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Angular momentum conservation in heavy ion collisions at very high energy
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The effects of angular momentum conservation in peripheral heavy ion collisions at very high energy are
investigated. It is shown that the initial angular momentum of the quark-gluon plasma should enhance the
azimuthal anisotropy of particle spectra (elliptic flow) with respect to the usual picture where only the initial
geometrical eccentricity of the nuclear overlap region is responsible for the anisotropy. In hydrodynamical terms,
the initial angular momentum entails a nontrivial dependence of the initial longitudinal flow velocity on the
transverse coordinates. This gives rise to a nonvanishing vorticity in the equations of motion, which enhances
the expansion rate of the supposedly created fluid compensating for the possible quenching effect of viscosity.
A distinctive signature of the vorticity in the plasma is the generation of an average polarization of the emitted
hadrons, for which we provide analytical expressions. These phenomena might be better observed at LHC, where
the initial angular momentum density will be larger and where we envisage an increase of the elliptic flow
coefficient v2 with respect to RHIC energies.
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I. INTRODUCTION

Nuclei colliding at ultrarelativistic energies have a large
initial orbital angular momentum L0 if their impact parameter
is of order of some femtometers; in fact, for symmetric
nuclei, L0 � A

√
sNNb/2 in natural units (h̄ = 1). For Au-Au

collisions at RHIC energies
√

sNN = 200 GeV and L0 ∼
5 × 105 at an impact parameter b = 5 fm. The angular
momentum will be almost two orders of magnitude larger in
the forthcoming Pb-Pb collisions at LHC, at

√
sNN = 5.5 TeV,

with L0 ∼ 1.4 × 107. Because of the inhomogeneity of the
colliding nuclei in the transverse plane, a significant fraction
of L0 must be deposited in the interaction region, in other words
should be transferred to the supposedly formed quark-gluon
plasma (QGP). Large values of the initial angular momentum
of the plasma may give rise, as we will show, to significant
observable effects.

According to the to-date generally accepted description of
the collision process, a locally equilibrated plasma is formed
after a relatively short proper time (of the order of 1 fm/c)
followed by a purely ideal-fluid hydrodynamical expansion.
This kind of approach proved to be able to reproduce the large
observed values of the elliptic flow in peripheral collisions, at a
finite impact parameter, and the transverse momentum spectra
of particles in the low-pT region [1]. Usually, in this kind of
description, the Bjorken hydrodynamics scaling hypothesis is
used either all along the evolution (2+1 hydro) [2] or just at the
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initial proper time (3+1 hydro [3]). In both cases, the initial
longitudinal flow velocity only depends on z, which amounts to
making the initial angular momentum vanish unless the energy
density has an asymmetric dependence on the transverse
coordinates [3]. But even if this is assumed, in which case the
initial angular momentum is then nonvanishing, the dynamical
evolution would be different from the case of a longitudinal
flow velocity depending on transverse coordinates, as we will
show later.

In recent papers [4,5] it has been found that amending the
ideal-fluid assumption with even a minimal viscosity strongly
affects the elliptic flow. Particularly, Song and Heinz pointed
out that, to restore the agreement with a hydrodynamical
description, one should enforce significant modifications of
the initial conditions or the equation of state, thereby raising
some doubts about the interpretation of RHIC results. In this
paper, we want to show that including the initial angular
momentum by a suitable modifications of the initial fluid
velocity profile may cure the problem, or at least it may
give a contribution in this direction. In fact, a finite angular
momentum enhances the elliptic flow coefficient and broadens
the transverse momentum spectra, exactly what is needed to
counterbalance the quenching effect of viscosity.

The most distinctive signature of an intrinsic angular
momentum would be the polarization of the emitted hadrons.
This argument has been put forward in Refs. [6,7], where
the authors take a QCD perturbative approach. Also, more
recently, polarization has been related to the fluid vorticity
[8], yet without the development of an explicit mathematical
relation. In this paper, we take advantage of a very recent
study of the ideal relativistic spinning gas [9] and present
a formula relating polarization to the angular velocity of an
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FIG. 1. Sketch of a peripheral heavy ion collision at very
high energy in the longitudinal projection. The initial momentum
distribution of the interaction region (right) should have a gradient
along the axis x orthogonal to the collision axis z stemming from the
different transverse densities of the colliding strips (left).

equilibrated (i.e., rigidly rotating) hydrodynamical system. We
argue, on the basis of the locality principle, that a such formula
should hold for the most general fluid motion where the
angular velocity is to be presumably replaced by an expression
involving the local acceleration and hence the vorticity of the
fluid.

