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Vector meson form factors and their quark-mass dependence
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The electromagnetic form factors of vector mesons are calculated in an explicitly Poincaré covariant
formulation, based on the Dyson-Schwinger equations of QCD, that respects electromagnetic current conservation
and unambiguously incorporates effects from vector meson poles in the quark-photon vertex. This method
incorporates a two-parameter effective interaction, where the parameters are constrained by the experimental
values of chiral condensate and fπ . This approach has successfully described a large amount of light-quark
meson experimental data, including ground-state pseudoscalar masses and their electromagnetic form factors
and ground-state vector meson masses and strong and electroweak decays. Here we apply it to predict the
electromagnetic properties of vector mesons. The results for the static properties of the ρ meson are as follows:
charge radius 〈r2

ρ〉 = 0.54 fm2, magnetic moment µ = 2.01, and quadrupole moment Q = −0.41. We investigate
the quark-mass dependence of these static properties and find that our results at the charm quark mass are
in agreement with recent lattice simulations. The charge radius decreases with increasing quark mass, but the
magnetic moment is almost independent of the quark mass.
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I. INTRODUCTION

Hadron form factors provide an important tool for under-
standing the structure of bound states in QCD. The coupling
of a (virtual) photon to a composite particle depends on its
internal structure. Even static properties such as the charge
radius and magnetic moment are sensitive to the underlying
QCD dynamics. Thus it is not surprising that there have been
numerous studies of the electromagnetic form factors of the
nucleon, both theoretically and experimentally. Also the form
factors of pseudoscalar mesons, in particular of the pion, have
been studied extensively [1–11].

The vector meson form factors have received much less
attention [12–15], at least partly because there are no experi-
ments capable of measuring these form factors. Nevertheless,
these form factors are important for hadron physics: For
example, they contribute to meson exchange currents. They
are also closely related to the electromagnetic form factors
of axial-vector diquarks, which play an important role in
quark-diquark models of nucleon form factors. Indeed, in
recent years there has been a renewed interest in these form
factors [16–21]. Unfortunately, the results of these theoretical
studies appear to suffer from a rather large model dependence
(e.g., the results for the quadrupole moment GQ(0) differ by
a factor of 2 among different theoretical calculations, and the
situation gets worse as one moves away from Q2 = 0 [19]).

Here, we calculate the electromagnetic form factors of the
ρ and both the neutral and charged K� mesons using the
model proposed in Ref. [22]. The parameters of this model
were adjusted to reproduce the experimental values for the
chiral condensate, the pion mass and decay constant, and
the kaon mass; calculations of other mesonic observables are
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predictions. The obtained vector meson masses and decay
constants are in agreement with data [22], as are the results
for the strong decays of the vector mesons [23]. The pion and
kaon electromagnetic form factors [6,7] are also in excellent
agreement with experiments [10,11], as are the transition form
factors such as the ρ → πγ [24]. This proclivity of theoretical
results to experimental data provides good reason to expect that
the model will accurately describe the electromagnetic form
factors of light vector mesons.

In Sec. II we review the Dyson-Schwinger equations used to
calculate the quark propagators and the meson Bethe-Salpeter
amplitudes. Next, we discuss the truncation and the model
for the effective interaction and the results for the meson
masses, decay constants and their quark-mass dependence.
We explicitly demonstrate frame independence: Our results
for physical observables are independent of the total meson
momentum. This is important since in form factor calculations
at least one of the mesons is moving. In Sec. IV, we briefly
discuss the general form of vector meson form factors and the
method of calculation; an essential element of our calculation
is the treatment of the quark-photon vertex. We present our
numerical results for the form factors of the ρ and of both the
neutral and charged K� mesons in Sec. V, as well as for the
mass dependence of the static electromagnetic properties of
equal-mass vector mesons; we also compare our results with
other calculations and with recent lattice simulations. Finally,
some of the details of our calculation are given in the Appendix.

II. DYSON-SCHWINGER EQUATIONS OF QCD

The Dyson-Schwinger equations (DSEs) are the equations
of motion of a quantum field theory. They form an infinite
hierarchy of coupled integral equations for the Green functions
(n-point functions) of the theory. Bound states (mesons and
baryons) appear as poles in the Green functions. Thus, a study
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of the poles in n-point functions using the set of DSEs will tell
us about hadron properties. For recent reviews on the DSEs
and their use in hadron physics, see Refs. [25–28].

A. Quark propagator

The exact DSE for the quark propagator is1

S(p)−1 = i �pZ2 + mq(ζ ) Z4

+Z1

∫
k

g2Dµν(q)γµ

λi

2
S(k)�i

ν(k, p), (1)

where Dµν(q = k − p) is the renormalized dressed gluon
propagator, and �i

ν(k, p) is the renormalized dressed quark-
gluon vertex. The notation

∫
k

stands for
∫ 	

d4k/(2π )4. For
divergent integrals a translationally invariant regularization
is necessary; the regularization scale 	 is to be removed at
the end of all calculations, after renormalization, and will be
suppressed henceforth.

The solution of Eq. (1) can be written as

S(p) = Z(p2)

i �p + M(p2)
, (2)

renormalized according to S(p)−1 = i /p + m(ζ ) at a suffi-
ciently large spacelike ζ 2, with m(ζ ) the current quark mass
at the scale ζ . Both the propagator, S(p), and the vertex, �i

µ,
depend on the quark flavor, although we have not indicated
this explicitly. The renormalization constants Z2 and Z4

depend on the renormalization point and on the regularization
mass scale, but not on flavor: In our analysis we employ a
flavor-independent renormalization scheme.

B. Mesons

Bound states correspond to poles in n-point functions:
For example a meson appears as a pole in the two-quark,
two-antiquark Green function G(4) = 〈0|q1q2q̄1q̄2|0〉. In the
vicinity of a meson (i.e., in the neighborhood of P 2 = −M2

with M being the meson mass), such a Green function behaves
like

G(4) ∼ χ (pout, pin; P ) χ̄ (kin, kout; P )

P 2 + M2
, (3)

where P is the total four-momentum of the meson, pout and
pin are the four-momenta of the outgoing quark and incoming
quark respectively, and similarly for kin and kout. Momentum
conservation relates these momenta: pout − pin = P = kout −
kin.

