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Description of double β decay within the continuum quasiparticle random-phase approximation
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A method to calculate the nuclear double beta decay (2νββ and 0νββ) amplitudes within the continuum
quasiparticle random phase approximation (cQRPA) is formulated. Calculations of the ββ transition amplitudes
within the cQRPA are performed for 76Ge, 100Mo, and 130Te. A rather simple nuclear Hamiltonian consisting of
a phenomenological mean field and a zero-range residual particle-hole and particle-particle interaction is used.
The calculated 2νββ amplitudes are almost unaffected when the single-particle continuum is taken into account,
whereas we find a regular suppression of the 0νββ amplitudes that can be associated with additional ground-state
correlations owing to collective states in the continuum. It is expected that inclusion of nucleon pairing in the
single-particle continuum will somewhat compensate this suppression.
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I. INTRODUCTION

Neutrino oscillation experiments have proven that neutrinos
are massive particles (see, e.g., Ref. [1]). However, the absolute
scale of the neutrino masses cannot in principle be deduced
from the observed oscillations. To determine the absolute
neutrino masses down to the level of tens of meV, study of the
neutrinoless double beta decay (0νββ) becomes indispensable.
Furthermore, this process, which violates the total lepton
number by two units, is an experimentum crucis to reveal
the Majorana nature of neutrinos [2–5].

The next generation of experiments (GERDA, CUORE, Su-
perNEMO, etc.) has a great discovery potential for observation
of 0νββ decay and for providing reliable measurements of the
corresponding lifetimes. The determination of the effective
Majorana mass (or relevant GUT and SUSY parameters
depending on what mechanism of the 0νββ decay dominates)
from experimental data can be only as good as the knowledge
of the nuclear matrix elements M0ν on which the 0νββ decay
rates depend. Thus, a better understanding of the nuclear
structure effects important for describing the matrix elements
is needed to interpret the data accurately. It is crucial in this
connection to develop theoretical methods capable of reliably
evaluating the nuclear matrix elements, and to realistically
assess their uncertainties.

At present, the most elaborate analysis of the uncertainties
in the 0νββ decay nuclear matrix elements M0ν calculated
within the quasiparticle random phase approximation (QRPA)
and the renormalized quasiparticle random phase approxima-
tion (RQRPA) has been performed in recent papers [6,7].
The experimental 2νβ−β− decay rates have been used there
to adjust the most relevant parameter, the strength gpp of
the particle-particle interaction. The major observation of
Refs. [6,7] is that such a procedure makes the calculated M0ν

essentially independent of the size of the single-particle (s.p.)
basis of the QRPA (the bases comprising N = 2, 3, and 5 major
oscillator shells were used). Furthermore, the matrix elements
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have been demonstrated to also become rather stable with
respect to the possible quenching of the axial vector coupling
constant gA.

The calculations in Refs. [6,7] were performed within
“the standard QRPA” scheme in which a discrete s.p. basis
and the harmonic oscillator wave functions as the s.p. wave
functions are used to build the BCS ground state and the
spectrum of the excited states. Keeping in mind that many
multipoles contribute appreciably to M0ν , one can a priori
expect that enlargement of the model space should lead to
more accurate matrix elements M0ν . (In other words, any
basis truncation leads to an uncertainty.) This should be
contrasted with the case of the 2νββ amplitude to which
only Gamow-Teller transitions contribute and a s.p. basis of
N = 1–2 major shells is good enough. In this respect, it would
be interesting to test the stability of the calculated M0ν found in
Refs. [6,7] by letting N → ∞. Thus, if one could include the
entire s.p. basis into the calculation scheme, the question about
the dependence of the QRPA results on size of the s.p. basis as a
source of the uncertainties in the calculated M0ν would become
irrelevant.

There is no problem within the QRPA for including
low-lying major shells composed of bound s.p. states into
the model space. But inclusion of major shells lying much
higher than the Fermi level immediately encounters principal
limitations of approximation of the continuum of unbound s.p.
states by discrete levels. Basically, only one major shell, lying
higher than the Fermi shell (already containing quasistationary
states), can safely be considered.

The only possible way to treat properly the s.p. contin-
uum is provided within the continuum quasiparticle random
phase approximation (cQRPA). The continuum random phase
approximation (cRPA) was formulated about 30 years ago in
the pioneering work of Shlomo and Bertsch [8] and since
then has been used to successfully describe structure and
decay properties of various giant resonances [9], muon capture
[10], and neutrino-nucleus reactions with large momentum
transfer [11]. To apply the cRPA in open-shell nuclei one
has to take nucleon pairing into consideration. This requires
development of a quasiparticle version of the cRPA, namely,
a continuum QRPA approach. Such a cQRPA approach to
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describing charge-exchange excitations has been developed
in Refs. [12,13].

The cQRPA provides a regular way of using realistic
wave functions of unbound s.p. states in terms of the s.p.
Green’s functions without the need to approximate them by the
oscillator ones. Moreover, having an alternative formulation of
the QRPA can help to understand current QRPA results and
their deficiencies.

Two principal effects of taking into account the s.p. con-
tinuum within the proton-neutron QRPA (pn-QRPA), which
affect the calculated values of M0ν in an opposite way, can be
expected. First, additional ground-state (g.s.) correlations can
appear because of collective multipole states in the continuum,
which generally have a tendency to decrease M0ν . Second,
pairing in the continuum can increase 0νββ matrix element
M0ν (see the relevant discussion in Ref. [14]).