II. ANGULAR MOMENTUM CONSERVATION IN
HEAVY ION COLLISIONS

In the usual picture of a peripheral heavy ion collision
at ultrarelativistic energy the overlapping region of the two
incoming nuclei gives rise to QGP whereas the nonoverlapping
fragments fly away almost unaffected. Thereby, only a fraction
of the initial angular momentum L0 is left to the interaction
region, while the largest part is carried away by the fragments
(see Fig. 1). The angular momentum of the interaction region
takes its origin from the inhomogeneity of the density profile
in the transverse plane, the so-called thickness function. This
is much more clearly seen in a longitudinal projection: The
colliding strips of nucleons have, in peripheral collisions,
different numbers of nucleons. Although the central strips have
the same weight, the strips above it will have a net momentum
directed along the negative z axis and the ones below it a net
momentum directed along the positive z axis. (see Fig. 1).
The net momentum density at each point (x, y) of the overlap
region in the transverse plane (see Fig. 2 for the axes definition)
for symmetric (equal nuclei) collisions reads

dP

dxdy
= [T (x − b/2, y) − T (x + b/2, y)]

√
sNN

2
, (1)

where T (x, y), the thickness function, that is, the longitudinal
integral of the nucleon density, is given by

T (x, y) =
∫

dz n(x, y, z).

Only if the two colliding objects were homogeneous in the
transverse plane would the angular momentum of the interac-
tion region be vanishing. Yet, the nuclei are not homogenous

J

FIG. 2. Sketch of a peripheral heavy ion collision at very high
energy in the transverse projection. The overlap almond-shaped
region is marked in light gray and has an overall angular momentum
directed along the symmetry axis y, orthogonal to the reaction plane.

in the transverse plane; for instance, if they are assumed to
be homogenous spheres in their rest frame, their thickness
function T (x, y) would be proportional to

√
R2 − r2, where

r is the distance from the center of the nucleus and R is its
radius. In this case, Eq. (1) would become

dP

dx dy
= 2n0

[√
R2 − y2 − (x − b/2)2

−
√

R2 − y2 − (x + b/2)2
]√

sNN

2
. (2)

From this momentum density, one gets an initial angular
momentum J of the interaction region directed along the y

axis:

J = 2n0

∫
dx

∫
dy x

[√
R2 − y2 − (x − b/2)2

−
√

R2 − y2 − (x + b/2)2
]√

sNN

2
ĵ. (3)

In Fig. 3 we show J for two colliding gold nuclei at
√

sNN =
200 GeV, in the two cases of hard spheres and a Woods-Saxon
distribution. For the former case, it is seen that the angular
momentum attains a maximal value at an impact parameter
of 2.5 fm and quickly drops thereafter. The maximal value
of J is about 7.2 × 104 (i.e., 29% of the initial orbital angular
momentum L0 of the colliding nuclei at that impact parameter).
Therefore, J is very large and strongly dependent on the impact
parameter b but this effect is usually ignored in the initial
conditions assumed for hydrodynamical calculations, as in the
commonly used Bjorken model the longitudinal flow velocity
only depends on z and it does not thus have any azimuthal
anisotropy.

