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In-medium chiral condensate beyond linear density approximation
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In-medium chiral perturbation theory is used to calculate the density dependence of the quark condensate
〈q̄q〉. The corrections beyond the linear density approximation are obtained by differentiating the interaction
contributions to the energy per particle of isospin-symmetric nuclear matter with respect to the pion mass. Our
calculation treats systematically the effects from one-pion exchange (with mπ -dependent vertex corrections),
iterated 1π -exchange, and irreducible 2π -exchange including intermediate �(1232)-isobar excitations, with
Pauli-blocking corrections up to three-loop order. We find a strong and nonlinear dependence of the “dropping”
in-medium condensate on the actual value of the pion (or light quark) mass. In the chiral limit, mπ = 0, chiral
restoration appears to be reached already at about 1.5 times normal nuclear matter density. By contrast, for the
physical pion mass, mπ = 135 MeV, the in-medium condensate stabilizes at about 60% of its vacuum value above
that same density. Effects from 2π -exchange with virtual �(1232)-isobar excitations turn out to be crucial in
generating such pronounced deviations from the linear density approximation above ρ0. The hindered tendency
toward chiral symmetry restoration provides a justification for using pions and nucleons as effective low-energy
degrees of freedom at least up to twice nuclear matter density.
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I. INTRODUCTION AND FRAMEWORK

The quark condensate |〈0|q̄q|0〉| is an order parameter of
spontaneous chiral symmetry breaking in QCD. With increas-
ing temperature the quark condensate decreases (or “melts”).
For low temperatures this effect can be systematically cal-
culated in chiral perturbation theory. At three-loop order [1]
the estimate Tc � 190 MeV for the critical temperature, where
chiral symmetry will eventually be restored, has been found.
This extrapolated value of Tc is remarkably consistent with
Tc = (192 ± 8) MeV [2] obtained in numerical simulations
of full QCD on the lattice, although this result is still under
debate. It has subsequently been criticized [3] with respect
to the reliability of the continuum extrapolation performed
in Ref. [2]. In fact the QCD chiral “phase transition” is
merely a nonsingular crossover, with the transition temperature
(deduced from the peak of the chiral susceptibility) lying in
the broad range Tc = (160 ± 29) MeV according to Ref. [3].

The chiral condensate |〈q̄q〉| drops also with increasing
baryon density. Presently, it is not feasible to study this
phenomenon rigorously in lattice simulations of QCD due
to the problems arising from the complex-valued Euclidian
Fermion determinant at nonzero baryon chemical potential.
As an alternative, the density dependence of the quark
condensate 〈q̄q〉(ρ) can be extracted by exploiting the
Feynman-Hellmann theorem applied to the chiral symmetry
breaking quark mass term mqq̄q in the QCD Hamiltonian.
The leading linear term in the nuclear density ρ is then
readily derived by differentiating the energy density of a
nucleonic Fermi gas, ρMN + O(ρ5/3), with respect to the
light quark mass mq . This introduces the nucleon sigma-term
σN = 〈N |mq q̄q|N〉 = mq∂MN/∂mq = (45 ± 8) MeV [4] as
the driving term for the density evolution of the chiral conden-
sate. Following this simple linear density approximation one
would naively estimate that chiral symmetry gets restored at
(2.5–3)ρ0, with ρ0 = 0.16 fm−3 the nuclear matter saturation
density.

Corrections beyond the linear density approximation arise
from the nucleon-nucleon interactions which transform the
nucleonic Fermi gas into a nuclear Fermi liquid. These
corrections have been studied in one-boson exchange models
of the NN -interaction combined with the relativistic Dirac-
Brueckner approach to nuclear matter [5,6]. Knowledge of
the quark mass derivatives of the various meson masses
and coupling constants is required in order to quantify the
interaction effects on the in-medium condensate. For the
vector and scalar bosons it has been assumed that their
sigma-terms scale linearly with that of the nucleon, i.e.,
mq ∂mV,S/∂mq = σNmV,S/MN . In the further development
it has been demonstrated in Ref. [7] that the higher order
corrections (in density) depend sensitively on the interpretation
of the isoscalar scalar “σ”-boson (which is responsible for the
central NN -attraction in one-boson exchange models) and
its substructure. Within modest variations of an unknown
parameter 0 � CS � 1 both an accelerated and a hindered
tendency toward chiral restoration are possible. The way out
of this dilemma is to replace the fictitious “σ”-boson exchange
by realistic two-pion exchange processes.

Because of the Goldstone boson nature of the pion with
its characteristic mass relation, m2

π ∼ mq , the pion-exchange
dynamics in nuclear matter plays a particularly important
role for the in-medium quark condensate. A first step in
this direction was made in Ref. [8] where realistic saturation
of nuclear matter could be obtained from the iteration of
1π -exchange plus a short-range NN -contact interaction to
second order. It was found that the pionic interaction effects
(with well-known quark mass derivative) counteract the
reduction of the condensate from the leading linear term
in density. Actually, if one restricts oneself to the density
region ρ � ρ0 = 0.16 fm−3, then all existing calculations agree
that the deviations from the linear density approximation are
relatively small and practically get masked by the uncertainty
of the empirical nucleon sigma-term, σN = (45 ± 8) MeV.
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The chiral approach to nuclear matter has been extended
and improved in Refs. [9,10] by systematically including
effects from irreducible 2π -exchange together with excita-
tions of virtual �(1232)-isobars. The physical motivation
for such an extension is threefold. First, the spin-isospin-
3/2 �(1232)-resonance is the most prominent feature of
low-energy πN -scattering. Secondly, it is well known that
the 2π -exchange between nucleons with excitations of virtual
�-isobars generates the medium- and long-range components
of the isoscalar central NN -attraction [11], which is simulated
by the scalar “σ”-boson in the one-boson exchange models.
Thirdly, the delta-nucleon mass-splitting � = 293 MeV is of
the same size as the Fermi momentum kf 0 = 263 MeV � 2mπ