The principal aim of this work is to formulate for
the first time a nuclear structure framework for calculating
the double beta decay matrix elements M2ν and M0ν within
the cQRPA and to test within this method the stability of the
calculated M0ν found in Refs. [6,7]. As a first step, a simpler
version of the cQRPA with nucleon pairing realized only on a
discrete basis is applied in the present work; therefore, the
calculated M0ν values of this paper should be considered
lower limits for the matrix elements within the cQRPA. To
consistently include nucleon pairing in the continuum within
the cQRPA is a formidable task and is postponed to future
publications.

We merely focus here on a qualitative discussion of the
relative effect obtained within the cQRPA in comparison with
the standard discrete QRPA. Therefore, the M0ν values of
the present work may be somewhat different from those of
Refs. [6,7] since we have not implemented the most elaborate
representation for the neutrino potential (modified by the finite
nucleon size correction, higher order terms of the nucleon
weak current, etc.; see, e.g., Ref. [7]). The nucleon-nucleon
short-range correlations (SRC) are implemented here in the
usual way, in terms of the Jastrow-like functions [15]. This,
however, might lead to a overestimation of the effect of the
SRC (see the recent discussion in Refs. [14,16]).

The paper is organized as follows: The pn-QRPA equations
in the coordinate presentation and the way to take into account
the s.p. continuum in them are given in the first two parts
of Sec. II. In the latter two parts of that section formulas for
calculating strength functions and M2ν and M0ν are presented.
In Sec. III we present the results and we give conclusions in
Sec. IV.

II. CONTINUUM QRPA

Since its formulation in the pioneering work of Shlomo
and Bertsch [8], the cRPA has long been used to successfully
describe structure and decay properties of various giant
resonances and their high-lying overtones embedded in the
single-particle continuum. The structure of the overtones
is formed by the s.p. excitations changing the s.p. radial
quantum number (which correspond to transitions over two
or more major shells). Their contribution to the nuclear

multipole response is marked if probe operators have nontrivial
radial dependence, which is the case, for example, for
muon capture [10] and neutrino-nucleus reactions with large
momentum transfer [11]. The direct nucleon decay of various
giant resonances and their overtones has been extensively
analyzed within the cRPA by Urin and collaborators (see, e.g.,
Ref. [9]).

To apply the cRPA in open-shell nuclei one has to take
nucleon pairing into consideration. This requires develop-
ment of a quasiparticle version of the cRPA, namely, the
cQRPA approach. The approach should account for the
important influence of the residual particle-particle (p-p)
interaction along with the particle-hole (p-h) one included
within the usual cRPA. Such a cQRPA approach based on
the coordinate space Hartree-Fock-Bogolyubov formalism has
been formulated and applied recently to describe strength
functions of different multipole excitations without charge
exchange [17].

A pn-cQRPA approach to describing charge-exchange
excitations was developed in Ref. [12] and, independently,
in Ref. [13]. In Ref. [18] the approach was applied to analyze
the low-energy part of the Gamow-Teller (GT) strength
distribution relevant for description of single beta decay in
astrophysical applications. In Ref. [13] the Fermi and GT
strength distributions in semimagic nuclei were described
within a wide excitation-energy interval that includes the
overtones of the IAS and GTR, the so-called monopole and
spin-monopole resonances.

In describing the 0νββ decay, some transition strength into
the s.p. continuum is missing within the standard QRPA cal-
culation scheme, especially for the high-multipole excitations
with L � 2 (compare, e.g., with the description of muon capture
where the contribution of the highly excited giant resonances
dominates [10]). The contribution of these multipoles to M0ν

becomes particularly important because the monopole (Fermi
and Gamow-Teller) contributions are suppressed by symmetry
constraints. (See, e.g., the multipole decomposition of M0ν in
Fig. 5 of Ref. [7]; for a recent general discussion of how
the SU(4)-symmetry violation by the residual p-p interaction
affects M2ν see Ref. [19].) Thus, M0ν gets strongly suppressed
by the g.s. correlations, short-range correlations, etc.; therefore
fine effects (such as influence of the s.p. continuum) can be
expected to come into play. The first attempt to briefly describe
the ββ observables within the pn-cQRPA was undertaken
in Ref. [20].

A. pn-QRPA equations in coordinate representation

The system of homogeneous equations for the forward and
backward amplitudes X(Jπ s)

πν and Y (Jπ s)
πν , respectively, is usually

solved to calculate the energies ωs and the wave functions
|JπM, s〉 of excited states in isobaric odd-odd nuclei within
the pn-QRPA (see, e.g., Refs. [2,21]; here “s” labels the
different QRPA states). However, it is impossible to handle an
infinite number of amplitudes X, Y if one wants to include the
continuum of unbound s.p. states. Instead, by going into the

025502-2



DESCRIPTION OF DOUBLE β DECAY WITHIN THE . . . PHYSICAL REVIEW C 77, 025502 (2008)

coordinate representation the pn-QRPA can be reformulated in
equivalent terms of four-component radial transition density
{�(JLS)

I,s }(I = 1, . . . , 4) defined for each state |JπM, s〉. The
components are determined by the standard QRPA amplitudes
X and Y as follows:

�
(JLS)
I,s (r) =

∑
πν

Rπν
I,s χπν(r),

(1)