This dependence can be seen again from Fig. 1; since the
net momentum of the colliding strips varies monotonically
along x, either the proper energy density or the fluid four-
velocity or both must have an asymmetric profile in x for
the initial angular momentum to be conserved. If we take the
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FIG. 3. Angular momentum J of the interaction region as a
function of the impact parameter for Au-Au collisions at

√
sNN =

200 GeV.

reasonable assumption that the proper energy density cannot
have such an asymmetric dependence on x because it can
only depend on the density of nucleons at each point, the only
remaining possibility is to admit that the initial longitudinal
flow velocity is asymmetric in x from the very beginning; that
is, it is azimuthally anisotropic, in such a way that

−
∫

d3xxT 0z = −
∫

d3xx(ρ + p)γ 2vz(x) = J (4)

for a perfect fluid and if the initial flow transverse flow velocity
is zero; in this equation T is the stress-energy tensor, ρ is the
proper energy density, p is the pressure, and γ 2 = (1 − v2)−1.
The fact that vz is not azimuthally isotropic implies, in
general, a nonvanishing vorticity ω = (1/2)∇ × v for the fluid
motion, and this may have remarkable consequences on the
final particle spectra. It should be pointed out that some
calculations [3] indeed introduce an x-asymmetric proper
energy density function. Still, even if ρ were forced to have
such an asymmetric x dependence to fulfill angular momentum
conservation (4), the final velocity field would not be the same
as when, more reasonably, vz is asymmetric in x. We will try to
illustrate such effects with an oversimplified hydrodynamical
scheme in the next section.

III. HYDRODYNAMICAL SCHEME

We are now going to set up a very simple hydrodynamical
scheme to show that the azimuthal anisotropy of the lon-
gitudinal flow velocity required by the angular momentum
conservation must enhance the elliptic flow.

As has been mentioned, the requirement of an initial
azimuthal anisotropy of the longitudinal flow velocity breaks
the usual Bjorken scheme, where vz = z/t . As a first step,

FIG. 4. Initial longitudinal velocity profile for the limiting case of
sudden thermalization in the very thin overlap region of the colliding
ultrarelativistic nuclei.

one would like to introduce a minimal change of the Bjorken
scheme, which is not an easy task. Thus, to describe the
possible effects of an initial dependence of vz on x in the
most transparent way, we will assume an oversimplified
scheme in which the two colliding nuclei give rise to a
complete thermalization within an infinitesimally thin slab �z

at time t = 0 (see Fig. 4). This scheme looks very similar to
the Landau hydrodynamical model, were not for the inclusion
of an initial flow velocity vz(x), which ought to vanish
at x = 0 for an infinitely thin slab, for evident symmetry
reasons. Such a picture of the collision should be more
realistic at asymptotically large energies, where one expects
thermalization to be extremely quick and nuclei are infinitely
Lorentz-contracted along their collision axis. Furthermore, we
will assume to deal with a perfect fluid and we will focus our
attention on the transverse motion only.

First, we can write a relation for the initial momentum
density:

(ρ0 + p0)γ 2
0 vz0 = 1

�z

dP

dxdy
, (5)

where ρ0, p0, and vz0 are the proper energy density, pressure,
and longitudinal flow velocity, respectively, at time t = 0,
with γ 2

0 = 1/(1 − v2
z0) because the initial transverse velocity is

vanishing; dP
dxdy

is given by Eq. (1). Equation (5) makes it clear
that vz0 in this approach cannot be zero because of the initial
unbalance in momentum and that, in general, it depends on
both x and y. The specific functional form of the proper energy
density ρ affects the functional dependence of vz0 but it should
not suppress its dependence on x because it is reasonable to
assume that it has a symmetric dependence on x, unlike dP

dxdy

as pointed out at the end of Sec. II. From a hydrodynamical
point of view, the remarkable consequence of this is that the
initial vorticity ω = (1/2)∇ × v is nonvanishing, unlike in the
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traditional Bjorken picture where vz only depends on z. Indeed,

ωx(t = 0) = 1

2

∂vz0

∂y
, ωy(t = 0) = −1

2

∂vz0

∂x
, (6)

where the largest component among the two is the one along
the y axis, because of the asymmetry of vz0 with respect to the
y axis. Conversely, vz0 is symmetric with respect to the x axis
[see Eqs. (1) and (2)] and its partial derivative with respect to
y ought to vanish at y = 0 for any x.