The function χ (pout, pin; P ) describes the coupling of the
bound state to a dressed quark and antiquark. It satisfies the
homogeneous Bethe-Salpeter equation (BSE)

�(pout, pin; P ) =
∫

k

K(pout, pin; kout, kin)χ (kout, kin; P ) (4)

1We use the Euclidean metric {γµ, γν} = 2δµν, γ
†
µ = γµ and a · b =∑4

i=1 aibi .

at discrete values P 2 = −M2 of the total meson four-
momentum P . Here � is the Bethe-Salpeter amplitude (BSA),

�(kout, kin; P ) = S(kout)
−1χ (kout, kin; P )S(kin)−1, (5)

and the kernel K is the qq̄ irreducible quark-antiquark
scattering kernel.

The meson BSA is normalized according to

2Pµ = Nc

∂

∂Qµ

{∫
k,q

Tr[χ̄(kin, kout)

×K(k̃out, k̃in; q̃out, q̃in)χ (qout, qin)]

+
∫

k

Tr[�̄(kin, kout)S(k̃out)�(kout, kin)S(k̃in)]

} ∣∣∣∣
Q=P

(6)

at P 2 = −M2, with k̃out − k̃in = Q = q̃out − q̃in. The prop-
erly normalized BSA �(pout, pin; P ) [or, equivalently,
χ (pout, pin; P )] completely describes the meson as a qq̄ bound
state. Mesons of different spins and parity are characterized
by different Dirac structures; for example, the BSA of massive
vector mesons can be decomposed into eight Dirac structures
[22]

�V
µ [k+ηP, k − (1−η)P ; P ] =

8∑
i=1

f i(k2, k ·P ; η)T i
µ(k, P ),

(7)

where T i
µ(k, P ) are eight independent transverse Dirac tensors.

The invariant amplitudes f i are Lorentz scalar functions of k2

and k · P , and they depend on the momentum partitioning
parameter η. Physical observables however are independent
of η.

C. Rainbow-ladder truncation

A viable truncation of the infinite set of DSEs has to
respect the relevant (global) symmetries of QCD such as chiral
symmetry, Poincaré covariance, and renormalization group
invariance. For electromagnetic interactions the truncation
should also respect current conservation. These properties are
built into the rainbow-ladder truncation [6,7,29–31]. In this
scheme, the kernel K of the meson BSE is replaced by an
(effective) one-gluon exchange,

K(pout, pin; kout, kin) → −4π α(q2)Dfree
µν (q)

λi

2
γµ ⊗ λi

2
γν,

(8)

where q = pout − kout = pin − kin, α(q2) is an effective run-
ning coupling, and Dfree

µν (q) is the free gluon propagator;
and we choose to work in Landau gauge. The corresponding
rainbow truncation of the quark DSE is

Z1g
2Dµν(q)�i

ν(k, p) → 4π α(q2)Dfree
µν (q)γν

λi

2 . (9)

This truncation is the first term in a systematic expansion [29]
of the quark-antiquark scattering kernel K; asymptotically,
it reduces to leading-order perturbation theory. Furthermore,
these two truncations are mutually consistent in the sense
that the combination produces vector and axial-vector vertices
satisfying their respective Ward identities. In the axial case, this
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ensures that in the chiral limit the ground-state pseudoscalar
mesons are the massless Goldstone bosons associated with
chiral symmetry breaking [30,31]. In the vector case, this
ensures, in combination with the impulse approximation,
electromagnetic current conservation [6,7].

III. MODEL CALCULATIONS

The ultraviolet behavior of the effective running coupling is
dictated by the one-loop renormalization group equation; the
infrared behavior of the effective interaction is modeled and is
constrained by phenomenology. Here, we employ the model
of Ref. [22] for α(q2):

4πα(q2)

k2
= 4π2D k2

ω6
e−k2/ω2

+ 4π2γm F(k2)
1
2 ln

[
τ + (

1 + k2/	2
QCD

)2] , (10)

withF(s) = (1 − exp −s

4m2
t

)/s, γm = 12/(33 − 2Nf ), and fixed

parameters mt = 0.5 GeV, τ = e2 − 1, Nf = 4, and 	QCD =
0.234 GeV. The remaining parameters ω and D were fitted
in Ref. [22] to reproduce fπ and the chiral condensate: ω =
0.4 GeV and D = 0.93 GeV2.

A. Results for light quarks

With this model, we obtain good agreement with the
experimental values for the light pseudoscalar and vector
meson masses and leptonic decay constants (see Table I). The
current quark masses mu/d = 3.7 MeV and ms = 83.8 MeV
at the renormalization point ζ = 19 GeV were fitted [22] to
the pion and kaon mass, respectively. Using the one-loop

TABLE I. DSE results [22,32] for the pseudoscalar and vector
meson masses and decay constants, together with experimental data
from Ref. [33], unless indicated otherwise. All entries are in GeV.

Experiment (estimates) Calculated (†fitted)

mu/d (ζ = 2 GeV) 0.003 to 0.006 0.005
ms(ζ = 2 GeV) 0.095(25) 0.118
mc(ζ = mc) 1.25(9) 1.30
Mπ 0.135, 0.140 0.138†

fπ 0.131 0.131†

MK 0.496 0.497†

fK 0.160 0.155
Mρ,Mω 0.776, 0.783 0.742
fρ, fω 0.221(2), 0.195(4) 0.207
MK� 0.892 0.936
fK� 0.224(11) 0.241
Mφ 1.020 1.074
fφ 0.229(4) 0.259
Mηc

2.980 2.91
fηc

0.335(75)[34] 0.38
MJ/� 3.097 3.10†

fJ/� 0.416(6) 0.42
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FIG. 1. Dynamical quark-mass function using the rainbow-ladder
truncation of Ref. [22].

expression to evolve these masses down to ζ = 2 GeV gives
mu/d (2 GeV) = 5.0 MeV and ms(2 GeV) = 118 MeV.