Rπν
p-h

Rπν
h-p

Rπν
p-p

Rπν
h-h




s

=




uπvνXπν + vπuνYπν

uπvνYπν + vπuνXπν

uπuνXπν − vπvνYπν

uπuνYπν − vπvνXπν




s

,

where u and v are the coefficients of Bogolyubov transforma-
tion and χπν(r) = t

(JLS)
(π)(ν) χπ (r)χν(r) with (π ) = (jπ lπ )[(ν) =

(jνlν)] and r−1χπ (r)[r−1χν(r)] being the s.p. proton (neutron)
quantum numbers and radial wave functions, respectively.
In Eq. (1) the spin-angular variables are already sepa-
rated out since the nuclear response to a probe operator
having definite spin-angular symmetry determined by the
irreducible spin-angular tensor TJLSM (n) is calculated, and
t

(JLS)
(π)(ν) = 1√

2J+1
〈π‖TJLS‖ν〉 represents the corresponding re-

duced matrix element. Hereafter, we shall systematically
omit the superscript “(JLS)” when it does not lead to
confusion.

According to the definition of Eq. (1), the elements
�1, �2, �3, and �4 can be called the particle-hole, hole-particle,
particle-particle ,and hole-hole components of the transition
density, respectively, and can be generally considered as a four-
dimensional vector:{�J

I }. In particular, the transition matrix
element to a state |s, JM〉 corresponding to a particle-hole
operator

V̂
(−)
JLSM =

∑
a

VJLSM (xa)τ−
a , (2)

VJLSM (xa) = V(JLS)(ra)TJLSM (na) (3)

is determined by a one-dimensional integral of the product
of the element �1 and the radial dependence of the operator
[Eqs. (2) and (3)]:

〈JπM|V̂ (−)
JLSM |0〉 =

∫
�

(JLS)
1 (r)V(JLS)(r)dr. (4)

The pn-QRPA system of integral equations for the elements
�

(JLS)
I,s follows from the standard pn-QRPA equations for the

X and Y amplitudes (see, e.g., Refs. [2,21]) by making use of
the definition from Eq. (1):

�
(JLS)
I,s (r) =

∑
K

∫
A

(JLS)
IK (rr ′, ω = ωs)

×F
(JLS)
K (r ′r ′′)�(JLS)

K,s (r ′′)dr ′dr ′′. (5)

Here, (rr ′)−1F
(JLS)
K (r, r ′) is the radial part of the residual inter-

action in the K channel (where K = 1, 2 for the p-h channel
and K = 3, 4 for the p-p channel and the so-called
symmetric approximation is used here). The 4 × 4 ma-
trix (rr ′)−1AIK (r1r2, ω) is the radial part of the free

two-quasiparticle propagator (response function):

AIK (r1r2, ω) =
∑
πν

Aπν
IK (ω)χπν(r1)χπν(r2),

Aπν
KI = Aπν

IK,

Aπν
11 = u2

πv2
ν

ω − Eπν

+ u2
νv

2
π

−ω − Eπν

,

Aπν
33 = u2

πu2
ν

ω − Eπν

+ v2
νv

2
π

−ω − Eπν

,

Aπν
13 = uνvν

(
u2

π

ω − Eπν

− v2
π

−ω − Eπν

)
, (6)

Aπν
14 = −uπvπ

(
v2

ν

ω − Eπν

− u2
ν

−ω − Eπν

)
,

Aπν
12 = −Aπν

34 = uπvπvνuν

ω − Eπν

+ uπvπvνuν

−ω − Eπν

,

Aπν
22 (ω) = Aπν

11 (−ω), Aπν
44 (ω) = Aπν

33 (−ω),

Aπν
23 (ω) = Aπν

14 (−ω), Aπν
24 (ω) = Aπν

13 (−ω),

with Eπν = Eπ + Eν , where Eπ and Eν are the proton and
neutron quasiparticle energy, respectively. The expressions for
the elements of the free two-quasiparticle propagator AIK can
also be obtained by making use of the regular and anomalous
s.p. Green’s functions for Fermi systems with nucleon pairing
(see, e.g., Ref. [13]), in an analogous way to that described in
the monograph [22] for response of Fermi systems to a s.p.
probe operator acting in the neutral channel.

These equations allow a compact schematic representation
when the spin-angular variables are not separated out. In
such a case, the substitutions ra → xa, χα(r) → χα(x), � →
�, AIK → AIK , and FK → FK have to be made and the factor
t (JLS) should be omitted in the formulas. Then, schematically
denoting the double integration over x′, x′′ in Eq. (5) as {. . .},
one can rewrite the equation as

�I = {AIKFK�K}, (7)

where summation over the repeated index K on the right-hand
side is assumed.

The total two-quasiparticle propagator (two-quasiparticle
Green function) Ã that includes the QRPA iterations of the p-h
and p-p interactions is very useful in practical applications. It
satisfies an integral equation of the Bethe-Salpeter type ÃIK =
AIK + {AIK ′FK ′ÃK ′K}:

Ã
(JLS)
IK (rr ′, ω) = A

(JLS)
IK (rr ′, ω) +

∑
K ′

∫
A

(JLS)
IK ′ (rr1, ω)

×F
(JLS)
K ′ (r1r2)Ã(JLS)

K ′K (r2r
′, ω)dr1dr2. (8)

The following spectral decompositions hold for the radial
components Ã11(ω), Ã12(ω), and Ã22(ω):

Ã11(r1r2, ω) =
∑

s

�s
1(r1)�s

1(r2)

ω − ωs + iδ
−

∑
s

�s
2(r1)�s

2(r2)

ω + ωs − iδ
,

Ã22(r1r2, ω) = Ã11(r1r2,−ω), (9)

Ã12(r1r2, ω) =
∑

s

�s
1(r1)�s

2(r2)

ω − ωs + iδ
−

∑
s

�s
2(r1)�s

1(r2)

ω + ωs − iδ
.
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These components are the only ones that will be needed
in the following for description of single and double beta
decay transition probabilities. The spectral decompositions
for the other elements of Ã can readily be written down in
analogy to Eqs. (9). Thus, one sees from Eqs. (9) that all
the information about the QRPA solutions [energies ωs and
transition densities �I,s(r)] resides in the poles of the total
two-quasiparticle propagator Ã.