It is worth pointing out that the evolution equation for the
classical vorticity ω in the relativistic case is more complicated
than in nonrelativistic fluid mechanics. However, it is still
true that a nonvanishing initial value of the classical vorticity
makes the fluid motion a vorticous one in general. This stems
from the Carter-Lichnerowicz equation of motion (equivalent
to the Euler equations) for a perfect fluid with one conserved
charge [10]:

uµ(∂µh̄uν − ∂νh̄uµ) = −T ∂ν s̄, (7)

where h̄ = (ρ + p)/n and s̄ = s/n are the enthalpy and
the entropy densities, respectively, normalized to the charge
density n, p is the pressure, and T is the temperature. The
vorticity tensor is usually defined as

�µν = (∂µh̄uν − ∂νh̄uµ) (8)

and the vorticity vector as [10]

ωα = 1

4h̄
εαµνσ uµ�νσ = 1

4
εαµνσuµ (∂νuσ − ∂σuν) . (9)

It is quite straightforward to show from Eq. (9) that the vorticity
vector field has the nonrelativistic limit

ω → (
0, 1

2∇ × v
)

(10)

so that ω is a proper relativistic generalization of the classical
vorticity ω = (1/2)∇ × v. The time component of ω is

ω0 = 1
2γ 2v · ∇ × v.

Thus, if ∇ × v �= 0 then ω �= 0 and � �= 0. It can be shown,
starting from Eq. (7), that the spacial part of the vorticity
tensor, that is, � = ∇ × h̄γ v, fulfills the Helmholtz vorticity
equation

∂�

∂t
= ∇ × (v × �), (11)

provided that the fluid is isentropic (i.e., ∇ s̄ = 0). All classical
consequences of the vorticity equations then hold in relativity
provided that ω is replaced by �.

Let us now study in more detail the fluid equations of motion
at time t = 0. We will write the Euler equation, instead of the
Carter-Lichnerowicz, for a perfect ultrarelativistic fluid, with
equation of state p = ρ/3. Accordingly, we have

(ρ + p)(u · ∂)uµ = gµν∂νp − (u · ∂p)uµ, (12)

and we shall focus on the transverse components at time t = 0,
when ux = uy = 0, namely,

ρ0γ0
∂ui

∂t

∣∣∣∣
t=0

= −1

4

∂ρ

∂xi

∣∣∣∣
t=0

(13)

for i = 1, 2, where the equation of state has been used.
Multiplying both sides by γ 2

0 and manipulating the derivative
on the right-hand side gives

ρ0γ
3
0

∂ui

∂t

∣∣∣∣
t=0

= −1

4

∂ργ 2

∂xi

∣∣∣∣
t=0

+ 1

4
ρ0

∂γ 2

∂xi

∣∣∣∣
t=0

. (14)

Now, since γ 2
0 = 1/(1 − v2

z0), we get

∂γ

∂xi

∣∣∣∣
t=0

= γ 3
0 vz0

∂vz0

∂xi

(15)

and Eq. (14) becomes

ρ0γ
3
0

∂ui

∂t

∣∣∣∣
t=0

= − 1

4

∂ργ 2

∂xi

∣∣∣∣
t=0

+ 1

4
2ρ0γ

4
0 vz0

∂vz0

∂xi

∣∣∣∣
t=0

. (16)

Two terms are then responsible for the initial transverse
velocity increase: The first is related to the gradient of the
energy density in the observer frame; the second depends on
the gradient of the initial velocity field [i.e., on the vorticity
according to Eq. (6)]. If vz0 were independent of x, y the
second term would vanish and the transverse expansion would
then be driven by the energy density gradient only, as in
the usual picture. Because of the eccentricity of the overlap
region (see Fig. 2), the system gets an initial kick larger in
the x direction than in y and an anisotropy in the final spectra
ensues. If, however, the second term is included, the expansion
gets an additional contribution because ∂vz0/∂x < 0 (see Fig.
4), and vz0 is negative for x > 0 and positive for x < 0
so that altogether the second term drives an increase of ux

for x > 0 and a decrease (starting from zero) for x < 0.
Moreover, the expansion rate related to this term will be larger
in the x direction than in y because, expectedly, ∂vz0/∂x >

∂vz0/∂y [see discussion following Eq. (6)], thereby enhancing
the elliptic flow. In other words, besides the geometrical
anisotropy, elliptic flow gets a finite contribution from an
initial kinematical anisotropy of the longitudinal velocity. This
enhancement of elliptic flow can be seen as a centrifugal effect
owing to angular momentum conservation: Particles with a
momentum orthogonal to J (i.e., directed along the reaction
plane) get an additional momentum kick with respect to those
emitted along J.

