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Influence of the hadronic equation of state on the hadron-quark phase transition in neutron stars
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We study the hadron-quark phase transition in the interior of neutron stars. The relativistic mean field (RMF)
theory is adopted to describe the hadronic matter phase, while the Nambu-Jona-Lasinio (NJL) model is used for
the quark matter phase. The influence of the hadronic equation of state on the phase transition and neutron star
properties are investigated. We find that a neutron star possesses a large population of hyperons, but it is not
dense enough to possess a pure quark core. Whether the mixed phase of hadronic and quark matter exist in the
core of neutron stars depends on the RMF parameters used.
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I. INTRODUCTION

Neutron stars are laboratories for dense matter physics,
since they contain matter in one of the densest forms found
in the universe. It is expected that the deconfinement phase
transition may occur in the core of massive neutron stars [1].
The study of the hadron-quark phase transition at high density
is of great interest in both nuclear physics and astrophysics. It
has been pointed out by Glendenning [2] that the hadron-quark
phase transition in neutron stars may proceed through a
mixed phase of hadronic and quark matter over a finite range
of pressures and densities according to the Gibbs criteria for
phase equilibrium. Such phase transition has received much
attention in neutron star physics [3–11]. It is believed that
hyperons may appear around twice normal nuclear matter
density through the weak interaction [12], which usually occur
earlier than the hadron-quark phase transition. The inclusion
of hyperons in the hadronic phase alters the threshold density
and properties of the mixed phase significantly. In general, the
presence of new degrees of freedom, such as hyperons and
quarks, tends to soften the equation of state (EOS) at high
density and lower the maximum mass of neutron stars.

To study the hadron-quark phase transition, we need models
to describe hadronic matter and quark matter. Unfortunately,
there is no single model which can be used to describe both
phases and the dynamic process of the phase transition. We
have to use different approaches for the description of the two
phases, then perform the Glendenning construction for the
charge-neutral mixed phase where both hadronic and quark
phases coexist [2]. In this work, we adopt the relativistic
mean field (RMF) theory to describe the hadronic matter
phase, while the Nambu-Jona-Lasinio (NJL) model is used
for the quark matter phase. The choice of the NJL model
is motivated by the fact that this model can successfully
reproduce many aspects of quantum chromodynamics such as
the nonperturbative vacuum structure and dynamical break-
ing of chiral symmetry [13–15]. We adopt a three-flavor
version of the NJL model to describe the quark matter
phase [13]. With a definite EOS for quark matter based on
the NJL model, we examine the influence of the hadronic
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EOS on the hadron-quark phase transition and neutron star
properties.

We use the RMF theory to describe the hadronic matter
phase. The RMF theory has been successfully and widely
used for the description of nuclear matter and finite nuclei
[16–20]. It has also been applied to provide the EOS of dense
matter for the use in supernovae and neutron stars [21,22].
In the RMF approach, baryons interact through the exchange
of scalar and vector mesons. The meson-nucleon coupling
constants are generally determined by fitting to some nuclear
matter properties or ground-state properties of finite nuclei.
However, there are large uncertainties in the meson-hyperon
couplings due to limited experimental data. One can use the
coupling constants derived from the quark model, or those
values constrained by reasonable hyperon potentials. The two
additional strange mesons, σ ∗ and φ, were originally intro-
duced in order to obtain the strong attractive hyperon-hyperon
(YY ) interaction deduced from the earlier measurement [23].
A recent observation of the double-� hypernucleus 6

��He,
called the Nagara event [24], has had a significant impact
on strangeness nuclear physics. The Nagara event provides
unambiguous identification of 6

��He production with precise
�� binding energy value B�� = 7.25 ± 0.19+0.18

−0.11 MeV,
which suggests that the effective �� interaction should be
considerably weaker (�B�� ∼ 1 MeV) than that deduced
from the earlier measurement (�B�� ∼ 5 MeV). The weak
YY interaction suggested by the Nagara event has been
used to reinvestigate the properties of multistrange systems,
and it has been found that the change of YY interactions
affects the properties of strange hadronic matter dramatically
[25–27]. In order to examine the influence of the hadronic
EOS on the hadron-quark phase transition, we employ two
successful parameter sets of the RMF model, NL3 [28] and
TM1 [29], which have been widely used for the description
of nuclear matter and finite nuclei including unstable nuclei.
For each parameter set of the nucleonic sector, we consider
two cases of hyperon-hyperon interactions, the weak and
strong YY interactions. By comparing the results with different
parametrizations in the RMF model, we evaluate how sensitive
the hadron-quark phase transition is to the hadronic EOS used
in the calculation.