These results show little sensitivity to variations in the
model parameters [35], as long as the integrated strength of the
effective interaction is strong enough to generate an acceptable
amount of chiral symmetry breaking, as indicated by the chiral
condensate. This is not true for heavier states consisting of
light quarks (e.g., the radially excited pion is quite sensitive to
details of the interaction [36]).

Not only do the meson masses and leptonic decay constants
agree with experiments, but so do a wide range of other
observables, without the need to adjust any of the parameters
(see Ref. [27] and references therein). In particular Fπ (Q2)
[6,7,10,11] and the ρ-π -γ, ω-π -γ , and π -γ γ form factors [24]
are well described by this model. We therefore expect the
model to describe the electromagnetic form factors of light
vector mesons quite accurately as well.

The corresponding quark propagator functions are shown
in Fig. 1. These predictions for the quark-mass function have
been semiquantitatively confirmed in recent lattice simulations
of QCD [37–39]. Pointwise agreement for a range of quark
masses requires this interaction to be flavor-dependent [40],
and dressing the quark-gluon vertex �i

ν(q, p) ensures this
dependence. The consequences of a dressed vertex for the
meson BSEs are also currently being explored; indications
are that, in the pseudoscalar and vector channels, the effects
are small [29,41,42]. The nontrivial infrared structure of
the quark-gluon vertex is under investigation by using both
lattice simulations [43–45] and nonperturbative DSE methods
[46,47], but these studies are not yet conclusive.

B. Quark-mass dependence

In recent years, this model has been extended [32,48] to the
charm and bottom quarks as well, in an attempt to describe both
the light mesons and heavy quarkonia within one framework.
In Fig. 2 we show our results for the vector meson mass
and decay constant as function of the current quark mass; for
comparison we also include the evolution of the corresponding
pseudoscalar meson mass and decay constant. In this and
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FIG. 2. Pseudoscalar and vector meson masses and leptonic
decay constants as a function of the current quark mass (normalized
to the physical up/down quark mass). Vertical dashed lines indicate
the up/down, strange, and charm quark masses.

subsequent figures, we normalize the current quark masses
by the physical up and down quark masses of our model; for
the strange quark we have ms ≈ 23mu/d .

The charm quark mass mc = 0.827 GeV at the renormal-
ization point ζ = 19 GeV is fixed by the experimental value
of J/� mass. Again, using one-loop evolution we see that
this corresponds to mc = 1.30 GeV at ζ = mc (see Table I).
The decay constant for the J/� is in good agreement with
data, and the resulting post-dictions for the ηc mass and decay
constant are in reasonable agreement with the data as well.

On a limited domain, both the vector and the pseudoscalar
meson masses can be fitted reasonably well by

M2
meson = C0 + C1 mq + C2 m2

q, (11)

where mq is the current quark mass at our renormalization
point ζ = 19 GeV. For the mass region we are interested in
here, from the chiral limit up to the charm quark mass, the fit
parameters for the pseudoscalar and vector mesons are

MPS: C0 = 0, C1 = 5.49, C2 = 5.77, (12)

MV : C0 = 0.53, C1 = 6.93, C2 = 4.88, (13)

as illustrated in Fig. 2. For larger quark masses, these fit
parameters become closer and closer to each other: A fit on the
domain mc < mq < 2 mb gives C0 = −1.3 and C1 = 7.92 for
the pseudoscalar mesons and C0 = −0.2 and C1 = 8.02 for
the vector mesons, with a common parameter C2 = 4.46. This
reflects the fact that in the heavy-quark limit, the pseudoscalar
and vector mesons become degenerate: In the limit mq → ∞
this fit gives MV − MPS → 1

2 (CV
1 − CPS

1 )/
√

C2 ≈ 0.
The leptonic decay constants increase with the current

quark mass, for both the pseudoscalar and the vector mesons.
Based on the experimental partial decay width of vector
mesons, it was conjectured [49] that the vector meson decay
constants increase with quark mass as fV ∝ √

MV . In contrast
[50], Coulomb-potential models typically give fV ∝ MV ,
whereas a linear (confining) potential produces fV ∼ constant.
Our numerical results suggest that both fV and fPS increase

approximately linearly with quark mass, at least for masses
in the mc to 2mb range [51]. This is Coulomb-potential-like
behavior, which may be natural since the effective interaction,
Eq. (10), reduces to one-gluon exchange in the ultraviolet re-
gion. However, further investigations are needed to determine
the true asymptotic behavior of the decay constants.

C. Frame independence

The BSE is usually solved in the rest frame of the meson.
However, the calculation of electromagnetic form factors in
any reference frame entails a nonzero three-momentum for
the initial meson, the final meson, or both. In a method that
is not Poincaré covariant the wave functions for the moving
meson would have to be boosted. One of the advantages of
the DSE approach to hadron physics is its manifest Poincaré
covariance.

As an explicit demonstration, we calculate the static π and
ρ properties in a moving frame2 Pµ = (q, 0, 0, i E), where
q is the three-momentum of the moving meson [48]. Within
this frame we solve again the homogeneous BSE, Eq. (4),
and calculate the corresponding electroweak decay constant.
Numerically this is a demanding task, since the Lorentz scalar
functions of Eq. (7) are now functions of a radial variable k2

and two angles:

k · P = ik E cos α + k q sin α cos β, (14)

and the integral equation has to be solved in the three
independent variables k2, α, and β. With current computer
resources, this can be done without further approximations,
and the results, shown in Fig. 3, are indeed independent of
the meson three-momentum, illustrating that this approach is
indeed Poincaré covariant. We can now use this same approach
to calculate meson form factors in an explicitly covariant
manner.

2In the Euclidean metric that we are using here, the rest frame is
characterized by Pµ = (0, 0, 0, i M).