It is now interesting to make an estimate of how large this
contribution is in our simple scheme. Assuming that the energy
density is proportional to the total energy of nucleons in the
overlap region so that

(ρ0 + p0)γ 2
0 − p0 = 1

�z

dE

dxdy
= 1

�z
[T (x − b/2, y)

+ T (x + b/2, y)]

√
sNN

2
, (17)

and by using Eq. (5) and the equation of state p = ρ/3,

we can obtain the expressions of the initial proper energy
density ρ:

ρ0 = 1

�z

√
4

(
dE

dxdy

)2

− 3

(
dP

dxdy

)2

− 1

�z

dE

dxdy
(18)
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FIG. 5. Initial longitudinal velocity profile along the reaction
plane y = 0 for two different impact parameters for the collision
of two hard-sphere nuclei with 7-fm radius.

and the flow velocity vz0:

vz0 =
3 dP

dxdy√
4
(

dE
dxdy

)2
− 3

(
dP

dxdy

)2
+ 2 dE

dxdy

, (19)

which is shown in Fig. 5 for the case of hard-sphere nuclei with
7-fm radius. According to Eq. (18), the proper energy density
is an even function of x, as was expected with the assumption
(17), whereas vz0 is an odd function of x. Also, it can be seen
from Fig. 5 that vz0 has a singular derivative at the edge of the
overlap region, a consequence of the hard-sphere assumption;
such singularities disappear with smooth density profiles. By
using Eqs. (19), (18), (5), and (17) we can compute the ratio
of the second to the first term in Eq. (16) for the x axis:

−
2ρ0γ

4
0 vz0

∂vz0

∂x

∣∣∣
t=0

∂ργ 2

∂x

∣∣∣
t=0

(20)

and thereby evaluate the importance of the vorticity term
for the expansion rate. This ratio is shown in Fig. 6 for the
case of hard-sphere nuclei for two different y values at an
impact parameter b = 6 fm. It is seen that the second term is
a consistent fraction of the first term even near the collision
center x = 0 (about 20%) whereas it steeply increases at larger
x values; at the boundary of the x interval the ratio shows spikes
owing to the hard-sphere assumption and it is not shown. Of
course, these numbers refer to an oversimplified example and
just for the initial expansion kick, but the conclusion that the
longitudinal velocity gradient cannot be neglected in more
realistic hydrodynamical calculations should hold.

As has been mentioned, in some hydrodynamical calcula-
tions [3,11], a nonvanishing angular momentum of the plasma
is tacitly introduced by enforcing an asymmetric x dependence
for the proper energy density in peripheral collisions keeping
the Bjorken longitudinal scaling (i.e., the independence of vz

x

R
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FIG. 6. Ratio of the term proportional to the vorticity and the
term proportional to energy density gradient along x in Eq. (16) as
a function of x for y = 0 and y = 2 fm for the collision of two
hard-sphere nuclei with 7-fm radius at an impact parameter b =
6 fm.

on the coordinates x, y). Thereby, longitudinal momentum
density [Eq. (5)] conservation is fulfilled even though vz is
independent of x and the angular momentum conservation
[Eq. (4)] is also fulfilled. We think that this assumption is
quite unnatural. First, it cannot hold in our specific example
of instantaneous thermalization at infinitely large energy (with
the infinitesimally thin fluid in Fig. 4) because the only velocity
that is compatible with symmetry and independent of x is 0,
thus making both momentum and angular momentum density
vanishing. However, even in the more realistic and more
general case of finite thermalization time, it does not lead to the
same flow velocity field as in the case of angular momentum
conserved through Bjorken scaling breaking because of the
absence of the vorticity term. This can be shown by enforcing
the equality of angular momentum densities in the two
approaches:

4
3 ρ̃0γ̃

2
0 ṽz0 = 4

3ρ0γ
2
0 vz0, (21)

where quantities with a tilde on the left-hand side are such
that only ρ̃ depends on x whereas on the right-hand side we
have the standard ones in our approach. From this equation it
follows that