For a comprehensive description of neutron stars, we need
not only the EOS at high density for the interior region but

0556-2813/2008/77(2)/025801(8) 025801-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.025801


F. YANG AND H. SHEN PHYSICAL REVIEW C 77, 025801 (2008)

also the EOS for the inner and outer crusts, where the density
is low and heavy nuclei exist. For the nonuniform matter
at low density, we adopt a relativistic EOS based on the
RMF theory with a local density approximation [21,22]. The
nonuniform matter is modelled to be composed of a lattice of
spherical nuclei immersed in an electron gas with or without
free neutrons dripping out of nuclei. As the density increases,
heavy nuclei dissolve and the optimal state is a uniform matter
consisting of neutrons, protons, and leptons (electrons and
muons) in β equilibrium. The low density EOS is therefore
matched to an EOS of uniform nuclear matter at around
1014 g/cm3 [22]. At higher densities, some additional degrees
of freedom such as hyperons and quarks may occur, and the
hadron-quark phase transition could proceed through a mixed
phase of hadronic and quark matter [5–11]. Applying the EOS
of neutron star matter over a wide density range, we study the
neutron star properties by solving the Tolman-Oppenheimer-
Volkoff equation, and examine whether or not the deconfined
quark phase can exist in the core of neutron stars.

This paper is arranged as follows. In Sec. II, we discuss the
EOS for hadronic matter in the RMF theory, and the parameters
used in the calculation. In Sec. III, the NJL model is used for
the description of quark matter. In Sec. IV, we investigate
the hadron-quark phase transition of neutron star matter, and
examine the influence of the hadronic EOS. We present in
Sec. V the properties of neutron stars. Section VI is devoted
to a summary.

II. HADRONIC PHASE

To describe the hadronic matter phase, we adopt the
relativistic mean field (RMF) theory, in which baryons interact
via the exchange of mesons. The baryons considered in this
work are nucleons (p and n) and hyperons (�,�, and �). The
exchanged mesons include isoscalar scalar and vector mesons
(σ and ω), isovector vector meson (ρ), and two additional
hidden-strangeness mesons (σ ∗ and φ). For neutron star matter
consisting of a neutral mixture of baryons and leptons in β

equilibrium, we start from the effective Lagrangian

LRMF =
∑
B

ψ̄B

[
iγµ∂µ − mB − gσBσ − gσ ∗Bσ ∗

− gωBγµωµ − gφBγµφµ − gρBγµτiρ
µ

i

]
ψB
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2
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2
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2
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∗2 − 1
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φφµφµ

+
∑

l

ψ̄l[iγµ∂µ − ml]ψl, (1)

where the sum on B runs over the baryon octet
(p, n,�,�+, �0, �−, �0, �−), and the sum on l is over
electrons and muons (e− and µ−). In the RMF model, the
meson fields are treated as classical fields, and the field
operators are replaced by their expectation values. The meson
field equations in uniform matter have the following form:

m2
σ σ + g2σ

2 + g3σ
3 = −

∑
B

gσB

π2

∫ kB
F

0

m∗
B√

k2 + m∗2
B

k2dk,

(2)
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∑
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(
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F

)3

3π2
, (3)
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∑
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gρBτ3B

(
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3π2
, (4)
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∗ = −
∑
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π2

∫ kB
F

0
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B√

k2 + m∗2
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k2dk,
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m2
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∑
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gφB

(
kB
F

)3

3π2
, (6)

where σ = 〈σ 〉, ω = 〈ω0〉, ρ = 〈ρ30〉, σ ∗ = 〈σ ∗〉, and φ =
〈φ0〉 are the nonvanishing expectation values of meson fields
in neutron star matter. m∗

B = mB + gσBσ + gσ ∗Bσ ∗ is the
effective mass of the baryon species B, and kB

F is the Fermi
momentum.