0 0.2 0.4 0.6 0.8

meson 3-momentum q  [GeV]

0

0.2

0.4

0.6

0.8

m
as

s,
 d

ec
ay

 c
on

st
an

t  
[G

eV
]

rho mass
rho decay constant
pion mass
pion decay constant

FIG. 3. Pion and ρ mass and decay constant calculated in a
moving frame, as a function of the meson three-momentum. (Figure
adapted from Ref. [48].)
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IV. ELECTROMAGNETIC FORM FACTORS

A. Vector meson form factors

Consider the electromagnetic current of a vector meson
with incoming meson momentum P −

ρ = Pρ − 1
2Qρ , outgoing

meson momentum P +
σ = Pσ + 1

2Qσ , and incoming photon
momentum Qµ. With this notation, the general form for the
coupling of a photon to a vector meson can be written as [15,52]

	µ,ρσ (P,Q) = −
3∑

j=1

T [j ]
µ ρσ (P,Q) Fj (Q2), (15)

T [1]
µ,ρσ (P,Q) = 2PµPT

ργ (P −)PT
γ σ (P +), (16)

T [2]
µ,ρσ (P,Q) =

(
Qρ − P −

ρ

Q2

2 M2

)
PT

µσ (P +)

−
(

Qσ + P +
σ

Q2

2 M2

)
PT

µρ(P −), (17)

T [3]
µ,ρσ (P,Q) = Pµ

M2

(
Qρ − P −

ρ

Q2

2 M2

)

×
(

Qσ + P +
σ

Q2

2 M2

)
, (18)

where

PT
µν(k) = δµν − kµkν

k2
(19)

is the transverse projector. The vector meson is on-shell:
(P −)2 = (P +)2 = −M2, where M is the mass of the vector
meson, and thus P 2 + 1

4Q2 = −M2 and P · Q = 0. This
coupling obeys the following relations:

P +
ρ 	µρσ (p, p′) = 0, (20)

P −
σ 	µρσ (p, p′) = 0, (21)

Qµ	µρσ (p, p′) = 0. (22)

The first two equations simply reflect that the (massive) vector
mesons are transverse; the last equation follows from current
conservation.

The electric, magnetic, and quadrupole form factors GE,

GM , and GQ can be expressed in terms of these scalar functions
Fi as

GE(Q2) = F1(Q2) + 2

3

Q2

4M2
GQ(Q2), (23)

GM (Q2) = −F2(Q2), (24)

GQ(Q2) = F1(Q2) + F2(Q2) +
(

1 + Q2

4 M2

)
F3(Q2). (25)

The electric monopole moment (i.e., the electric charge),
magnetic dipole moment, and the electric quadrupole moment
follow from the values of these form factors in the limit
Q2 → 0:

GE(Q2 = 0) = 1, (26)

GM (Q2 = 0) = µ, (27)

GQ(Q2 = 0) = Q. (28)

Here the magnetic moment µ and the quadrupole moment
Q are introduced; the electric charge is 1 in terms of the

P-Q/2

Q

P+Q/2

FIG. 4. Meson form factor in the impulse approximation.

fundamental charge unit e. For pointlike vector particles, the
magnetic and quadrupole moments are µ = 2 in units of
e/2MV and Q = −1 in units of e/M2

V , respectively [53].

B. Impulse approximation

The generalized impulse approximation allows electromag-
netic processes to be described in terms of dressed quark
propagators, bound-state BSAs, and the dressed qq̄γ vertex
(see Fig. 4). In combination with the ladder-rainbow truncation
for the vertices and the quark propagators, it ensures elec-
tromagnetic current conservation [6,7] (see also Sec. IV C).
Phenomenologically, this approximation has proved to be
very successful in describing the pion electromagnetic form
factor [10,11].

Consider for example the three-point function describing
the coupling of a photon with momentum Q to a vector meson
ab̄, with initial and final momenta P ± Q/2. This interaction
can be written as the sum of two terms,

	ab̄
µ,ρσ (P,Q) = Q̂a	aab̄

µ,ρσ + Q̂b̄	ab̄b̄
µ,ρσ , (29)

where Q̂ is the quark or antiquark electric charge, and where
	ab̄a(P,Q) and 	ab̄b̄(P,Q) describe the coupling of a photon
to the quark (a) and antiquark (b̄), respectively. In the impulse
approximation, these couplings are given by

	aab̄
µ,ρσ (P,Q) = i Nc

∫
k

Tr
[
�a

µ(q−, q+)χab̄
ρ (q+, q)

× Sb(q)−1χ̄ b̄a
σ (q, q−)

]
, (30)

with q = k − P/2 and q± = k + P/2 ± Q/2, and similarly
for 	ab̄b̄

µ,ρσ .
For the ρ mesons it is sufficient to calculate the coupling of

the photon to a single quark, a direct consequence of isospin
invariance, whereas for the K� mesons we add contributions
from photon coupling to the quark and the antiquark. Thus for
the charged K� the form factors are given by

FK�,+
i (Q2) = 2

3Fuus̄
i (Q2) − 1

3Fus̄s̄
i (Q2) (31)

= 2
3Fuus̄

i (Q2) + 1
3F ssū

i (Q2), (32)

and similarly for the neutral K� we have

FK�,0

i (Q2) = − 1
3Fuus̄

i (Q2) + 1
3F ssū

i (Q2). (33)

C. Quark-photon vertex

The impulse approximation and rainbow-ladder truncation
together lead to current conservation only if the quark-photon
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vertex �µ satisfies the vector Ward-Takahashi identity [3]

i Qµ �µ(k+, k−; Q) = S−1

(
k + 1

2
Q

)
− S−1

(
k − 1

2
Q

)
.