at nuclear matter saturation density. Therefore pions and
�-isobars should both be treated as explicit degrees of freedom
in the nuclear many-body problem. It has been found in
Ref. [10] that the inclusion of the chiral πN� dynamics
significantly improves, e.g., the momentum-dependence of
the (real) single-particle potential U (p, kf ) and the isospin
properties [as revealed by the density-dependent asymmetry
energy A(kf ) and the neutron matter equation of state].
Moreover, it guarantees spin-stability of nuclear matter [12].

The purpose of the present paper is to investigate the
in-medium chiral condensate (beyond the linear density
approximation) in this extended and improved framework
for nuclear matter where interaction effects are (almost)
exclusively given by one- and two-pion exchange according to
the rules of chiral symmetry. Since the pion mass mπ appears
as an explicit variable in our calculation we can also study
how the “dropping” in-medium condensate evolves from the
chiral limit, mπ = 0, to the real world with its fixed amount of
explicit chiral symmetry breaking, mπ = 135 MeV. We find
that the in-medium condensate behaves very differently in
both cases, with drastic consequences for nuclear physics in
the chiral limit.

Our starting point is the Feynman-Hellmann theorem which
relates the in-medium quark condensate 〈q̄q〉(ρ) to the quark
mass derivative of the energy density of isospin-symmetric
spin-saturated nuclear matter. Using the Gell-Mann-Oakes-
Renner relation m2

πf 2
π = −mq〈0|q̄q|0〉 one finds for the ratio

of the in-medium to the vacuum quark condensate:

〈q̄q〉(ρ)

〈0|q̄q|0〉

= 1 − ρ

f 2
π

{
σN

m2
π

(
1 − 3k2

f

10M2
N

+ 9k4
f

56M4
N

)
+ D(kf )

}
, (1)

with the Fermi momentum kf related to the nucleon density
ρ = 2k3

f /3π2 in the usual way. The term proportional to
σN = 〈N |mq q̄q|N〉 = mq ∂MN/∂mq comes from the non-
interacting Fermi gas including kinetic energy contributions
expanded up to order M−3

N . Interaction contributions beyond
the linear density approximation are collected in the function

D(kf ) = 1

2mπ

∂Ē(kf )

∂mπ

, (2)

defined as the derivative of the interaction energy per particle
Ē(kf ) with respect to m2

π . We mention here that fπ denotes the
pion decay constant in the chiral limit and m2

π stands for the

leading linear term in the quark mass expansion of the squared
pion mass. With this convention the Gell-Mann-Oakes-Renner
relation, m2

πf 2
π = −mq〈0|q̄q|0〉, becomes exact and 〈0|q̄q|0〉

is the vacuum condensate in the chiral limit.

II. PION MASS DERIVATIVE OF INTERACTION ENERGY

In this section we present analytical expressions for the
contributions to the derivative function D(kf ) as given by
various one- and two-pion exchange diagrams. Taking the m2

π -
derivative is a straightforward procedure since we can borrow
here heavily from the explicit expressions for the diagrammatic
contributions to Ē(kf ) written down in our previous works
[9,10].

A. One-pion exchange Fock term

We are working to three-loop order in the energy density.
At that order one encounters also pion-loop corrections to
the pion-nucleon vertex. As a consequence, the 1π -exchange
Fock term, Eq. (6) in Ref. [9], needs to be multiplied by the
following renormalization factor:

�(mπ ) = 1 + g2
Am2

π

(2πfπ )2

[
4γ + 1 − 2 ln

mπ

λ

]

+ g2
A

3π2f 2
π

{
πm3

π

�
− m2

π

2
+ (

3m2
π − 2�2

)
ln

mπ

2�

− 2

�

(
�2 − m2

π

)3/2
ln

� + √
�2 − m2

π

mπ

}

+ 9g2
A

(4πfπ )2

{
m2

π + (
4�2 − 2m2

π

)
ln

mπ

2�

+ 4�

√
�2 − m2

π ln
� + √

�2 − m2
π

mπ

}
, (3)

with gA the nucleon axial vector coupling constant in the chiral
limit. The last two terms, depending on the delta-nucleon
mass splitting � = 293 MeV, arise from pion-loop diagrams
involving the �(1232)-isobar. The low-energy constant γ (λ)
takes care of the (empirical) Goldberger-Treiman discrepancy.
It is determined for any choice of the regularization scale λ by
the condition (gπN/MN )phys = √

�(mπ )gA/fπ , where “phys”
denotes physical values.

The 1π -exchange Fock diagram (with unrenormalized
coupling constant) including the relativistic 1/M2

N -correction
leads to the expression

D(kf )(1π) = 9g2
Amπ

(8πfπ )2

{
1

2u
− u + 2 arctan 2u − 1 + 8u2

8u3

× ln(1 + 4u2) + m2
π

15M2
N

[
1

u
+ 21u

2
+ 20u3

3

−
(

25

4
+ 9u2

)
arctan 2u− 1

4u3
ln(1 + 4u2)

]}
,

(4)
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FIG. 1. One-pion exchange Fock diagram with pion self-energy.
Its combinatoric factor is 1/4.

where we have introduced the useful dimensionless variable
u = kf /mπ . For reasons of consistency with the loop expan-
sion the renormalization factor �(mπ ) = 1 + O(m2

π ) must be
applied only to the static term in Eq. (4), and the m2

π -derivative
of �(mπ ) must be multiplied only with the static 1π -exchange
energy per particle. The necessity for this procedure will
become clear in Sec. II F when discussing the chiral limit
mπ → 0.