In this work, we employ two successful parameter sets
of the RMF model, NL3 and TM1, as listed in Table I.
These parameters have been determined by fitting to some
ground-state properties of finite nuclei, and they can provide
good description of nuclear matter and finite nuclei including
unstable nuclei [28,29]. As for the meson-hyperon couplings,
we take the naive quark model values for the vector coupling
constants,

1

3
gωN = 1

2
gω� = 1

2
gω� = gω�,

gρN = 1

2
gρ� = gρ�, gρ� = 0, (7)

2gφ� = 2gφ� = gφ� = −2
√

2

3
gωN, gφN = 0.

TABLE I. The parameter sets NL3 [28] and TM1 [29] used in the calculation. The masses are given in MeV.

mN mσ mω mρ gσN gωN gρN g2 (fm−1) g3 c3

NL3 939.0 508.194 782.501 763.0 10.217 12.868 4.474 −10.431 −28.885 –
TM1 938.0 511.198 783.0 770.0 10.029 12.614 4.632 −7.233 0.618 71.308
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TABLE II. The scalar coupling constants for the hyperons.

gσ� gσ� gσ� gσ∗�(�) gσ∗�

NL3 (weak YY ) 6.269 4.709 3.242 5.595 11.765
NL3 (strong YY ) 6.269 4.709 3.242 7.138 12.809
TM1 (weak YY ) 6.170 4.472 3.202 5.412 11.516
TM1 (strong YY ) 6.170 4.472 3.202 7.018 12.600

The scalar coupling constants are chosen to give reasonable hy-
peron potentials. The potential depth of the hyperon species i

in matter of the baryon species j is denoted by U
(j )
i , and we use

U
(N)
� = −28 MeV, U

(N)
� = +30 MeV, and U

(N)
� = −18 MeV

[30–32] to determine the scalar coupling constants gσ�, gσ� ,
and gσ�, respectively. The hyperon couplings to strange meson
σ ∗ are restricted by the relation U

(�)
� � U

(�)
� � 2U

(�)
� �

2U
(�)
� obtained in Ref. [33]. We consider two cases of

hyperon-hyperon (YY ) interactions. The strong YY interaction
deduced from the earlier measurement [23] suggests U

(�)
� �

−20 MeV, while the weak YY interaction implied by the
Nagara event suggests U

(�)
� � −5 MeV [25–27]. In Table II,

we present the meson-hyperon couplings determined by these
hyperon potentials. The hyperon masses are taken to be m� =
1115.7 MeV,m� = 1193.1 MeV, and m� = 1318.1 MeV,
while the strange meson masses are mσ ∗ = 975 MeV and
mφ = 1020 MeV.

For neutron star matter consisting of a neutral mixture of
baryons and leptons, the β equilibrium conditions without
trapped neutrinos are given by

µp = µ�+ = µn − µe, (8)

µ� = µ�0 = µ�0 = µn, (9)

µ�− = µ�− = µn + µe, (10)

µµ = µe, (11)

where µi is the chemical potential of species i. At zero
temperature the chemical potentials of baryons and leptons
are expressed by

µB =
√

kB
F

2 + m∗2
B + gωBω + gφBφ + gρBτ3Bρ, (12)

µl =
√

kl
F

2 + m2
l . (13)

The charge neutrality condition is given by

np + n�+ = ne + nµ + n�− + n�− , (14)

where ni = (ki
F )3/(3π2) is the number density of species

i. We can solve the coupled equations self-consistently at
a given baryon density nB = np + nn + n� + n�+ + n�0 +
n�− + n�0 + n�− . The total energy density and pressure of
neutron star matter are written by
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∑
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. (16)

III. QUARK PHASE

In this section, we adopt a three-flavor version of the NJL
model to describe the deconfined quark phase. The Lagrangian
is given by

LNJL = q̄(iγµ∂µ − m0)q + G

8∑
a=0

[(q̄λaq)2 + (q̄iγ5λaq)2]

−K{det[q̄(1 + γ5)q] + det[q̄(1 − γ5)q]}, (17)

where q denotes a quark field with three flavors (Nf = 3) and
three colors (Nc = 3). m0 = diag(m0

u,m
0
d ,m

0
s ) is the current

quark mass matrix, and we assume isospin symmetry m0
u =

m0
d ≡ m0

q . The coupling constants G and K have dimension
energy−2 and energy−5, respectively. The model has five
parameters, namely, the current quark masses m0

q and m0
s ,

the coupling constants K and G, and the momentum cutoff
�. In the present calculation, we employ the parameters
given in Ref. [34], m0

q = 5.5 MeV,m0
s = 140.7 MeV,� =

602.3 MeV,G�2 = 1.835, and K�5 = 12.36. These param-
eters have been determined by fitting fπ,mπ,mK , and mη

′

to their empirical values, while the mass of the η-meson is
underestimated by about 6% [13].