(34)

This identity can be satisfied by the Ball-Chiu ansatz [54] for
the quark-photon vertex; a more consistent approach, which
we follow, is to use the solution of the inhomogeneous BSE
for the qq̄γ vertex in the ladder truncation [6,7], namely,

�µ(pout, pin; Q) = Z2γµ +
∫

k

K(pout, pin; kout, kin)

× S(kout)�µ(kout, kin; Q) S(kin), (35)

with pout and pin the outgoing and incoming quark momenta,
respectively, and similarly for kout and kin, with pout − pin =
kout − kin = Q. The kernel K is the same kernel as used in the
meson BSE, defined under Eq. (4).

Note that solutions of the homogeneous version of Eq. (35)
define qq̄ vector meson bound states with masses M2

V = −Q2

at discrete timelike momenta Q2. It follows that �µ has poles
at those locations and, in the neighborhood of Q2 = −M2

V ,
behaves like [6]

�µ(pout, pin) ∼ �V
µ (pout, pin) fV MV

Q2 + M2
V

, (36)

where �V
µ is the qq̄ vector meson BSA, and fV is the

corresponding electroweak decay constant. The fact that
the dressed qq̄γ vertex exhibits these vector meson poles
explains the success of naive vector-meson-dominance (VMD)
models; the effects of intermediate vector meson states on
electromagnetic processes can be unambiguously incorporated
by using the properly dressed qq̄γ vertex rather than the bare
vertex γµ [6].

V. DISCUSSION OF NUMERICAL RESULTS

Numerical solutions for the quark propagator, vector meson
BSAs, and dressed quark-gluon vertex can now be used in
Eq. (30) to calculate the electromagnetic form factors. We
explicitly solve the respective (in)homogeneous BSEs for the
meson BSAs and for the qq̄γ vertex in the corresponding
momentum frame, thus avoiding any need for interpolation
or extrapolation of the numerical solutions of the BSEs. This
does mean that we have to solve the meson BSE for each value
of Q2, but the advantages of not having to extrapolate the
numerical BSAs outweighs the additional numerical effort of
repeatedly solving the meson BSE. Further details are given
in the Appendix.

A. Rho and K � form factors

Results for the charge radius

〈r2〉 = − 6
∂GE(Q2)

∂Q2

∣∣∣∣∣
Q2=0

, (37)

TABLE II. Results for the ρ and K� meson charge radii 〈r2
V 〉

(in fm2), magnetic moments, and quadrupole moments, compared to
other calculations. For comparison, we also include the results for the
pseudoscalar charge radii, calculated within the same model, where
available, as well as the experimental pseudoscalar charge radii.

π, ρ meson r2
π r2

ρ µ Q

Current DSE [6,32] 0.44 0.54 2.01 −0.41
Previous DSE [4,15] 0.31 0.37 2.69 −0.84
Covariant QM [13] 0.37 2.14 −0.79
Light-cone QM [5,17] 0.43 0.27 1.92 −0.43
Experimental [33] 0.452(11)

us̄ meson r2
K r2

K� µ Q

Current DSE 0.38 0.43 2.23 −0.38
Previous DSE [15] 0.28 0.29 2.37 −0.62
Experimental [33] 0.314(35)

ds̄ meson r2
K r2

K� µ Q

Current DSE −0.09 −0.08 −0.26 0.01
Previous DSE [15] −0.03 −0.05 −0.40 0.11
Experimental [33] −0.077(10)

cc̄ meson r2
ηc

r2
J/ψ µ Q

Current DSE [32] 0.048(4) 0.052(3) 2.13(4) −0.28(1)
Lattice [20] 0.063(1) 0.066(2) 2.10(3) −0.23(2)

the magnetic moment µ = GM (0), and the magnetic
quadrupole moment Q = GQ(0) are presented in Table II.
Experimental data on these static properties are absent, and
so results from other theoretical models are included in the
table.

Our calculations give a significantly larger value for the
charge radius of the ρ and the charged K� mesons compared
to a previous DSE calculation [15] (see Table II). This is the
case not only for the vector mesons but also for the pion and
kaon charge radii. This difference can largely be attributed [6]
to the fact that we employ a dressed quark-photon vertex that
has poles in the neighborhood of Q2 = −M2

V . Thus the effects
from intermediate vector meson states are unambiguously
included in our calculation. However, Ref. [15] uses the
Ball-Chiu ansatz for the qq̄γ vertex. Since our results compare
favorably with the experimental charge radii, we expect our
results for the vector radii to be more realistic than those of
Ref. [15].

The quark model (QM) calculations of Refs. [13] and [17]
report a considerably smaller value for 〈r2

ρ〉. Again, this is
in part because neither of these calculations incorporate the
effects of vector meson poles in the quark-photon vertex [6].

Another significant difference between our results and those
of Ref. [15] is that the latter predict a zero crossing of
GE(Q2) at about Q2 ≈ 1.7 GeV2 for the ρ meson, whereas
we do not find any evidence for such a zero crossing
below Q2 = 2.5 GeV2. Extrapolating our numerical results for
GE(Q2) using a (2,3)-Padé fit suggests a zero crossing around
Q2 ≈ 3.8 GeV2. For comparison, Ref. [13] predicts a zero
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TABLE III. Our results for the ρ meson electric, magnetic, and
quadrupole form factors GE,M,Q(Q2) at Q2 = 1 GeV2 and at Q2 =
2 GeV2, compared to previous DSE [15], light-cone [17], and sum-
rule calculations [19].

Q2 = 1 GeV2 Q2 = 2 GeV2

GE GM GQ GE GM GQ

Current 0.22 0.57 −0.11 0.08 0.27 −0.05
Ref. [15] 0.17 0.85 −0.51 −0.04 0.45 −0.32
Ref. [17] 0.38 0.93 −0.23 0.18 0.59 −0.15
Ref. [19] 0.25 0.58 −0.49 0.13 0.28 −0.24

crossing at Q2 ≈ 2.9 GeV2, and Ref. [17] at Q2 ≈ 5.5 GeV2,
whereas neither of the sum-rule analyses [18,19] predict a
zero crossing of GE(Q2) below Q2 = 5 GeV2. Based on our
calculations, and on the rather wide range of predictions from
other calculations, we conclude that it is unlikely for GE(Q2)
to have a zero crossing below Q2 ≈ 3 GeV2.