The loop diagram with a tadpole on the exchanged pion (see
Fig. 1) generates a momentum-independent pion self-energy
(i.e., a pion mass shift). Its contribution to the function D(kf )
reads

D(kf )(π−self)

= 9g2
Am3

π

4(4πfπ )4

{ (
32π2lr3 + ln

mπ

λ

)

×
[

2

u
− 2u + 5 arctan 2u − 1 + 6u2

2u3
ln(1 + 4u2)

]

+ 1

4u
− u

2
+ arctan 2u − 1 + 8u2

16u3
ln(1 + 4u2)

}
, (5)

with the low-energy constant lr3(λ) determined by the rela-
tion l̄3 = −64π2lr3(λ) − 2 ln(mπ/λ) � 3 [13]. Although this
contribution is very small it has to be kept for reasons of
consistency.

B. Iterated one-pion exchange

The Hartree diagram from iterated 1π -exchange with two
medium insertions (see Fig. 3 and Eq. (7) in Ref. [9]) leads to
the expression

D(kf )(it,H2)

= 3πg4
AMNm2

π

5(4πfπ )4

{
63

8u
− 193u

4
+ (60 + 16u2) arctan 2u

− 7

32u3
(9 + 100u2) ln(1 + 4u2)

}
, (6)

and the corresponding Fock diagram with two medium
insertions gives

D(kf )(it,F2) = 3πg4
AMNm2

π

(4πfπ )4u3

∫ u

0
dx

x(u − x)2(2u + x)

(1 + 2x2)2

×
[

(2 + 8x2 + 16x4)(arctan x − arctan 2x)

+ 12x3 + 4x + x

1 + x2

]
. (7)

In our way of organizing the many-body calculation, the Pauli
blocking corrections are represented by diagrams with three
medium insertions. The contribution of the Hartree diagram
with three medium insertions to the function D(kf ) can be
reduced to a one-parameter integral:

D(kf )(it,H3)

= 9g4
AMNm2

π

(4πfπ )4u3

∫ u

0
dx

[
2ux + (u2 − x2) ln

u + x

u − x

]

×
{

4x(x − u) − x2

1 + 4x2
+ u(x + u)

2[1 + (u + x)2]

+ u(x − u)

2[1 + (u − x)2]
+ (x2 − u2 − 3) ln

1 + (u + x)2

1 + (u − x)2

+ 3 ln(1 + 4x2) + 15x

2
[arctan(u + x) + arctan(u − x)

− arctan 2x]

}
. (8)

On the other hand, one gets from the Fock diagrams with three
medium insertions:

D(kf )(it,F3)

= 9g4
AMNm2

π

(4πfπ )4u3

∫ u

0
dx

{
G

8

[
3G − x

∂G

∂x
− u

∂G

∂u

]
+ x2

2

×
∫ 1

−1
dy

∫ 1

−1
dz

yz θ (y2 + z2 − 1)

|yz|
√

y2 + z2 − 1

[
s2

1 + s2
− ln(1 + s2)

]

× [ln(1 + t2) − t2]

}
, (9)

where we have introduced the auxiliary function

G(x, u) = u(1 + u2 + x2) − 1

4x
[1 + (u + x)2][1 + (u − x)2]

× ln
1 + (u + x)2

1 + (u − x)2
, (10)

and the abbreviations s = xy +
√

u2 − x2 + x2y2 and t =
xz + √

u2 − x2 + x2z2. Note that the expressions in Eqs. (6)–
(9) carry the large scale enhancement factor MN . It stems
from the energy denominator of these iterated diagrams which
is proportional to the difference of small nucleon kinetic
energies.

C. Irreducible two-pion exchange

The irreducible two-pion exchange with only nucleons in
the intermediate state leads to the following contribution:

D(kf )(2π)

= m3
π

(4πfπ )4

{[
3

8u3

(
43g4

A + 6g2
A − 1

)
+ 9

4u

(
23g4

A + 2g2
A − 1

)]
ln2 (

u +
√

1 + u2
)

+
[
u2

(
7g4

A − 6g2
A − 1

) − 4 − 6g2
A + 46g4

A

+ 3

4u2

(
1 − 6g2

A − 43g4
A

)] √
1 + u2 ln

(
u +

√
1 + u2

)

025204-3



N. KAISER, P. DE HOMONT, AND W. WEISE PHYSICAL REVIEW C 77, 025204 (2008)

+ 3

8u

(
43g4

A + 6g2
A − 1

) + u

8

(
47 + 30g2

A − 653g4
A

)
+ u3

4

(
5 + 22g2

A − 19g4
A

) + u3(15g4
A − 6g2

A − 1
)

× ln
mπ

λ

}
, (11)

as obtained by differentiating Eq. (14) in Ref. [9] with respect
to m2

π at fixed kf . We have arranged the u3-terms in the last
line such that the low-density expansion of Eq. (11) starts as
k3
f [ln(mπ/λ) + 1/2] with no further additive (regularization-

scheme dependent) constant to the chiral logarithm. Or stated
differently, the underlying 2π -exchange interaction at zero
momentum transfer has been restricted to the nonanalytical
piece proportional to m2

π ln(mπ/λ). The dependence of the
contribution in Eq. (11) on the regularization scale λ will be
discussed in Sec. III B.