∂ρ̃

∂x

∣∣∣∣
t=0

γ̃ 2
0 ṽz0 = ∂ρ

∂x

∣∣∣∣
t=0

γ 2
0 vz0 + ρ0

∂γ 2
0 vz0

∂x

∣∣∣∣
t=0

. (22)

Using Eqs. (22) and (21) to obtain ∂ρ/∂x in the equation
of motion at time t = 0 [Eq. (13)], we get, after some
manipulations,

∂ux

∂t

∣∣∣∣
t=0

= − 1

4γ0ρ0

∂ρ

∂x

∣∣∣∣
t=0

= − 1

4ρ̃0γ̃0

∂ρ̃

∂x

∣∣∣∣
t=0

γ̃0

γ0

+ 1

4γ 3
0 vz0

∂γ 2vz0

∂x

∣∣∣∣
t=0

. (23)
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Conversely, in an approach where velocity is uniform with the
same angular momentum density, one would have

∂ux

∂t

∣∣∣∣
t=0

= − 1

4ρ̃0γ̃0

∂ρ̃

∂x

∣∣∣∣
t=0

. (24)

Therefore, even though the same angular momentum density
was enforced by modifying the energy density profile, the
expansion rate could be consistently different from the one
with nonvanishing vorticity because of the factor γ̃ /γ and,
chiefly, the additional term proportional to the derivative of
longitudinal velocity, which in general speeds up expansion,
as we have seen.

The ratio of the expansion-driving terms in Eq. (20) depends
only on geometry and not on the center-of-mass energy,
because so do both ρ and vz0 according to Eqs. (18) and
(19) and the expressions (5) and (17). This apparent energy
independence is just a specific feature of our simple scheme
where the longitudinal dimension was shrunk to a very thin
slab. In fact, this cannot be the case in a more realistic situation,
where thermalization is not instantaneous and, therefore, the
gradient of vz is distributed on a larger volume. In other words,
the relative vorticity contribution will not be as large as it
turned out to be by enforcing instantaneous thermalization in
an infinitesimal slab �z. This can be better seen by rewriting
the angular momentum, for a perfect fluid, as

J =
∫

d3xx × π =
∫

d3x∇ x2

2
× hγ 2v

=
∫

d3x∇ × x2

2
hγ 2v −

∫
d3x

x2

2
∇ × hγ 2v

= −
∫

d3x
x2

2
∇hγ 2 × v −

∫
d3xx2hγ 2ω, (25)

where πi = T 0i = hγ 2vi is the momentum density, h = ρ +
p is the enthalpy density, and ω = (1/2)∇ × v; in this equation
we assumed that the enthalpy density vanishes outside a
compact region. In general, the sum of the two terms in
Eq. (25) is constrained by angular momentum conservation
but their relative contribution to it can, and will, vary with
the center-of-mass energy. Most likely, at lower energy, the
vorticity term will be less important whereas, at higher energy,
its relative contribution should approach the limiting one
calculated in our simple scheme because thermalization is
expected to be faster, with an initial denser plasma and a higher
angular momentum density. If this is the case, at the LHC, a
further increase of the elliptic flow with respect to RHIC ought
to be observed.

IV. ELLIPTIC FLOW FOR A SPINNING SYSTEM

Taking viscosity into account implies a modification of
the hydrodynamical equations but this should not affect
our conclusions. This can be understood with a simple
argument: Angular momentum has to be conserved anyway
and dissipative effects such as viscosity will speed up entropy
increase. Thus, the system will tend to the maximal entropy
configuration, which, for a system with finite angular momen-
tum and finite volume, is a rigidly spinning fluid, with velocity

field v = ω × x,ω being a constant vector related to the total
angular momentum J [9,12]. Of course, the quick expansion
will prevent the system from reaching global equilibrium
before decoupling, but still the system will evolve toward that
configuration.

Hence, although viscosity, along with other dissipative
forces, will not be able to create a fully equilibrated rigidly
spinning plasma fireball, it is interesting to show that in this
ideal case the effect of a finite angular momentum on elliptic
flow and other observables is remarkable.