In this paper, the residual isovector particle-hole interaction
and the particle-particle interaction in both the neutral (pairing)
and charge-exchange channels are chosen in the form of the
Landau-Migdal forces of zero range (proportional to the spatial
δ function) [22], which is similar to the choice of Refs. [23,24].
The effective isovector particle-hole interaction FK (for K =
1, 2) is given by

FK (x1, x2) = C0
(
f 0

ph + f 1
phσ 1 · σ 2

)
τ 1 · τ 2δ(r1 − r2), (10)

where f 0
ph and f 1

ph are the phenomenological Landau-Migdal
parameters. Hereafter, all the strength parameters of the
residual interactions are given in units of C0 = 300 MeV fm3.

The residual p-p interaction FK (for K = 3, 4) is given by
a similar expression:

FK (x1, x2) = −C0
(
g0

pp + g1
ppσ 1 · σ 2

)
δ(r1 − r2), (11)

and the pairing interaction is

Fpair(x1, x2) = −C0g
pairδ(r1 − r2). (12)

The pairing strengths g
pair
n and g

pair
p for neutron and proton

subsystems are fixed within the BCS model to reproduce the
experimental neutron and proton pairing energies. All the other
strength parameters in the particle-particle channel are always
given relative to (gpair

n + g
pair
p )/2.

B. Taking the single-particle continuum into consideration

The coordinate-space version of the pn-QRPA described in
the preceding section is especially suitable for taking the s.p.
continuum into consideration. But before proceeding with the
continuum, it is worth noting that if one lets the double sums
in Eq. (6) run just over finite sets of proton and neutron s.p.
states, the presented version of the pn-QRPA is fully equivalent
to the usual “discrete” one, which is formulated in terms of
X and Y amplitudes. We make use of this fact to check the
calculation scheme by comparing “discrete” QRPA results
calculated in these two different, but formally equivalent,
ways. As anticipated, the results are the same within the
accuracy of the numerical techniques used.

To take the s.p. continuum into consideration, the double-
sum representation for the free response function [Eq. (6)]
should be transformed according to the following prescription:

(i) The Bogolyubov coefficients vα, uα and the quasi-
particle energies Eα are approximated by their no-
pairing values vα = 0, uα = 1, and Eα = εα − λi for
those s.p. states in the s.p. continuum that lie
far up of the chemical potential λi [i.e., εα −
λi � �α , where i = p (protons) or n (neutrons)].
The accuracy of this approximation is �

|ε−λ| , which is
good enough already for εα − λi � Emax 	 10 MeV.

The usual BCS representations for vα, uα , and Eα are
taken for all the other s.p. states with εα − λi < Emax.

(ii) The radial single-particle Green’s function

g(α)(r1r2, ε) =
∑
αr

χα(r1)χα(r2)

ε − εα + iδ

is used to explicitly perform the sum over the s.p.
states in the continuum. Here, the sum

∑
αr

runs over
different radial quantum numbers for a given spin-
angular symmetry (α). The Green’s function satisfies
the inhomogeneous radial s.p. Schrödinger equation
[h0(α)(r) − ε]g(α)(rr ′, ε) = −δ(r − r ′) and can be con-
structed as a product of regular and irregular solutions of
the homogeneous equation [h0(α)(r) − ε]χ reg,irreg

(α) (r, ε) =
0 (see, e.g., Refs. [8,21]).

As a result, we get from Eq. (6) the following represen-
tation for the components AIK of the free two-quasiparticle
propagator:

A11(r1r2, ω) =
∑
ν<,π<

v2
νu

2
π

ω − Eπν

χπν(r1)χπν(r2) +
∑

ν<,(π)

(
t

(JLS)
(π)(ν)

)2

× v2
ν χν(r1)χν(r2) g′

(π)(r1r2, λp + ω − Eν)

+{π ↔ ν, ω → −ω},
A12(r1r2, ω) =

∑
ν<,π<

uνvνuπvπ

[
1

ω − Eπν

+ 1

−ω − Eπν

]

×χπν(r1)χπν(r2),

A13(r1r2, ω) =
∑
ν<,π<

uνvν

[
u2

π

ω − Eπν

+ v2
π

−ω − Eπν

]

×χπν(r1)χπν(r2) +
∑

ν<,(π)

(
t

(J )
(π)(ν)

)2
uνvν χν(r1)

(13)×χν(r2) g′
(π)(r1r2, λp + ω − Eν),

A33(r1r2, ω) =
∑
ν<,π<

[
u2

νu
2
π

ω − Eπν

+ v2
νv

2
π

−ω − Eπν

]
χπν(r1)

×χπν(r2) +
∑

ν<,(π)