D. Two-pion exchange with virtual �-isobar excitation

We give first the three-body contributions. The Hartree
diagram (see Fig. 2 and Eq. (5) in Ref. [10]) leads to the
following closed form expression:

D(kf )(�,H3) = 3g4
Am4

π

�(2πfπ )4

{
u2 − u4 + 5u3

2
arctan 2u

− 1 + 6u2

4
ln(1 + 4u2)

}
, (12)

while the contribution of the Fock diagrams can be represented
as a one-parameter integral:

D(kf )(�,F3)

= 3g4
Am4

π

4�(4πfπ )4u3

∫ u

0
dx

{
2GS

(
x

∂GS

∂x
+ u

∂GS

∂u
− 4GS

)

+GT

(
x

∂GT

∂x
+ u

∂GT

∂u
− 4GT

)}
, (13)

with the two auxiliary functions GS(x, u) and GT (x, u) written
down explicitly in Eqs. (7) and (8) of Ref. [10]. As in our
previous works we use the value 3/

√
2 for the ratio between

the πN�- and πNN-coupling constants.
The two-body terms from 2π -exchange with virtual �-

excitations fall into two classes: the dominant terms scaling
reciprocally with the mass splitting � = 293 MeV, and the
remaining ones with a more complicated �-dependence. The
contribution of the dominant two-body terms to the function
D(kf ) can be written again in closed form:

D(kf )(�2) = 3πg4
Am4

π

70�(2πfπ )4

{
(70 + 14u2 + 3u4) arctan u

− 43 + 161u2

4u3
ln(1 + u2) + 43

4u
− 281u

8

− 437u3

6

}
. (14)

It has been derived from the following isoscalar central and
isovector tensor one-loop NN -scattering amplitudes [11]:

VC(q) = 3g4
A

32πf 4
π �

{(
2m2

π + q2
)2

2q
arctan

q

2mπ

+mπq2 + 4m3
π

}
, (15)

WT (q) = g4
A

128πf 4
π �

{
4m2

π + q2

2q
arctan

q

2mπ

+ mπ

}
, (16)

with q the momentum transfer between the two nucleons.
In these expressions we have kept the polynomial pieces
proportional to odd powers of the pion mass mπ . These
non-analytic terms in the quark mass mq are a unique feature
of the chiral pion-loop dynamics. For the remaining two-body
terms we employ the spectral-function representation [10] and
differentiate directly the imaginary parts of the πN�-loop
functions with respect to m2

π . This gives

D(kf )(�2′)

= 3g2
A

(4πfπ )4

∫ ∞

2mπ

dµ

[
3µkf − 4k3

f

3µ
− µ3

2kf

− 4µ2 arctan
2kf

µ
+ µ3

8k3
f

(
12k2

f + µ2
)

ln

(
1 + 4k2

f

µ2

)]

×
{[

2�

µ
+ g2

A

8µ�

(
8�2 + 40m2

π − 13µ2
)]

× arctan

√
µ2 − 4m2

π

2�
− g2

Aµm2
π

�2
√

µ2 − 4m2
π

+
√

µ2 − 4m2
π

[
3g2

Aµ
(
m2

π − �2
)

(
µ2 + 4�2 − 4m2

π

)2 − 2 + g2
A

2µ

+ 2g2
Aµ

(
m2

π − �2
) − µ�2

2�2
(
µ2 + 4�2 − 4m2

π

)
]}

, (17)

where the g2
A-terms in the curly bracket stem from box dia-

grams and the gA-independent ones from the triangle diagram.
The spectral-function representation in Eq. (17) involves one
subtraction of a term linear in density ρ = 2k3

f /3π2. The
associated subtraction constant receives also contributions
from the pion loop diagrams with a nonanalytical dependence
on the quark mass. We reinstore these distinguished pieces
from the chiral pion-loop dynamics by the additional contri-
bution linear in density:

D(kf )(dt)

= 3g2
Ak3

f

(4πfπ )4

{(
2 − 5g2

A

)
ln

mπ

2�
+ 4�2 − 5g2

A

(
2�2 + 3m2

π

)
2�

√
�2 − m2

π

× ln
� + √

�2 − m2
π

mπ

}
, (18)

which has the property that it vanishes in the chiral limit.
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E. Chiral ππ N N contact vertex proportional to c1

In chiral perturbation theory the nucleon sigma-term σN

has a specific nonlinear dependence on the quark mass mq .
The leading linear term comes from the effective Lagrangian
L(2)

πN = c1 N̄N trχ+ = 4c1m
2
π N̄N

√
1 − 	π 2/f 2

π and the non-
linearities arise from pion-loops and higher order countert-
erms. Putting together all (numerically) relevant pieces the
ratio σN/m2

π entering Eq. (1) takes the form

σN

m2
π

= −4c1 − 9g2
Amπ

64πf 2
π

+ 3c1m
2
π

2π2f 2
π

ln
mπ

λ
+ 9g2

A

(4πfπ )2

×
{

� ln
mπ

2�
+

√
�2 − m2

π ln
� + √

�2 − m2
π

mπ

}
.