That a globally spinning interaction region brings about
an anisotropy in the particle azimuthal spectra was argued
many years ago by Hagedorn and Wambach [13] and recently
rediscussed in Ref. [14]. Assuming statistical hadronization for
a fully equilibrated subsystem of the plasma, one can calculate
the elliptic flow coefficient as that of a rigidly spinning ideal
hadron-resonance gas with angular momentum Jω such that
Jω < J and fixed angular velocity ω = (1/2)∇ × v parallel to
it and linked to Jω by a thermodynamic relation that is linear
for small ω/T values [9]. In the Boltzmann approximation for
primary hadrons, this reads [9]

v
(J )
2 =

∫
d3x

K1

(
mT

√
1−|ω×x|2‖/T

)
√

1−|ω×x|2‖
I2

(
pT zω

T

)
∫

d3x
K1

(
mT

√
1−|ω×x|2‖/T

)
√

1−|ω×x|2‖
I0

(
pT zω

T

) , (26)

where K1 and In are modified Bessel functions and T is
the global temperature. It should be stressed that the global
temperature T in a spinning relativistic gas is related to
the local proper temperature T0, measured by a comoving
thermometer, by the relation [9]

T0(r) = T√
1 − ω2r2

, (27)

where r is the distance from the rotation axis ω. Since it
is the local, and not the global, temperature that determines
the phase of the system, the decoupling should occur when the
highest local temperature reaches the critical value Tc for the
quark-hadron transition, that is, when

T√
1 − ω2R2

= Tc, (28)

where R is the maximal distance from the rotation axis.
The behavior of the “rotational” v

(J )
2 (which would simply

vanish if J = 0) as a function of pT for primary hadrons
is very similar to that driven by pressure gradients in usual
hydrodynamical calculations, and it turns out to be almost
independent of the particle mass. This behavior is shown in
Fig. 7 for ω/T = 0.03 at the chemical freeze-out temperature
Tc = 165 MeV, for a spherical source with radius R = 10.1 fm
and a total angular momentum Jω � 104 (i.e., of the same order
of the J of the interaction region at RHIC energies). The v

(J )
2

of primary hadrons from a globally spinning region would be
therefore very large, although resonance decays should lower
the final one consistently.
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FIG. 7. Elliptic flow coefficient v
(J )
2 as a function of pT for

hadrons originated from a spherical spinning plasma at a chemical
freeze-out T = 165 MeV and a radius of 10.1 fm for ω/T = 0.03.
The elliptic flow would simply vanish if J = 0.

V. POLARIZATION

Elliptic flow is not a unique consequence of an intrinsic
rotation. There is, however, a distinctive signature thereof:
a polarization of the emitted hadrons along the angular
momentum direction (in the observer frame). That a large
angular momentum in peripheral heavy ion collisions could
give rise to polarization of the final hadrons was first proposed
in Ref. [6], where a quantitative assessment was performed
within a perturbative QCD framework, with the polarization
of quarks assumed to be effectively transferred to final hadrons.
Recently, it has been pointed out that a plasma with polarized
quarks could be probed by observing the polarization of direct
photons [15]. We take a different approach here and determine
the polarization of particles by invoking local thermody-
namical equilibrium and the statistical hadronization dogma,
which is successful in describing hadronic multiplicities:
Every multihadronic state compatible with conservation laws
is equally likely. Therefore, since the total angular momentum
is not vanishing, when the plasma hadronizes, available spin
states will not be evenly populated and a net polarization of
the produced hadrons will show up. In this approach, there
is no need to invoke any special dynamical mechanism for
the polarization of quarks to be transferred to hadrons, as it
should happen as a consequence of the statistical nature of this
process.