(
t

(J )
(π)(ν)

)2
u2

ν χν(r1)χν(r2) g′
(π)

× (r1r2, λp + ω − Eν) +
∑

π<,(ν)

(
t

(J )
(π)(ν)

)2
u2

π

×χπ (r1)χπ (r2) g′
(ν)(r1r2, λn + ω − Eπ ),

A44(ω) = A33(−ω), A14(ω) = A13(−ω, π ↔ ν),

A24(ω) = A13(−ω), A23(ω) = A13(ω, π ↔ ν),

where π<(ν<) means π � πmax(ν � νmax), πmax(νmax) is the
s.p. state with the largest energy included in the BCS basis
for which Eπmax = επmax − λp(Eνmax = ενmax − λn) with the
acceptable accuracy as previously described, and

g′
(π)(r1r2, ε) = g(π)(r1r2, ε) −

∑
πr<

χπ (r1)χπ (r2)

ε − επ

(14)

is the subtracted radial s.p. Green’s function (the Green’s
function from which the contribution of all discrete s.p. states
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and those quasidiscrete s.p. states included in the BCS basis is
subtracted).

C. Strength functions

Different strength functions can be readily calculated in
terms of the imaginary part of the total two-quasiparticle
propagator ImÃ. The strength function corresponding to a
charge-exchange single-particle operator V

(∓)
Jµ acting in the

β(∓) channel,

V̂
(∓)
JLSM =

∑
a

VJLSM (xa)τ (∓)
a , (15)

where VJLSM (xa) is given by Eq. (3), is defined by the usual
expression:

S(∓)(ω) =
∑

s

∣∣〈JπM, s|V̂ (∓)
JLSM |0〉∣∣2

δ(ω − ω∓
s ),

with ω∓
s = E∓

s − E0 being the excitation energy of the
corresponding isobaric nucleus (N ∓ 1, Z ± 1) relative to the
ground state |0〉 of the parent nucleus (N,Z) with energy
E0. Making use of the spectral decomposition [Eqs. (9)] one
can easily verify the following integral representations of the
strength functions:

S(−)(ω−) = − 1

π
{VÃ11(ω)V} = − 1

π
Im

∫
V(JLS)

× (r1)Ã(JLS)
11 (r1r2; ω)V(JLS)(r2)dr1dr2, (16)

S(+)(ω+) = − 1

π
{VÃ22(ω)V} = − 1

π
Im

∫
V(JLS)

× (r1)Ã(JLS)
22 (r1r2; ω)V(JLS)(r2)dr1dr2, (17)

where ω∓ = ω ± (λp − λn) ± (mn − mp) represents the cal-
culated excitation energy relative to the g.s. of the parent
nucleus and mp and mn are the proton and neutron masses.
The pn-QRPA excitation spectrum, originally calculated in
terms of ω, gets a constant energy shift to be represented
in terms of ω∓, because the modified nuclear Hamiltonian
Ĥ − λpẐ − λnN̂ (as in the BCS model) is used within the
QRPA and the model nuclear Hamiltonian does not contain
the rest energies of nucleons.

One can also define a nondiagonal strength function as

S
(−−)
V (ω) =

∑
s

〈0′|V̂ (−)
JLSM̄

|JπM, s〉〈JπM, s|

× V̂
(−)
JLSM |0〉δ(ω − ω′

s), (18)

with ω̄s = Es − (E0 + E0′ )/2 = (ω−
s + ω′+

s )/2 and V̂
(−)
JLSM̄

being the time reverse of V̂
(−)
JLSM . Such a strength function

is closely related to the amplitude of the 2νββ decay, when |0〉
and |0′〉 are the g.s. wave functions of the initial (decaying)
and final (product) nuclei, respectively.

To calculate S
(−−)
V (ω) within the pn-QRPA one faces the

usual problem that the spectrum |s〉 comes out slightly different
when calculated with respect to |0〉 or |0′〉. Identifying the

QRPA vacuum |0′〉 with that of |0〉, one gets ω̄s = ωs and

S(−−)(ω) = − 1

π
{VÃ12(ω)V}

= − 1

π
Im

∫
V(JLS)(r1)Ã(JLS)

12

× (r1r2; ω)V(JLS)(r2)dr1dr2 (19)

or, alternatively, identifying |0〉 with |0′〉

S(−−)(ω) = − 1

π
{VÃ′

12(ω)V}

= − 1

π
Im

∫
V(JLS)(r1)Ã′(JLS)

12

× (r1r2; ω)V(JLS)(r2)dr1dr2, (20)

where Ã′ is calculated with respect to the g.s. |0′〉 of the final
nucleus.

D. Description of ββ decay within the cQRPA

The spectral decomposition of the two-quasiparticle prop-
agator Ã [Eqs. (9)] can be used for calculation of ββ decay
matrix elements in a similar way as described in Sec. II C for
S(−−)(ω) [Eq. (19)].