(19)

By chiral symmetry, the c1-term in the effective Lagrangian
generates also an additional ππNN-contact interaction with
vertex insertion: −4ic1m

2
πf −2

π δab. On the one hand it makes
up the sizable logarithmic loop correction to σN/m2

π in
Eq. (19). On the other hand it gives rise to an additional
two-pion exchange contribution to the NN -interaction, and
moreover it generates a long-range three-nucleon force (see
diagrams in Fig. 2). The two-body terms in nuclear matter
lead to the following contribution to the m2

π -derivative of the
energy per particle:

D(kf )(c1,2) = 3g2
Ac1m

4
π

280π3f 4
π

{
(14u2 + 3u4) arctan u + 27 + 49u2

4u3

× ln(1 + u2) − 27

4u
− 71u

8
− 99u3

2

}
, (20)

which has been derived from the isoscalar central one-loop
NN -scattering amplitude:

VC(q) = 3g2
Ac1m

2
π

4πf 4
π

{
2m2

π + q2

2q
arctan

q

2mπ

+ mπ

}
. (21)

In addition, there are c1-contributions from the three-body
Hartree diagram:

D(kf )(c1,H3) = 3g2
Ac1m

4
π

(2πfπ )4

{
3u2 − 2u4 + 6u3 arctan 2u

−
(

3

4
+ 4u2

)
ln(1 + 4u2)

}
, (22)

C1 C1

FIG. 2. Hartree and Fock diagrams related to the chiral ππNN

contact vertex proportional to c1. The combinatoric factors of these
diagrams are 1/2 and 1, in the order shown.

and the three-body Fock diagram

D(kf )(c1,F3) = 9g2
Ac1m

4
π

(4πfπ )4u3

∫ u

0
dxG

[
4G − x

∂G

∂x
− u

∂G

∂u

]
,

(23)

with the auxiliary function G(x, u) defined in Eq. (10).

F. Chiral limit

The m2
π -derivative of the energy per particle, D(kf ),

presented in the previous subsections takes a particularly
simple form in the chiral limit mπ = 0. In that limiting
case almost all integrals can be solved and the dependence
on the Fermi momentum kf becomes simply powerlike
(with an exponent determined by the mass dimension of
the prefactor). The subscript 0 denotes the function D(kf )
in the chiral limit mπ → 0. The 1π -exchange Fock term [with
the renormalization factor in the chiral limit, �(0) = 1] gives

D0(kf )(1π) = g2
Akf

(4πfπ )2

(
k2
f

M2
N

− 9

4

)
, (24)

and the total contribution from iterated 1π -exchange reads

D0(kf )(it) = g4
AMNk2

f

5(4πfπ )4
(8π2 + 36 ln 2 − 3). (25)

The contribution from irreducible 2π -exchange,

D0(kf )(2π) = k3
f

(4πfπ )4

{(
g2

A − 1
)(

7g2
A + 1

)
ln

2kf

λ

+ 1

4

(
5 + 22g2

A − 19g4
A

) + 8g4
A ln

mπ

λ

}
, (26)

has a logarithmic singularity ln(mπ/λ). It gets exactly canceled
by the m2

π -derivative of the renormalization factor �(mπ )
applied to the static 1π -exchange:

D0(kf )(ren) = k3
f

(2πfπ )4

{
g4

A

(
γ − 1

2
ln

mπ

λ

)
+ C

}
. (27)

This crucial feature instructs us that one must work
consistently with the parameters in the chiral limit as they
are given by the effective chiral Lagrangian. It is mandatory
to include only those renormalization effects to physical
parameters which are actually generated by the pion-loops
to the order one is working. The constant C represents the
additional effect of a NN -contact coupling linear in the
quark mass mq , and γ is a left-over from the Goldberger-
Treiman discrepancy. The two- and three-body terms from
2π -exchange with single �-excitation scaling as 1/� read
together

D0(kf )(�3) = g4
Ak4

f

�(4πfπ )4

(
12π2

35
− 25

)
, (28)

where the two-body term Eq. (14) has contributed 36π2/35
to the numerical factor in brackets. For the remaining two-
body Fock terms from 2π -exchange with �-excitations the
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spectral-function representation turns into

D0(kf )(�2′) = g2
A�3

(4πfπ )4

∫ ∞

0
dx x

{
g2

A

[
2x + 11x3 + 6x5

(1 + x2)2

+ (13x2 − 2) arctan x

]
+ 4x + 6x3

1 + x2

− 4 arctan x

}
�

(
kf

x�

)
, (29)

with the auxiliary function

�(y) = 6

y
− 9y + y3 + 24 arctan y

− 6

y3
(1 + 3y2) ln(1 + y2). (30)

For low densities the contribution in Eq. (29) behaves as
k5
f ln(kf /�). Finally, the total contribution from the ππNN-

contact vertex proportional to c1 reads, in the chiral limit,

D0(kf )(c1) = 3g2
Ac1k

4
f

(2πfπ )4

(
π2

35
− 5

4

)
. (31)

III. RESULTS

This section presents and discusses results for the in-
medium chiral condensate as a function of baryon density ρ.
Apart from just collecting and computing the series of terms
given in Sec. II, this includes also a detailed investigation
of the pion mass dependence of the quark condensate at
given density ρ. It is furthermore necessary to estimate the
quark mass dependence of the NN -contact term [i.e., the size
of the parameter C introduced in Eq. (27)] which encodes
short-distance dynamics not controlled by the underlying
chiral effective field theory. At this point we can now take
very recent computations of the NN -potential from lattice
QCD for orientation.