The values we obtain for the magnetic and quadrupole
moments of the ρ meson, µ, and Q are very similar to those of
Ref. [17] and significantly smaller than those of Refs. [13,15].
However, the Q2 evolution of both GM and GQ is quite
different than that of Ref. [17] (see Table III), again most
likely because VMD effects are not properly accounted for in
Ref. [17].

A recent sum-rule analysis [16] obtained µ = 2.0 ± 0.3 for
the magnetic moment, which, given the large error bars, is not
accurate enough to discriminate among different calculations.
The sum-rule analysis of ρ form factors at Q2 = 1 GeV2 and
2 GeV2 [19] seems to support our calculation (see Table III),
at least for GE and GM . Our results for the quadrupole form
factor however are almost a factor of 5 smaller than those of
Ref. [19]. Clearly the quadrupole form factor is most sensitive
to the details of the dynamics.

As we can see in Figs. 5 and 6, not only does GE(Q2) have
a pole in the timelike region as one approaches Q2 = −M2

ρ

but so do GM (Q2) and GQ(Q2); in addition, the K� form
factors also have a pole at Q2 = −M2

φ . In Fig. 5 we also show
the electromagnetic form factors of a fictitious ss̄-like vector
meson with the photon coupled (with charge one) to only the
s quark, but not to the s̄ quark.3 The form factors of this
fictitious ss̄-like vector meson have a pole at Q2 = −M2

φ . For
comparison we also show a pure VMD model for the electric
form factor

GE(Q2) = M2
V

M2
V + Q2

(38)

for both the ρ and the ss̄-like meson in the top left panel of
Fig. 5. Such a VMD model works remarkably well for the pion
electromagnetic form factor, at least up to spacelike Q2 values
of about 4 GeV2. Figure 5 shows that our form factors of the
vector mesons deviate significantly from a simple VMD curve.
Only in the timelike region, near the actual vector meson pole,

3The form factors of the physical φ meson are trivially zero, as are
the form factors of the neutral ρ meson.

does the VMD curve resemble our results. In the spacelike
region, our results drop significantly faster than a VMD form
factor.

Our results for the charged K� meson form factors are
qualitatively similar to those for the ρ meson. The neutral K�

form factors are most sensitive to details of the calculation,
because it depends on the difference between the up/down
quarks and the strange quarks. Therefore we expect these form
factors to show more model dependence than the presented
form factors of the charged K� and ρ mesons, and this is
indeed what we see in Table II, again in particular for the
quadrupole moment.

Finally, from Table II it is interesting to note that all
studies, with the exception of the light-cone QM calculation of
Ref. [17], find the charge radii of (charged) vector mesons to be
larger than those of the corresponding pseudoscalar mesons.
This trend was recently confirmed in lattice calculations for
light quarks [21] and for charmonium-like states [20], with
the photon coupled to the quark only, not to the antiquark,
of the charmonium state. Also a recent nonrelativistic QM
calculation of such charmonium-like states gives a vector
charge radius that is larger than the pseudoscalar charge
radius [55]. This means that the vector states are broader than
the corresponding pseudoscalar states, if one assumes that the
charge distribution is indicative of the physical size of the
bound state. This agrees with the naive intuition that a more
tightly bound state is more compact than a heavier state with
the same constituents.

B. Quark-mass dependence

In addition to the electromagnetic form factors of the
physical ρ meson, we have also calculated the quark-mass
dependence of these form factors. For simplicity we restrict
ourselves to equal-mass mesons (i.e., qq̄ bound states), and
for the electromagnetic properties we couple the photon to
only the quark q (with charge one), not to the antiquark
q̄. We refer to these form factors as the single-quark form
factors; even though they are unphysical, they are well
defined and allow for comparisons with other theoreti-
cal and computational studies of the vector meson form
factors.

The static electromagnetic properties are plotted in Fig. 7
as function of the current quark mass, normalized by the
up/down current quark mass; for the strange quark we have
ms ≈ 23mu/d and for the charm mass mc ≈ 224mu/d . Our
numerical errors grow with increasing meson mass (i.e.,
increasing quark mass), mainly because the momentum p2

of the quark propagator in the Bethe-Salpeter integrals and
in the triangle diagram spans an increasingly large domain
in the complex p2 plane with increasing meson mass. The
analytic continuation of the solution of the quark DSE, Eq. (1),
from the spacelike (Euclidean) axis to this complex momentum
domain becomes numerically cumbersome and inaccurate for
large meson masses. In our calculations this is reflected by
the fact that for the charm quark we have an estimated 2%
to 4% numerical uncertainty in the moments and a numerical
uncertainty of 6% to 8% in the radii.
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FIG. 5. Numerical results for GE(Q2) (top left), GM (Q2) (top right), and GQ(Q2) (bottom) for the ρ meson and a (fictitious) ss̄ state. For
comparison, we also show the VMD result (dashed and dot-dashed curves) for GE(Q2).

The magnetic moment µ turns out to be almost independent
of the current quark mass (Fig. 7). For 0 < mq < 4ms ≈
100mu/d the magnetic moment increases with quark mass from
µ = 2.01 to µ = 2.12; above 4ms the numerical uncertainty
starts to increase and the magnetic moment is basically
independent of the quark mass within our numerical error
bars of a few percent.

This mass dependence can naively be understood by
considering a simple constituent quark model, in which a
vector meson is a bound state of two quarks in an S wave with
the spins aligned. In such a model one expects the magnetic
moment to be proportional to that of its constituents (i.e.,
µV ∝ µq , where µq is the magnetic moment of the constituent
quark). As long as the quark magnetic moment is only weakly
dependent on the current quark mass, so is the magnetic
moment of the bound state.