The 2νββ decay amplitude M2ν
GT is defined by the following

expression:

M2ν
GT =

∑
s

〈0′‖Ĝ(−)‖s〉〈s‖Ĝ(−)‖0〉
ω̄s

, (21)

where Ĝ(−) = ∑
a σ aτ

−
a and again ω̄s = Es − (E0 +

E0′ )/2 = (ω−
s + ω′+

s )/2.
By using the spectral decomposition of Eqs. (9) for

(JLS) = (101) and the approximation that the QRPA vacuum
|0′〉 of the final g.s. is the same as |0〉 of the initial g.s. (the
same approximation as used in Refs. [23,24]), the amplitude
[Eq. (21)] is simply given by one-half of the corresponding
static nuclear polarizability with respect to the external s.p.
field σ τ−:

M2ν
GT = −1

2
{σ Ã12(ω = 0)σ }

= −6π

∫
Ã

(101)
12 (r1r2; ω = 0)dr1dr2

where ω̄s = ωs is used consistently in this approximation.
The same procedure can be applied to calculate within the

cQRPA the matrix element 〈0′|Ŵ (−−)|0〉 of a two-body scalar
operator

Ŵ (−−) =
∑
ab

W(xa, xb)τ (−)
a τ

(−)
b ,

(22)
W(xa, xb) =

∑
JLSM

W(JLS)(ra, rb)TJLSM (na)T ∗
JLSM (nb),

between the ground states |0〉 and |0′〉. It is given by a sum of
all partial contributions M (JLS):

M (−−) = − 1

π

∫
dω Im{WÃ12(ω)} =

∑
JL

M (JLS), (23)
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M (JLS) = − (2J + 1)

π

∫
dω

∫
W(JLS)(r1, r2)

× ImÃ
(JLS)
12 (r1r2; ω)dr1dr2 (24)

(where the identification of the ground states as described
previously has to be done).

The neutrino potential appearing in the description of the
0νββ decay (see, e.g., Refs. [2,3]),

Ŵ
(−−)
0ν =

∑
ab

Pν(rab)

(
σ a · σ b − g2

V

g2
A

)
τ−
a τ−

b , (25)

in the simplest Coulomb approximation Pν(|
ra − 
rb| ≡ rab) =
R/rab (with R = 1.23 A1/3 fm being the nuclear radius) has
the well-known partial radial components W(JLS)(ra, rb) =

4π
2L+1

R
r>

( r<

r>
)L [where r< = min(ra, rb) and r> = max(ra, rb)].

When one takes into account both the energy dependence of the
neutrino potential Pν = Pν(rab, ω) and the usual modification
Pν → Pνf

2
J with the Jastrow-like function fJ (rab) = 1 −

e−γ1r
2
ab (1 − γ2r

2
ab) to account for the SRC of the two initial

neutrons and two final protons, the decomposition of the
neutrino potential over the Legendre polynomials PL can be
done numerically:

W 0ν
(JLS)(r1, r2, ω)

= (2L + 1)

2

∫ π

0
d cos θ12PL(cos θ12)Pν(r12, ω). (26)

In this first application of the cQRPA the corrections from
the high-order terms in the nucleonic weak current and the
finite nucleon size are omitted, which can lead to a slight
overestimation of the calculated M0ν by 20–30% [7].

Note that, within the cQRPA, in contrast to the discrete
QRPA, one does not get an explicit set of QRPA energies and
the energy integrations in the expressions for M0ν [Eqs. (23)
and (24)] have to be performed on a mesh. For each point in
the energy mesh the cQRPA equations [Eqs. (8)] are solved by
discretizing the spatial integrals, thereby transforming them to
a matrix representation. All this makes the calculation of M2ν

and M0ν rather time consuming. Implementation of adaptive
integration methods helps to optimize the integration over the
energy.

III. CALCULATION RESULTS

We perform the first calculations of the ββ transition
amplitudes M2ν and M0ν within the cQRPA for 76Ge, 100Mo,
and 130Te. We also compare the results obtained with those
calculated within the usual “discrete” version of the QRPA to
see the influence of the single-particle continuum.

For the first calculations of M2ν and M0ν within the
continuum QRPA we adopt a rather simple nuclear Hamil-
tonian similar to that used in Refs. [23,24]. The chosen
nuclear mean field U (x) consists of the phenomenological
isoscalar part U0(x) along with the isovector U1(x) and the
Coulomb UC(x) parts, both calculated consistently in the
Hartree approximation (see Ref. [13]). The residual isovector
particle-hole interaction and the particle-particle interaction in
both the neutral (pairing) and charge-exchange channels are

chosen in the form of zero-range forces [Eqs. (10)–(12)]. All
the strength parameters of the residual interactions are given
in units of 300 MeV fm3.

The results calculated within the discrete QRPA, labeled
A, B, and C, refer to the different s.p. bases used. Case A
corresponds to the large s.p. basis in the calculations: 16
successive s.p. levels comprising N = 1–5 major Saxon-
Woods shells for 76Ge and 100Mo and 22 successive s.p. levels
(all bound s.p. states for neutrons and all bound s.p. states
along with 6 quasistationary states for protons) comprising
N = 1–6 major shells for 130Te. Note that the same s.p. basis
is used within the cQRPA as in the BCS problem. Case B
corresponds to the small s.p. basis and is obtained from A
by subtracting the six lowest s.p. levels comprising N = 1–3
major shells (inert core of 40Ca). Case C corresponds to the
solution of the QRPA equations in the large basis A, in which,
however, the BCS problem is solved in the small basis B
(i.e., the Bogolyubov coefficients vα = 1 are taken for the six
lowest s.p. levels). This tests the approximations involved in
the current cQRPA calculations, namely, that vα is set exactly
to zero for the s.p. states lying above the BCS basis.

Fixing the model parameters is done in the following way:

(i) The p-h isovector strength f 0
ph is chosen equal to unity

(f 0
ph = 1.0). This allows reproduction of the experi-

mental nucleon binding energies for closed-shell nuclei
by implementing the isospin self-consistency of the
symmetry potential U1(x) of the mean field with the
isovector p-h interaction (see Ref. [13]).