In the NJL model, the quark gets constituent quark mass by
spontaneous chiral symmetry breaking. The constituent quark
mass in vacuum mi is much larger than the current quark
mass m0

i . In the quark matter at high density, the constituent
quark mass m∗

i becomes approximately the same as m0
i , which

reflects the restoration of chiral symmetry. Within the mean-
field approximation, m∗

i is obtained by solving the gap equation

m∗
i = m0

i − 4G〈q̄iqi〉 + 2K〈q̄j qj 〉〈q̄kqk〉, (18)

with (i, j, k) being any permutation of (u, d, s). The quark
condensate Ci = 〈q̄iqi〉 is given by

Ci = − 3

π2

∫ �

ki
F

m∗
i√

k2 + m∗2
i

k2dk, (19)

where ki
F denotes the Fermi momentum of the quark flavor

i, which is connected with the number density ni and the
chemical potential µi via

ni =
(
ki
F

)3

π2
, (20)

µi =
√

ki
F

2 + m∗
i

2. (21)
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The energy density of the quark system is given by

εNJL =
∑

i=u,d,s

[
− 3

π2

∫ �

ki
F

√
k2 + m∗2

i k2dk

]

+ 2G
(
C2

u + C2
d + C2

s

) − 4KCuCdCs − ε0, (22)

where ε0 is introduced to ensure εNJL = 0 in the vacuum.
For the quark matter consisting of a neutral mixture of

quarks (u, d, and s) and leptons (e and µ) in β equilibrium,
the charge neutrality condition is expressed as

2
3nu − 1

3 (nd + ns) − ne − nµ = 0, (23)

the β equilibrium conditions are given by

µs = µd = µu + µe, (24)

µµ = µe. (25)

The coupled equations can be solved self-consistently at a
given baryon density nB = (nu + nd + ns)/3. The total energy
density and pressure including the contributions from both
quarks and leptons are given by

εQP = εNJL +
∑
l=e,µ

1

π2

∫ kl
F

0

√
k2 + m2

l k
2dk, (26)

PQP =
∑

i=u,d,s,e,µ

niµi − εQP. (27)

IV. HADRON-QUARK PHASE TRANSITION

In this section, we study the hadron-quark phase transition
which may occur in the core of massive neutron stars. It
has been discussed extensively in the literature that a mixed
phase of hadronic and quark matter could exist over a finite
range of pressures and densities according to the Gibbs
criteria for phase equilibrium. In the mixed phase, the local
charge neutrality condition is replaced by a global one. This
means that both hadronic and quark matter are allowed to be
separately charged. The condition of global charge neutrality
is expressed as

χnQP
c + (1 − χ )nHP

c = 0, (28)

where χ is the volume fraction occupied by quark matter in
the mixed phase, which increases from χ = 0 in the pure
hadronic phase to χ = 1 in the pure quark phase. nHP

c and nQP
c

denote the charge densities of hadronic phase and quark phase,
respectively. Without the constraint of local charge neutrality,
we impose that the two phases are in weak equilibrium and
described by two independent chemical potentials (µn,µe).
The Gibbs condition for phase equilibrium at zero temperature
is then given by

PHP(µn,µe) = PQP(µn,µe). (29)

Using Eq. (29) we can calculate the equilibrium chemical
potentials of the mixed phase where PHP = PQP = PMP holds.
The energy density and the baryon density in the mixed phase
are given by

εMP = χεQP + (1 − χ )εHP, (30)
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FIG. 1. (Color online) The pressure P as a function of the baryon
density nB . The shaded regions correspond to the mixed phase (MP).
The dashed and dot-dashed lines show the pressures of hadronic phase
(HP) and quark phase (QP), respectively.

and

nMP
B = χn

QP
B + (1 − χ )nHP

B . (31)

We show in Fig. 1 the possible phase structure of neutron
star matter using the RMF model for the hadronic phase and
the NJL model for the quark phase. To examine the influence
of the hadronic EOS on the hadron-quark phase transition,
we employ two successful parameter sets of the RMF model,
NL3 [28] and TM1 [29], with both the weak and strong YY

interactions. The shaded regions correspond to the mixed
phase. It is shown that a pure hadronic phase is favored at
low density. The mixed phase appears at the critical density
n