Since both the charge, GE(0), and the magnetic moment,
GM (0), are (almost) independent of the quark mass, one might
expect that also the quadrupole moment, GQ(0), depends only
weakly on the quark mass. However, our calculation shows
that this is not the case: The quadrupole moment Q decreases
monotonically with mq , being reduced by about 25% at

mq ≈ 2ms ≈ 50mu/d . Above this quark mass, the quadrupole
moment continues to decrease with quark mass, but at a
slower rate. The mass dependence of the quadrupole moment
may not be that surprising when one realizes that our results,
−0.41 < Q < −0.27 depending on quark mass, deviate sig-
nificantly from the canonical value, Q = −1. Furthermore,
of all the static electromagnetic properties, the quadrupole
moment shows the largest model dependence (see Table II),
indicating that the details of the dynamics are important for this
quantity.

The fact that we find a nontrivial quadrupole moment for all
quark masses indicates that the naive picture of a vector meson
as a nonrelativistic bound state of two quarks in an S wave is too
simple. Clearly, there is a significant amount of quark orbital
momentum in the vector mesons, which in our approach is
incorporated in the meson BSAs. This is related to the fact
that we use a method that is explicitly frame-independent:
Orbital angular momentum is not a Poincaré-invariant
quantity.

In the right panel of Fig. 7 we show the mass dependence
of the charge and magnetic radii (defined analogously) of the
vector mesons. Just like the pion charge radius [48], both
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FIG. 6. Numerical results for the neutral and charged K� form factors GE(Q2) (top left), GM (Q2) (top right), and GQ(Q2) (bottom).

the charge and the magnetic radius decreases with increasing
quark mass. Our results for 〈r2〉 1

2 are qualitatively similar to a
VMD curve, and over the entire mass range the charge radius
can in fact be reasonably well described by a VMD curve

with a constant shift of about 0.07 fm. Of course that means
that the relative deviation from a VMD model increases with
increasing quark mass, again just as in the case of the pion
form factor.
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FIG. 7. Numerical results for the magnetic and quadrupole moments (dimensionless, left) and for the charge radius (in femtometers, right)
as a function of the current quark mass. Vertical dashed lines indicate the up/down, strange, and charm quark masses.
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Finally, we consider the single-quark transition form factors
of the ηc and J/� mesons, at mc ≈ 224mu/d . This allows us to
compare our results with the lattice simulations of Ref. [20].
Both the magnetic moment and the quadrupole moment are
in good agreement with the lattice data; see the bottom row
of Table II. Also the charge radii are in reasonable agreement,
with the vector state being slightly larger than the pseudoscalar
state.

In this paper we are interested in the quark-core contribution
to mesonic observables, and we do not include pion loop
effects. However, the form factors, and their quark-mass
dependence, are sensitive to pion loops, in particular at small
quark masses. Pion loops lead to corrections to the physical
ρ and π charge radii of about 10% to 15% [56,57], but
their contributions decrease rapidly with increasing quark
mass. Similarly, we expect that at the physical up/down quark
masses, the other form factors, GM and GQ, will also receive
corrections of the order of 10% from pion loops. This means
that the mass dependence of the magnetic moment will be
dominated by the pion loop corrections, given the very weak
quark-mass dependence we find here. However, we expect
these corrections to become negligible for masses around ms

and above.

VI. CONCLUSIONS

We have calculated the electromagnetic form factors of
the ρ meson and of both the charged and the neutral K�

mesons. Our method is explicitly Poincaré invariant, and we
have demonstrated explicitly that physical observables are
frame-independent. By dressing the quark-photon vertex we
guarantee electromagnetic current conservation; furthermore,
our dressed quark-photon vertex exhibits poles in the timelike
region, corresponding to intermediate vector mesons. Exactly
the same method, using the same model for the effective in-
teraction [22], has been used quite successfully to describe the
pion electromagnetic form factor [7,22] and a plethora of other
light meson observables within about 10% to 15% [27]. We
therefore expect our results to have a similar level of accuracy.

Most light meson properties that are calculated within
this model seem to be rather independent of the details of
the kernel, Eq. (10), as long as the interaction generates
the observed amount of chiral symmetry breaking [22]. This
can be achieved by keeping Dω ≈ (0.72 GeV)3 fixed: The
light meson masses and other calculated observables remain
unchanged for 0.3 < ω < 0.5 GeV, provided D is adjusted
accordingly. We expect a similar independence of the details
of the interaction for the calculations presented here.

Compared to other calculations, we find a stronger Q2

dependence, mostly because we have incorporated unam-
biguously VMD effects in the quark-photon vertex, which
have been neglected in Refs. [13,15,17]. Our results favor
a magnetic moment close to 2, in agreement with sum-rule
analysis [16,19], and a quadrupole moment Q ≈ −0.4, which
is similar to the result of Ref. [17] but significantly smaller than
suggested by other calculations [13,15,19]. Our results for the
quadrupole moment indicate that there is a significant amount
of quark orbital angular momentum in the vector mesons.

The magnetic moment is almost independent of the quark
mass for mesons of equal-mass constituents. The quadrupole
moment decreases with increasing quark mass. Also the shape
of the form factors changes: Because the VMD pole in
the timelike region shifts further away from Q2 = 0 with
increasing quark mass, the form factors become less steep,
and the radii decrease with increasing quark mass. Over the
entire quark-mass range, from the chiral limit to the charm
quark mass, the charge radius can be reasonably described
by a VMD curve with a constant shift of about 0.07 fm. A
similar behavior of the form factors, and of their quark-mass
dependence, has been obtained by using the model of Ref. [58]
for the effective quark-antiquark interaction.