A. Parameter fixing

First, we have to fix the parameters. The pion decay
constant in the chiral limit fπ is determined by the relation:
fπ,phys = fπ [1 + l̄4(mπ/4πfπ )2] = 92.4 MeV. Choosing the
central value l̄4 = 4.4 ± 0.2 of Ref. [13] one gets fπ =
86.5 MeV. For the nucleon axial vector coupling constant gA

in the chiral limit we take the value gA = 1.224 as obtained
recently via chiral extrapolations of lattice data in Ref. [14].
A similar analysis [15] gives for the nucleon mass in the
chiral limit MN = 882 MeV and for the low-energy constant
c1 = −0.93 GeV−1 (as central values). For the delta-nucleon
mass splitting we take the empirical value � = 293 MeV. This
is consistent to the order in the loop expansion we are working
here. The parameter γ introduced in Eq. (3) is determined
by the relation (gπN/MN )phys = √

�(mπ )gA/fπ . Taking for
the left hand side 13.2/(939 MeV), we deduce γ = −1.505
at the regularization scale λ = MN = 882 MeV. Or stated
differently, for our choice of parameters (gA and fπ in the
chiral limit) the Goldberger-Treiman relation is exact within
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FIG. 3. The nuclear matter saturation curve underlying our calcu-
lation of the in-medium quark condensate. Apart from the interaction
contributions described in Refs. [9,10] and those proportional to c1,
it includes one single adjusted term linear in density, Ē(kf )(adj) =
−7.64 GeV−2k3

f .

one percent. We neglect the 1.2% difference between the
physical pion mass mπ,phys = mπ [1 − l̄3(mπ/8πfπ )2] (with
l̄3 � 3 [13]) and the leading order one, mπ , since this difference
is much smaller than the splitting between charged and neutral
pion masses.

With these fixed parameters we obtain (for the physical
value of the pion mass mπ = 135 MeV) the nuclear matter
equation of state as shown in Fig. 3. Besides the 1π - and
2π -exchange contributions described in Refs. [9,10] and
those proportional to c1, it includes one single adjusted term
linear in density: Ē(kf )(adj) = −7.64 GeV−2 k3

f . We interpret
its strength parameter (corresponding to the constant B3

introduced in Ref. [10]) to subsume all unresolved short-
distance NN -dynamics relevant for nuclear matter at low
and moderate densities 0 � ρ � 2.5ρ0 = 0.4 fm−3. Its (weak)
implicit quark mass dependence will be estimated below. The
nuclear matter compressibility K = k2

f 0Ē
′′(kf 0) related to the

curvature of the saturation curve at its minimum comes out
as K = 295 MeV. This value lies at the high side of present
semiempirical determinations of K [17].

Next, we estimate the parameter C introduced in Eq. (27)
which represents quark mass dependent effects from the short-
range NN -interaction. The simple model of ω(782)-meson
exchange would give C(ω) � −0.7, choosing an ωN -coupling
constant of order 10 and the constituent quark counting rule
∂mω/∂mq = 2. However, since the ω-exchange model has no
clear connection to the short-range NN -dynamics of QCD,
we follow another option.1 Recently, the nucleon-nucleon
potential has been studied within lattice QCD [16] using the
quenched approximation. The short-distance part (r � 0.6 fm)

1Nevertheless, in order to quantify the effect, we note that C(ω) =
−0.7 would cause a 10% upshift of the condensate ratio at 2ρ0 =
0.32 fm−3 (and 1/4 of that at ρ0).
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FIG. 4. The nucleon-nucleon potential in the 1S0 channel
from lattice QCD [16] for three different pion masses, mπ =
(380, 529, 731) MeV.

of this potential in the 1S0 channel is shown in Fig. 4 for
three different pion masses, mπ = (380, 529, 731) MeV. We
can identify the volume integrals I0 = 4π

∫ r0

0 dr r2V (r) over
the repulsive cores of these potentials with the strength of a
contact-coupling in the 1S0 channel. From the three values I0 =
(83.6, 53.3, 21.9) MeV fm3 we obtain a mean value for the
derivative with respect to the squared pion mass: ∂I0/∂m2

π �
−0.17 GeV−1fm3. Via the contribution Ē(kf )(sd) = I0 k3

f /4π2

to the energy per particle we estimate the parameter C as C =
4π2f 4

π ∂I0/∂m2
π � −0.05. In comparison to the ω-meson

exchange this is a rather small number.2 Even with a factor 2,
to include an equally strong contribution from the 3S1 channel
[16], the value C � −0.1 affects the condensate ratio at nuclear
matter saturation density ρ0 = 0.16 fm−3 (corresponding to
kf 0 = 263 MeV) only at the 3 permille level (and four times
as much at 2ρ0).

We can therefore conclude that the short-range NN -
dynamics as given by lattice QCD [16] has a negligible
influence on the in-medium chiral condensate 〈q̄q〉(ρ). The
deviations from the linear density approximation are primarily
caused by the long- and intermediate range 1π - and 2π -
exchange dynamics.

There is some residual dependence on the regularization
scale λ left over which is not balanced by the parameters lr3(λ)
and γ (λ) [namely from the last term in Eq. (11)].3 Varying λ

between 0.6 GeV and 1.2 GeV changes the condensate ratio at
ρ0 by 3.5%. Since this is much smaller than the effect induced
by the uncertainty of the empirical nucleon sigma-term σN =
(45 ± 8) MeV [4] we stay with the “natural” choice of λ =
MN = 882 MeV. When inserting into Eq. (19) it reproduces
correctly σN = 44.3 MeV for mπ = 135 MeV.

2These considerations raise also some questions concerning the
significance of the vector boson exchange phenomenology as a valid
picture of the short-distance NN -dynamics.

3In principle, this scale dependence is balanced by the parameter
C(λ) in Eq. (27). But this (formal) point of view introduces the need
to fix the scale λ in an estimate of C.
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FIG. 5. The ratio of the in-medium chiral condensate to its
vacuum value as a function of the nucleon density ρ for three different
values of the pion mass, mπ = (0, 70, 135) MeV. The dashed line
corresponds to the linear density approximation using the empirical
central value σN = 45 MeV [4].