(1)
B where the pressure of the pure hadronic phase becomes to

be lower than the pressure of the mixed phase. The fraction
of quark matter χ increases with increasing density in the
mixed phase. It turns to be a pure quark phase at the critical
density n

(2)
B where the pressure of the pure quark phase is

above the pressure of the mixed phase. The critical densities
n

(1)
B and n

(2)
B are sensitive to the RMF parameters used, and

we get n
(1)
B � 0.50 fm−3 (0.71 fm−3) and n

(2)
B � 0.75 fm−3

(0.98 fm−3) for the NL3 parameter set with the weak (strong)
YY interaction, while n

(1)
B � 1.31 fm−3 (1.75 fm−3) and

n
(2)
B � 2.03 fm−3 (2.49 fm−3) are obtained for the TM1 cases.

It is found that the hadron-quark phase transition occurs at
lower densities in the NL3 model than in the TM1 model, and in
general the weak YY interaction leads to an earlier appearance
of the mixed phase. In order to estimate the influence of
hadronic EOS on the deconfinement phase transition, we plot
in Fig. 2 the hadronic EOS in the different cases and the
quark EOS in the NJL model with local charge neutrality as
a function of the neutron chemical potential µn. The crossing
of the hadronic EOS with the quark EOS marks the transition
point between the charge neutral hadronic matter and quark
matter. It is seen that the NL3 model favors the phase transition
at a lower µn. A more realistic treatment of the phase transition
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FIG. 2. (Color online) The pressure P as a function of the neutron
chemical potential µn for hadronic and quark matter with local charge
neutrality. The crossing of the hadronic EOS with the quark EOS
(NJL) marks the transition point between the charge neutral hadronic
matter and quark matter.

is to release the constraint of local charge neutrality, which
leads to the existence of the mixed phase of charged hadronic
and quark matter over a finite range of pressures and densities
as shown in Fig. 1. In general, a harder hadronic EOS also
favors an earlier appearance of the mixed phase.

In Fig. 3 we plot the full EOS in the form P = P (ε), which
consists of three parts: (a) the charge neutral hadronic matter
phase at low density (b) the mixed phase of charged hadronic
and quark matter (c) the charge neutral quark matter phase
at high density. The mixed phase part of the EOS is shaded
gray, where the pressure varies continuously. It is shown that
the onset and width of the mixed phase depend on the RMF
parameters used in the calculation. The NL3 model leads to
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FIG. 3. (Color online) The full EOS of neutron star matter in
the form of pressure P versus energy density ε. The shaded regions
correspond to the mixed phase (MP). The dashed and dot-dashed
lines show the pressures of hadronic phase (HP) and quark phase
(QP), respectively.
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FIG. 4. (Color online) The particle fraction Yi = ni/nB as a
function of the total baryon density nB for the NL3 model.

earlier appearance of the mixed phase than the TM1 model, and
the weak YY interaction favors earlier onset of the mixed phase
than the strong YY interaction. This is mainly because that a
harder hadronic EOS prefers an earlier hadron-quark phase
transition. By comparing the results of different cases, we can
see the influence of the hadronic EOS on the hadron-quark
phase transition.

We present in Figs. 4 and 5 the particle fraction Yi =
ni/nB as a function of the total baryon density nB . At low
densities the fractions Yp, Ye, andYµ increase with increasing
density. When the Fermi energy of nucleons exceeds the rest
mass of hyperons, the conversion of nucleons to hyperons is
energetically favorable, and it can relieve the Fermi pressure of
nucleons. The fraction of hyperons increases with increasing
density before the mixed phase occurs. Quarks appear at
the critical density n

(1)
B , then the fractions Yu, Yd , and Ys

increase rapidly with increasing density. The hadronic matter
completely disappears at the critical density n

(2)
B where the

pure quark phase occurs. At extremely high density, Yu ∼
Yd ∼ Ys ∼ 1/3 due to the restoration of chiral symmetry. It is
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FIG. 5. (Color online) The particle fraction Yi = ni/nB as a
function of the total baryon density nB for the TM1 model.
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FIG. 6. (Color online) The mass-radius relation for neutron stars.

shown that the composition of neutron star matter depends on
the RMF parameters used in the calculation.