(ii) The p-h spin-isovector strength f 1
ph is fitted to repr-

oduce the experimental energy of the GTR.
(iii) The pairing strengths g

pair
n and g

pair
p are fixed within

the BCS model to reproduce the experimental pairing
energies. As already mentioned, all the other strength
parameters in the particle-particle channel are given
relative to (gpair

n + g
pair
p )/2.

(iv) By choosing the p-p isovector strength g0
pp = 1.0 we

restore approximately the isospin self-consistency of the
total residual p-p interaction.

(v) The p-p spin-isovector strength g1
pp is chosen to repro-

duce the experimental (positive) value of M2ν as done in
Refs. [6,7].

In Fig. 1 the calculated g1
pp dependence of M2ν is plotted.

Calculated M2ν depends on the choice of the g.s. (either initial
or final) with respect to which the QRPA equations are solved.
It can be seen in the figure that the M2ν calculated within the
discrete QRPA and the cQRPA are almost the same at small
values of g1

pp, though the difference becomes visible while g1
pp

grows. Thus, the correction to the M2ν coming from the s.p.
continuum is small, as can be expected for the Gamow-Teller
transitions.

The values of the strength parameters f 1
ph and g1

pp fixed
according to our prescription are listed in Table I for both
the discrete and continuum versions of the QRPA. Because
calculated M2ν depends on the choice of the g.s. (either initial
or final) with respect to which the QRPA equations are solved,
two sets of g1

pp are obtained. The upper and lower lines for
each decay sequence in Table I contain g1

pp fitted for initial
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TABLE I. Choice of the model parameters. See text for explanation of the choices A, B, and C for different
model spaces within the discrete QRPA. The two lines for the parameters of g1

pp for each ββ decay are fitted by
using the QRPA set of the intermediate states built with respect to the g.s of the initial nucleus (e.g., 76Ge) and the
g.s. of the final nucleus (e.g., 76Se). The p-h strength f 1

pp is adjusted to reproduce the energy of the Gamow-Teller
resonance in the initial nucleus (e.g., 76Ge).

Nuclear M2ν
exp, Strength Discrete QRPA Continuum

transition (MeV−1) parameters QRPAA B C

76Ge → 76Se g1
pp 0.98 0.97 0.97 0.91

0.15 g1
pp 1.10 1.10 1.10 1.01

f 1
ph 0.40 0.43 0.43 0.40

100Mo → 100Ru g1
pp 1.28 1.31 1.30 1.10

0.24 g1
pp 1.43 1.50 1.49 1.23

f 1
ph 0.70 0.70 0.70 0.75

130Te → 130Xe g1
pp 1.23 1.25 1.25 1.11

0.03 g1
pp 1.25 1.28 1.28 1.13

f 1
ph 0.60 0.60 0.60 0.63

and final nuclei, respectively. One sees that the difference in
the obtained g1

pp is almost negligible for 130Te → 130Xe, but it
becomes δg1

pp ≈ 0.2 for 100Mo → 100Ru.
The calculated values of M0ν are given in Table II for

both versions of the QRPA for gA = 1.25. The numbers in
parentheses are the matrix elements calculated with inclusion
of the SRC in terms of the Jastrow-like function. The two lines
of results for each ββ decay chain contain M0ν calculated
with respect to the g.s. of the initial or final nucleus in the
decay (see Sec. II D). In the present first application of the
cQRPA, neither the finite nucleon size nor the higher order

0 0.4 0.8 1.2
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M
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)

Cont. (init.)
Disc. (init.)
Cont. (final)
Disc. (final)

0 0.4 0.8 1.2

g
1

pp

-0.4

-0.2

0

0.2

0.4

M
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FIG. 1. (Color online) The calculated dependence of the 2νββ

matrix element on the p-p strength g1
pp in both discrete (set A, dashed

lines) and continuum QRPA (solid lines). The calculations performed
by using the QRPA set of the intermediate states built with respect
to the g.s of the initial nucleus (e.g., 76Ge) and the g.s. of the final
nucleus (e.g., 76Se) are depicted by thick and thin lines, respectively.
The solid horizontal line gives the (positive) experimental value of
the 2νββ decay matrix elements used in the calculation to fit g1

pp.

terms of the nucleon current are considered. (They usually
bring a additional reduction of M0ν by about 30%; see, e.g.,
Ref. [7].)

The contribution of multipoles with L = 0–5 are included
in the calculations of M0ν . The contributions with L > 5
(which can increase M0ν in total by about 10%) are omitted
here as the corresponding parts in the transition operator
probe the short-range behavior of the nucleon-nucleon wave
function that cannot be well described within the QRPA. It
is known that the RPA in medium is formulated to describe
propagation of small-amplitude density fluctuations and only
the ring diagrams are summed (see, e.g., Ref. [25]). This is a
quite suitable approximation to deal with collective long-wave
excitations, but for the short-range ones the diagrams that are
left out of the RPA method become important.

As one sees from comparison of the discrete QRPA results
listed in columns A and B, the calculated M0ν values for
different basis sizes come out very close to each other provided

TABLE II. 0νββ nuclear matrix elements evaluated without and
with (in parentheses) the SRC in both discrete and continuum QRPA.
See text for explanation of the choices A, B, and C for different model
spaces within the discrete QRPA. The two lines of results for each
ββ decay contain M0ν calculated by using the QRPA set of the
intermediate states built with respect to the g.s of the initial nucleus
(e.g., 76Ge) and the g.s. of the final nucleus (e.g., 76Se).