B. In-medium condensate

We are now in the position to present and discuss numerical
results for the in-medium quark condensate. Figure 5 shows
the condensate ratio 〈q̄q〉(ρ)/〈0|q̄q|0〉 as a function of the nu-
cleon density ρ = 2k3

f /3π2 in the region 0 � ρ � 0.36 fm−3 =
2.25ρ0 (i.e., kf � 345 MeV) for three different values of
the pion mass, mπ = (0, 70, 135) MeV. The dashed line in
Fig. 5 corresponds to the linear density approximation using
the empirical central value σN = 45 MeV of the nucleon
sigma-term. One observes a very strong and nonlinear de-
pendence of the “dropping” condensate on the actual value
of the pion mass mπ . In the chiral limit, mπ = 0, the quark
condensate decreases effectively with a slope 1.8 times as large
as given by the linear density approximation. As a consequence
chiral symmetry would be restored already at about 1.5ρ0

if the up- and down-quark masses were strictly zero. This
faster decrease is caused by two features: First, the ratio
σN/m2

π = −4c1 = 3.72 GeV−1 is, in the chiral limit, about
1.5 times larger than at the physical point, 45/1352 MeV−1 =
2.47 GeV−1. Secondly, the two-pion exchange effects in the
chiral limit drive the condensate ratio further down. Of course,
the actual density at which chiral symmetry restoration would
occur can only be roughly estimated in our calculation: once
the chiral condensate becomes too small the very foundation
of the chiral effective field theory approach to nuclear matter
(namely the spontaneous breaking of chiral symmetry in the
vacuum) is lost.

At the physical value of the pion mass, mπ = 135 MeV, the
density dependence of the condensate ratio 〈q̄q〉(ρ)/〈0|q̄q|0〉
is drastically different. At densities around 1.8ρ0 the in-
medium condensate stabilizes now at about 60% of its vacuum
value, and there is no further reduction in the entirely density
region where the present chiral approach to nuclear matter
can be trusted. For higher values of the pion mass the
effects counteracting chiral restoration become even more
pronounced.
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Let us have a closer look at individual contributions. At
2ρ0 = 0.32 fm−3 (corresponding to kf = 331.4 MeV) one gets
from the sequence of the five classes of interaction contribu-
tions (described in subsections II A–II E) a total correction
to 〈q̄q〉(ρ)/〈0|q̄q|0〉 beyond the linear density approximation
of (0.14 − 0.83 + 0.27 + 1.34 − 0.54) = 0.38. Since the last
entry −0.54 scales linearly with c1, one can easily infer
how it varies with the 10% uncertainty of this low-energy
constant. Notice the cancellation between large contributions
of opposite signs from iterated 1π -exchange and 2π -exchange
with virtual �(1232)-excitation. At normal nuclear matter
density ρ0 = 0.16 fm−3 the individual entries are about a
factor 4 smaller: (0.04 − 0.24 + 0.07 + 0.33 − 0.13) = 0.07,
suggesting an approximate ρ2-dependence of the total inter-
action contribution.

Figure 6 shows separately the effects of the five classes
of interaction contributions. They are consecutively added up
in the sequence: linear → 1π → iterated → 2π → � → c1.
The last two major steps (in opposite directions) should
not be misinterpreted as a sign of bad convergence since
the corresponding terms belong to the same order in the
small momentum expansion of the nuclear matter energy
density (−4c1 � 3g2

A/4�). Figure 6 actually demonstrates
the prominent importance of the 2π -exchange interaction
beyond leading order for the in-medium quark condensate.

It is important to include all effects generated by the
pion-loops. For example, if one would drop the last constant
term proportional to 4m3

π ∼ m
3/2
q in Eq. (15) an amount of 0.25

would be missing in the total balance (at ρ0). As a consequence
of that omission the condensate ratio would lie appreciably
below the linear density approximation. This particular nonan-
alytical 4m3

π -term gives also an explanation for the drastically
different behavior of the in-medium condensate in the chiral
limit and for the physical pion mass. Its contribution to
the condensate ratio, 27g4

Amπρ2/(128πf 6
π �), vanishes in the
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FIG. 6. Interaction contributions to the ratio between in-medium
and vacuum chiral condensate. The five classes described in sub-
sections II A–II E are consecutively added in the sequence: linear →
1π → iterated → 2π → � → c1.

chiral limit, mπ = 0, but reaches 100% for the physical pion
mass mπ = 135 MeV at ρ = 0.32 fm−3 = 2ρ0. This selective
consideration does, of course, not mean that the other one-
and two-pion exchange contributions would not also depend
strongly on the pion mass. Their dependences can be studied
easily case by case with the help of the analytical formulas
presented in Sec. II. In general, one can say that the condensate
ratio 〈q̄q〉(ρ)/〈0|q̄q|0〉 is affected significantly by interaction
terms which otherwise play only a marginal role for the nuclear
matter equation of state Ē(kf ) (as, e.g., the chiral ππNN-
contact term proportional to c1). This pronounced shifting
of weights comes from taking the derivative with respect to
the squared pion mass m2

π . On the other hand, the Fermi gas
approximation (i.e., the linear density approximation) works
reasonably well for the in-medium chiral condensate almost
up to nuclear matter saturation density ρ0 = 0.16 fm−3, even
though it is far from correctly describing nuclear matter as a
self-bound Fermi liquid.