Ideally experiments would guide us to discriminate among
different models and different calculation methods, but it is
unlikely that these form factors can be measured in the near
future. Lacking reliable experimental input, we would find it
very useful to have (quenched) lattice data for the vector meson
form factors at light-quark masses. Currently, the only accurate
lattice data available are at the charm mass [20]; these lattice
data are in reasonable agreement with our results at mc. Ac-
curate lattice simulations at light-quark masses are needed to
discriminate among different model calculations. A beginning
has been made in Ref. [21], but the error bars have to be reduced
significantly to make a detailed comparison meaningful.
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APPENDIX: NUMERICAL APPROACH

The form factors are calculated in the impulse approxima-
tion by

	aab̄
µ,ρσ (P,Q) = i Nc

∫
k

Tr
[
�a

µ(k−, k+)χab̄
ρ (k+, kP )

× Sb(kP )−1χ̄ b̄a
σ (q, k−)

]
, (A1)

with kP = k − P/2 and k± = k + P/2 ± Q/2, so we need
numerical solutions of the rainbow-ladder BSE for

(i) the quark-photon vertex,
(ii) the incoming vector meson, and

(iii) the outgoing vector meson

in addition to the solution of the quark DSE in the rainbow
truncation. If we choose the momentum routing and integration
variables carefully, we can arrange the integration grids such
that we do not need any interpolation or extrapolation in the
the final (triangle) loop integral for the form factor. This
significantly reduces numerical errors, in particular possible
systematic errors introduced by the extrapolation.
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We use the momentum frame

Pµ = (0, 0, 0, P ), (A2)

Qµ = (Q, 0, 0, 0), (A3)

with P 2 + 1
4Q2 = −M2. Depending on the value of Q2, P or

Q or both are imaginary. In addition, we have the integration
momentum

kµ = k[cos(θ ), sin(θ ) cos(φ), sin(θ ) sin(φ), 0] (A4)

and corresponding measure∫
d4k

(2π )4
=

∫ ∞

0

k3 dk

(2π )3

∫ π

0
sin2(θ ) dθ

∫ π

0
sin(φ) dφ. (A5)

We use Eqs. (16)–(18) for the general structure of the coupling
of a photon to an on-shell vector meson and perform the traces
analytically to obtain expressions for the form factors Fi(Q2).
Subsequently, we use Eqs. (23)–(25) to convert the functions
Fi to the more conventional electric, magnetic, and quadrupole
form factors GE,GM , and GQ.

A. Quark-photon vertex

The qq̄γ vertex is the solution of an inhomogeneous BSE,
which in the ladder truncation we can write as

�µ(k−, k+; Q) = Z2γµ + 4

3

∫
d4q

(2π )4
4πα[(k − q)2]

×Dρσ (k − q) γρ χµ(q−, q+; Q) γσ , (A6)

where

χµ(q−, q+; Q) = S(q−) �µ(q−, q+; Q) S(q+), (A7)

with k± = k + P/2 ± Q/2, and similarly for q±. Both k and
q are real Euclidean vectors, and the incoming and outgoing
quarks are always of the same flavor, so we can drop any flavor
indices.

To solve such a BSE, we decompose the function χ into its
Dirac components, and we project out a set of coupled integral
equations for its scalar component functions Fi . (Equivalently,
one could decompose � into its Dirac components and solve
the coupled integral equations for its components, but it turns
out that solving the BSE for χ is roughly factor of 3 faster
than solving the BSE for �.) We solve these coupled integral
equations by iteration, after discretizing the angular and radial
variables.

The most general form of the quark-photon vertex requires
twelve Dirac structures. Four of these covariants represent the
longitudinal components, which are completely specified by
the Ward-Takahashi identity in terms of the (inverse) quark
propagator and do not contribute to elastic form factors. The
transverse part of the vertex χ can be decomposed into eight
components:

χµ(k−, k+; Q) =
8∑

i=1

Ti

(
k + 1

2
P,Q

)
Fi(k

2, θ, φ), (A8)

where the functions Fi depend on two angles, because we solve
it in exactly the same frame and variables as are used in the

loop integral for the form factor; alternatively, we could write
it as a function of k2, k · P , and k · Q.

B. Vector meson BSAs

The incoming vector meson, with momentum P − 1
2Q and

flavor labels ab̄, is the solution of the homogeneous BSE

S−1
a (k+) χab̄

ρ

(
k+, kP ; P − 1

2
Q

)
S−1

b (kP )

= 4

3

∫
d4q

(2π )4
4πα[(k − q)2] Dαβ(k − q)

× γα χab̄
ρ

(
q+, qP ; P − 1

2
Q

)
γβ, (A9)

with k+ = k + P/2 + Q/2, kP = k − P/2, and similarly for
q+ and qP . The vector meson is on its mass shell: P 2 + 1

4Q2 =
−M2.

Again, we decompose the transverse vertex function χ into
eight components, but use a slightly different decomposition
than for the quark-photon vertex, because the momentum
arguments are different. For the vector meson BSAs we use

χρ

(
k+, kP ; P − 1

2
Q

)
=

8∑
i=1

Ti

(
kP , P − 1

2
Q

)

×Fi(k
2, θ, φ); (A10)

that is, we use the momentum partitioning where the total
incoming meson momentum flows into the outgoing quark leg;
or in other words, we use the incoming quark momentum as the
“relative momentum” in the decomposition (η = 1), though
not as the integration momentum. And again, the functions
Fi depend on two angles. As a check on our numerics, we
calculate the leptonic decay constant in this frame as well,
which gives us an indication of the numerical errors in the
BSAs.

We do not explicitly use any algebraic relation between χ

and χ̄ ,

χ̄(p, P ) = [C−1 χ (−p,−P ) C]transpose, (A11)

because the arguments of χ and χ̄ are different. Instead, we
simply solve both for χ and for χ̄ in the appropriate frame.
That is, we calculate the BSA of the outgoing vector meson as
the solution of

S−1
b (kP ) χ̄ b̄a

σ

(
kP , k−; P + 1

2
Q

)
S−1

a (k−)

= 4

3

∫
d4q

(2π )4
4πα[(k − q)2] Dαβ(k − q)

× γα χ̄ b̄a
β

(
qP , q−; P + 1

2
Q

)
γβ, (A12)

again with k− = k + P/2 − Q/2, kP = k − P/2, and simi-
larly for q− and qP . We solve this equation for χ̄ in basically
the same manner as the BSE for χ . In this way we avoid the
need for interpolation and extrapolation on the vertex functions
in the triangle diagram for the electromagnetic form factors.
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