V. NEUTRON STARS PROPERTIES

In this section, we investigate the properties of neutron
stars by solving the Tolman-Oppenheimer-Volkoff equation
with the EOS over a wide density range. For the nonuniform
matter at low density, which exists in the inner and outer crusts
of neutron stars, we adopt a relativistic EOS based on the
RMF theory with a local density approximation [21,22]. The
nonuniform matter is modelled to be composed of a lattice of
spherical nuclei immersed in an electron gas with or without
free neutrons dripping out of nuclei. The low density EOS is
matched to the EOS of uniform hadronic matter at the density
where they have equal pressures. The pure hadronic phase
ends at the critical density n

(1)
B , and the pure quark phase

starts at the critical density n
(2)
B . The values of these critical

densities depend on the RMF parameters used. The neutron
star properties are mainly determined by the EOS at high
density. We calculate neutron star profiles in order to examine
whether or not the deconfined quark phase can exist in the core
of neutron stars.

In Fig. 6 we present the mass-radius relation using the EOS
of the NL3 and TM1 models with both the weak and strong YY

interactions. It is shown that the results depend on the RMF
parameters used in the calculation. Since the pressure and

density inside neutron stars decrease from the center to the
surface, the most possible region where the deconfined quark
phase can exist is the center of the neutron star with maximum
mass. We list in Table III the properties of neutron stars with
the maximum mass. It is found that the central baryon density
nc is between n

(1)
B and n

(2)
B for the NL3 model. This means

that the neutron star can possess a mixed phase core, but it is
not dense enough to possess a pure quark core. On the other
hand, the values of nc in the TM1 model are smaller than
n

(1)
B , which means that the neutron star is only composed of

hadronic matter. As can be seen in Table III, the neutron star
properties significantly depend on the RMF parameters used.

VI. CONCLUSIONS

We have studied the hadron-quark phase transition at high
density, which may occur in the core of massive neutron stars.
In the present work, we have adopted the RMF theory to
describe the hadronic matter phase, while the NJL model has
been used for the quark matter phase. With a definite EOS
for the quark phase, we examine the influence of the hadronic
EOS on the deconfinement phase transition and neutron star
properties. In this paper, we employ two successful parameter
sets of the RMF model, NL3 and TM1, which have been
widely used for the description of nuclear matter and finite
nuclei including unstable nuclei. For each parameter set of the
nucleonic sector, we consider two cases of hyperon-hyperon
interactions, the weak and strong YY interactions. The hadron-
quark phase transition can proceed through a mixed phase of
hadronic and quark matter over a finite range of pressures and
densities according to the Gibbs criteria for phase equilibrium.
We have found that the mixed phase starts at n

(1)
B � 0.50 fm−3

(0.71 fm−3) and ends at n
(2)
B � 0.75 fm−3 (0.98 fm−3) for the

NL3 parameter set with the weak (strong) YY interaction,
while n

(1)
B � 1.31 fm−3 (1.75 fm−3) and n

(2)
B � 2.03 fm−3

(2.49 fm−3) have been obtained for the TM1 cases. It is
shown that the hadron-quark phase transition occurs at lower
densities in the NL3 model than in the TM1 model, and in
general the weak YY interaction leads to an earlier appearance
of the mixed phase. By comparing the results with different
parametrizations in the RMF model, we can see how sensitive
the deconfinement phase transition is to the hadronic EOS used
in the calculation.

We have calculated the properties of neutron stars using the
EOS over a wide density range. The star properties such as

TABLE III. The properties of neutron stars with the maximum mass Mmax. The central energy density,
pressure, and baryon number density are denoted by εc, Pc, and nc, respectively. R and RMP denote the
radii of the star and its mixed phase core.

Mmax εc Pc nc R RMP

(M
) (1015 g/cm3) (1035 dyn/cm2) (fm−3) (km) (km)

NL3 (weak YY ) 2.02 1.42 2.08 0.69 13.80 4.21
NL3 (strong YY ) 2.05 1.46 2.62 0.71 13.48 0.31
TM1 (weak YY ) 1.71 1.50 2.08 0.75 13.07 –
TM1 (strong YY ) 1.62 1.23 1.32 0.63 13.62 –
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their masses and radii are mainly determined by the EOS at
high density. We have found the maximum mass of neutron
stars falls in the range 1.62 ∼ 2.05M
 for the RMF parameters
used. With the NL3 model, the mixed phase can exist in the
core of massive neutron stars, but no pure quark phase can
exist. For the TM1 model, the neutron star is not dense enough
to possess the mixed phase, and therefore the hadron-quark
phase transition could not occur inside neutron stars in this
approximation. We conclude that the maximum mass and
composition of neutron stars depend on the hadronic EOS
adopted in the calculation.