Nuclear Discrete QRPA Continuum
transition

A B C
QRPA

76Ge → 76Se 5.95 (4.30) 5.63 (4.19) 4.30 (3.19) 4.30 (3.09)
5.44 (3.86) 5.22 (3.82) 3.81 (2.76) 3.63 (2.46)

100Mo → 100Ru 5.52 (3.88) 5.35 (3.84) 4.24 (3.00) 2.49 (1.67)
4.19 (2.73) 4.00 (2.65) 2.91 (1.84) 1.39 (0.67)

130Te → 130Xe 3.17 (2.19) 3.14 (2.20) 2.56 (1.78) 1.70 (1.12)
4.69 (3.21) 4.67 (3.21) 3.77 (2.57) 2.03 (1.28)
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the p-p interaction parameter g1
pp is fixed to reproduce the

experimental 2νββ decay matrix elements M2ν
exp. This result

provides an independent confirmation of the main conclusion
of Ref. [7], which is obtained here for a different nuclear
Hamiltonian and by solving the pn-QRPA equations in the
coordinate representation. Also, the M0ν values obtained by
using only the initial QRPA g.s. (upper line) or final one (lower
line) in the calculation are rather closer to each other.

The matrix elements M0ν calculated by taking into account
the SRC in terms of the Jastrow functions get suppressed
by about 25–30% in the present calculation, which is in
quantitative agreement with other recent calculations [7,16]
but do not support the old results of Ref. [24] where the strong
suppression was found. However, one should keep in mind that
this way of describing the SRC can be rather rough and can
lead to overestimation of the suppression of the M0ν . Other
methods for describing the SRC such as UCOM [26] give much
less suppression in the calculated M0ν (only about 10%) and
this important issue is currently under intensive study [14,16].

The matrix elements M0ν calculated within the cQRPA
(the last column of Table II) are systematically smaller than
the discrete QRPA ones (columns A and B). The suppression
varies from about 30% for 76Ge to a factor 2 for 100Mo and
130Te. The origin of this suppression can be associated with
additional g.s. correlations appearing because of highly excited
collective states embedded in the s.p. continuum. Transitions
to these states are naturally described within the cQRPA in
terms of the s.p. Green’s functions (see Sec. II B). However,
the applied version of the cQRPA in this work does not include
nucleon pairing in the s.p. continuum, and therefore the M0ν

values obtained here should be treated only as lower limits.
Inclusion of nucleon pairing in the s.p. continuum (which is a
formidable task) will definitely lead to an increase of the matrix
elements within the cQRPA. To demonstrate the importance
of nucleon pairing far from the Fermi level for quantitative
description of the M0ν , the numbers listed in column C of
Table II can be compared with those in columns A and B.
Case C is introduced, as previously described, to test within the
discrete QRPA the neglect of pairing far from the Fermi level,
in a manner similar to how it is done in the present version of
the cQRPA. Inspecting column C, one sees a marked reduction,
by about 30%, in the calculated 0νββ matrix elements. Thus,
expanding the discrete QRPA basis from the “small” one of
B to a large one of C, which neglects pairing effects in the
inert core but allows transitions from the inert core, leads to a
suppression in the M0ν because of more g.s. correlations. The
suppression, however, gets almost completely compensated as
nucleon pairing is switched on in the inert core and one goes
from case C to case A. The same sort of compensation is natural
to expect in the case of the cQRPA when nucleon pairing is

switched on in the single-particle continuum. However, one
cannot exclude that the compensation is incomplete.

Let us conclude with some words about possible prospects
for taking nucleon pairing in the s.p. continuum into con-
sideration within the approach described in here. Though
possible ways of treating the continuum pairing within the
QRPA can be found in the literature (see, e.g., Ref. [17]),
direct implementation of them would drastically increase the
corresponding calculation efforts. One would need first to
calculate the solutions u(r) and v(r) of the coordinate Hartree-
Fock-Bogolyubov equation for positive energies, from which
then additional continuum contributions to the expressions
[Eqs. (13)] for the response function should be constructed by
direct integration over energy. Probably, a more economical
way is to discretize the continuum by putting the nucleus in
a large box. These further developments are postponed to a
future publication that should then finally answer the question
about stability of M0ν with respect to the basis size.

IV. CONCLUSIONS

A continuum QRPA approach to calculation of the nuclear
double beta decay 2νββ and 0νββ amplitudes has been
formulated. Calculations of the amplitudes M2ν and M0ν

within the cQRPA are performed for 76Ge, 100Mo, and 130Te. A
rather simple nuclear Hamiltonian consisting of phenomeno-
logical mean field and zero-range residual particle-hole and
particle-particle interaction is used. The M2ν values are almost
unaffected when the single-particle continuum is taken into
account. In contrast, we find a regular suppression of the 0νββ

amplitude that can be associated with additional ground-state
correlations owing to collective states in the continuum. The
calculated M0ν values of this paper should be considered as
lower limits for the matrix elements within the cQRPA, as
nucleon pairing is realized only on a discrete basis within
the present version of the cQRPA. It is expected that future
inclusion of nucleon pairing in the single-particle continuum
will somewhat compensate the observed suppression of M0ν

values.
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