theor. Phys. 53, 447 (1975).

[14] Y. F. Smirnov, I. T. Obukhovsky, Y. M. Tchuvil’sky, and V. G.
Neudatchin, Nucl. Phys. A235, 289 (1974).

[15] A. Amroun et al., Nucl. Phys. A579, 596 (1994).
[16] D. C. Morton, Q. Wu, and G. W. F. Drake, Phys. Rev. A 73,

034502 (2006).
[17] W. M. Yao et al., J. Phys. G: Nucl. Part. Phys. 33, 1 (2006).
[18] K. T. Kim, Y. E. Kim, D. J. Klepacki, R. A. Brandenburg, E. P.

Harper, and R. Machleidt, Phys. Rev. C 38, 2366 (1988).
[19] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
[20] R. A. Brandenburg, G. S. Chulick, R. Machleidt, A. Picklesimer,

and R. M. Thaler, Phys. Rev. C 37, 1245 (1988).
[21] A. Nogga, H. Kamada, and W. Glöckle, Phys. Rev. Lett. 85, 944
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