Let us compare our results for the in-medium chiral
condensate with other works which have treated to some
limited extent the pion-exchange dynamics in nuclear matter.
In the work of Lutz et al. [8]1π -exchange plus an adjustable
NN -contact interaction have been iterated to second order. In
the region 0 � ρ � 2ρ0 they find a weaker (positive) deviation
from the linear density approximation, with no trend for
stabilization of the in-medium condensate. This difference
comes from not including the irreducible 2π -exchange, the
chiral πN�-dynamics and the c1-contact vertex. Recently,
the Tübingen group [18] has employed the chiral nucleon-
nucleon potential at next-to-leading order to calculate nuclear
matter within the relativistic Dirac-Brueckner-Hartree-Fock
approach. They also derive the in-medium chiral condensate
by exploiting the Feynman-Hellmann theorem Eq. (1). Irre-
spective of using the Hartree-Fock or Brueckner-Hartree-Fock
approximation, their effects from pion-exchange interactions
(e.g., ∼15% at 2ρ0 [18]) are much smaller than in our
calculation. Moreover, there is no trend of stabilization in
the whole density region 0 � ρ � 3ρ0 considered. Again, these
substantial differences arise in Ref. [18] from taking only the
next-to-leading order chiral NN -potential (i.e., 1π -exchange
and irreducible 2π -exchange), but neglecting the actually
more important effects from 2π -exchange with virtual �-
isobar excitation. We note that our perturbative calculation,
when truncated to 1π -exchange, iterated 1π -exchange and
irreducible 2π -exchange exchange, would lead to an in-
medium condensate below the linear density approximation
(see Fig. 6). Qualitative differences may also come from the
approximations (angle-averaged Pauli-blocking operator, etc.)
used in the Brueckner-Hartree-Fock calculation of Ref. [18]
and not treating the iterated 1π -exchange in full detail (as
done in the present work). Apart from all these differences,
Ref. [18] agrees with our conclusion that the short-range
NN -dynamics plays only a minor role for the in-medium
chiral condensate. It is indicated to repeat the calculation of
Ref. [18] with the more complete next-to-next-to-leading order
chiral NN -potential including the nonanalytical polynomial
pieces.

Our results for the in-medium chiral condensate can be
alternatively summarized by the density dependent effective
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FIG. 7. The effective in-medium nucleon sigma-term σN,eff (ρ)
versus the nucleon density ρ with its error band ±8 MeV.

nucleon sigma-term:

σN,eff(ρ) = σN

(
1 − 3k2

f

10M2
N

+ 9k4
f

56M4
N

)
+ m2

πD(kf ). (32)

It captures the correlation effects in the nuclear medium
which reduce the tendency toward chiral symmetry restoration.
Figure 7 shows the effective nucleon sigma-term4 as a
function of the density for 0 � ρ � 0.36 fm−3. In this figure we
display also the uncertainties associated with the still existing
error band of ±8 MeV in the empirical determination of σN .
Moreover, we have varied the regularization scale λ between
0.6 GeV and 1.2 GeV which leads to some widening of the
error band as the density increases.

IV. SUMMARY AND CONCLUDING REMARKS

In this work we have used in-medium chiral perturbation
theory to calculate the quark condensate 〈q̄q〉(ρ) beyond the
linear density approximation. The pertinent correction term
follows from differentiating the interaction contributions to
the energy per particle of isospin-symmetric nuclear matter
with respect to the pion mass. Analytical expressions for

4A qualitatively similar result, though based on a different approach,
has been reported in Ref. [19].

the contributions to D(kf ) = ∂Ē(kf )/∂m2
π from 1π -exchange

(with mπ -dependent vertex corrections), iterated 1π -exchange
and irreducible 2π -exchange with inclusion of �-isobar
excitations and Pauli-blocking corrections have been presented
in Sec. II.

We find a strong, nonlinear dependence of the “dropping”
in-medium condensate on the value of the pion (or light
quark) mass. In the chiral limit, mπ = 0, chiral restoration
seems to be reached already at about 1.5 times normal
nuclear matter density. By contrast, for the physical pion
mass mπ = 135 MeV, the in-medium condensate stabilizes
at about 60% of its vacuum value above that same density.
Including systematically the effects from 2π -exchange with
�(1232)-isobar excitation (or the equivalent chiral ππNN

contact interactions c2,3,4) is crucial in order to obtain such
a pronounced behavior. Nonanalytical (contact) terms in the
quark mass (such as m3

π ∼ m
3/2
q ), which are often dropped

in the presentation of the chiral NN -potential, have a very
strong influence on the in-medium chiral condensate. Below
3ρ0/4 = 0.12 fm−3 the correction beyond the linear density
approximation remain relatively small. This finding can be
taken as an a posteriori justification of the assumptions made
in Ref. [20] about the in-medium scalar mean-field.

As a consequence of the hindered tendency toward chiral
symmetry restoration (in the real world with mπ = 135 MeV),
pions and nucleons can be used as effective low-energy
degrees of freedom at least up to twice nuclear matter density.
The major source of uncertainty for the density dependence
of 〈q̄q〉(ρ) is caused by the error band in the empirical
determination of the nucleon sigma-term σN = (45 ± 8) MeV.
One can hope that upcoming dispersion relation analyses of
πN -scattering data and lattice QCD calculations will lead to
a more accurate value of σN . Of course, there remain also
questions about the size of effects from yet higher order
interaction contributions related to 3π -exchange, two-loop
2π -exchange, etc. On the other hand, an estimate based on
recent lattice QCD results indicates that the short-distance
NN -dynamics has only a very small effect on the density
dependence of the quark condensate 〈q̄q〉(ρ).
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