It is very interesting to compare our results with those
previously published in the literature [5–8]. In Ref. [5], the
authors studied the possible hadron-quark phase transition
utilizing the same NJL model as used in the present work to
describe the deconfined quark phase, while the hadronic phase
was described by several RMF models (TM1, TM2, GL85, and
GPS as listed in Table I of Ref. [5]). Comparing with our cases,
different hyperon potentials were used to constrain the hyperon
couplings, but some of their values are not supported by recent
experimental observations. They found that the use of the GPS
model for the hadronic phase leads to the onset of the mixed
phase at the energy density ε ≈ 7ε0 (ε0 = 140 MeV/fm3 is
the normal nuclear energy density), while the mixed phase
does not appear below ε ≈ 10ε0 for the TM1, TM2, and GL85
models. They concluded that within the model constructed in
their calculation the appearance of deconfined quark matter in
the center of neutron stars turns out to be very unlikely. This
is consistent with our results although the hyperon couplings
are different between our study and theirs. In Ref. [6], the
authors employed an extended MIT bag model to describe
the quark phase and four RMF models (TM1, TM2, GL85,
and GPS) to describe the hadronic phase. They studied the
influence of different hadronic EOS and the influence of
the model parameters of the quark phase on the properties
of the phase transition. Using the MIT bag model, they found
the mixed phase could appear below ε ≈ 2ε0, which is much
lower than the threshold density obtained using the NJL model.
This can be seen by comparing Fig. 4 of Ref. [6] with Fig. 9 of
Ref. [5] and Fig. 3 of the present paper. In Ref. [7], the authors
investigated the deconfinement phase transition at zero and
finite temperature using both the MIT bag model and the NJL
model for describing the quark phase and a RMF model (GL
model) for the hadronic phase. For the NJL model, however,
they adopted another parameter set which favors an earlier
onset of the mixed phase than the parameter set used in our
calculation. For the hyperon couplings, they used three choices

and verified that for the NJL model the onset of the mixed phase
is very sensitive to the choice of the hyperon couplings. Using
the NJL model for the quark phase, they obtained two different
behaviors. One is the hyperons appear before the quarks and
the mixed phase occurs at much higher densities (∼5ρ0 with
the normal nuclear matter density ρ0 = 0.153 fm−3). The other
is the quarks appear at lower densities than the hyperons and
the mixed phase occurs at ∼2ρ0. For almost all EOS used in
their study, the central energy density of the maximum-mass
neutron star falls inside the mixed phase, so the star can
contain a core constituted by a mixed phase, but it is not
dense enough to possess a pure quark core. In Ref. [8], the
authors investigated the deconfinement phase transition using
an effective-field-theory-motivated RMF (E-RMF) model for
the hadronic phase and considering both unpaired quark matter
(UQM) described by the MIT bag model and paired quarks
described by the color-flavor locked (CFL) phase for the
quark phase. They mentioned that they could not get any
mixed phase with the original G2 parameter set in the E-RMF
model, so they changed incompressibility K from 215 to
300 MeV and the effective mass m∗

N/mN from 0.664 to 0.7
to determine a modified parameter set G2∗ as given in Table I
of Ref. [8]. For the hyperon couplings, they assumed that all
the hyperons in the octet have the same couplings. Using the
G2∗ parameter set in the E-RMF model for the hadronic phase
and B1/4 = 170 MeV in the UQM model for the quark phase,
they obtained the onset of the mixed phase at ∼1.3ρ0, while
the appearance of the mixed phase starts at ∼2.4ρ0 using the
CFL model with B1/4 = 188 MeV for the quark phase. In our
cases, the mixed phase occurs at ∼ 3.3ρ0 (8.6ρ0) using the NL3
(TM1) model with the weak YY interaction for the hadronic
phase and the NJL model for the quark phase. For simplicity,
we have not considered the color-flavor locked phase in the
present work. By comparing all these results, we conclude
that the deconfinement phase transition is very sensitive to
both the hadronic EOS and the quark EOS, whether or not the
deconfined quark matter appears in the center of neutron stars
depends on the models adopted in the calculation.
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