The proper polarization vector �0 of particles in a relativis-
tic rotating ideal gas has been calculated by the authors [9] as

�0 = 1

2
tanh

ω

2T

[
ε

m
ω̂ − ω̂ · pp

m(ε + m)

]
(29)

for spin 1/2 particles and

�0 =
∑S

n=−S nenω/T∑S
n=−S enω/T

[
ε

m
ω̂ − ω̂ · pp

m(ε + m)

]
(30)

for generic spin particles, where ε is the energy and p the
momentum of the particle. The polarization along ω̂ (i.e., �0 ·
ω̂) turns out to be maximal for particles emitted orthogonally
to ω (i.e., along the reaction plane for an equilibrated spinning
system) and increases for increasing pT up to momenta of
the order of 2mT/ω, where the rotational grand-canonical
ensemble scheme fails and more complicated expressions arise
[9]. Also, the vector mesons show spin alignment in that the
00 component of the spin density matrix turns out to
be different from 1/3, specifically [9],

ρω 00(p) = 1

2 cosh(ω/T ) + 1

{
cosh(ω/T ) + (p · ω)2

p2ω2

× [1 − cosh(ω/T )]

}
, (31)

which, for small ω/T , reduces to

ρω 00(p) � 1

3
+ 1 − 3(p̂ · ω̂)2

18

ω2

T 2
. (32)

It is interesting to note that the polarization (more generally
the spin density matrix) depends on the ratio of angular
velocity to global temperature, that is, on using Eq. (27)
on γω/T0, where T0 is the local temperature. Therefore,
it can be conjectured, by invoking the locality principle,
that a polarization should appear in a generic accelerated
hydrodynamical cell at local equilibrium fully determined by
local quantities. Hence, ω is to be plausibly replaced by the
vector

ω → 1

v2
a × v, (33)

which is the local angular velocity for a general trajectory,
according to the Frenet formulas. If this conjecture is true,
every hadronizing hydrodynamical cell will produce hadrons
with polarization vector (30) with ω equal to the right-hand
side of expression (33).

The expected polarization values are of the order of ω/T ,
which is reasonbly some percent or less (see previous section)
but they should increase with particle momenta up to momenta
of a few GeVs and hopefully become observable.1 However,
the expressions (30) and (31) refer to primary hadrons (i.e.,
those emitted from the source at decoupling) and resonance
decays can further dilute the polarization, so that a more
detailed study is needed.

It is difficult to predict the evolution of polarization values
as a function of center-of-mass energy. However, it can be
argued that they should increase by considering that angular
momentum density at freeze-out increases as a function of√

sNN . This happens because the size of the system at
freeze-out increases approximately logarithmically whereas
the angular momentum of the interaction region increases
linearly with

√
sNN [see Eq. (3)]. Since the angular momentum

density must be somehow related to the final local angular
velocity (33), a fair conclusion follows that polarization effects
should increase with the collision energy.

1Recent measurements by RHIC experiments set a limit on average
 polarization to be ∼ 0.02 [16].

024906-7



F. BECATTINI, F. PICCININI, AND J. RIZZO PHYSICAL REVIEW C 77, 024906 (2008)

VI. SUMMARY AND CONCLUSIONS

We have pointed out that angular momentum conservation
in peripheral ultrarelativistic heavy ion collisions at very high
energy should give an additional contribution to the azimuthal
momentum anisotropy, thereby enhancing the elliptic flow
coefficient v2. By using a very simple hydrodynamical scheme,
we have shown that taking angular momentum conservation
properly into account implies, most likely, a nonuniform
longitudinal flow velocity in the transverse plane, breaking the
usual assumption of Bjorken scaling. This in turn generates a
nonvanishing initial vorticity term in the equations of motion
that enhances the transverse expansion rate and may be able
to balance the elliptic flow deficit observed by Song and
Heinz [5] in minimally viscous hydrodynamical calculations.
Angular momentum conservation is also implemented in
current hydrodynamical calculations by keeping the Bjorken
scaling hypothesis, but the resulting expansion rates are
different. We expect this effect to be more visible at the
very large energies, where the vorticity contribution to the
angular momentum density tends to an upper geometrical
limit, that we have analyzed in our simplified scheme.
Hence, we predict that v2 should increase from RHIC to

LHC energy, although we cannot give a definite quantitative
estimate.

The most characteristic signature of the vorticity induced
by angular momentum conservation would be a polarization
of the emitted particles, which is predicted to be, in the
observer frame, for a globally spinning system, orthogonal to
the reaction plane and maximal for particles with momentum
parallel to the reaction plane in case of a globally spinning
plasma. A quantitative assessment of these effects for the
actual hydrodyamical evolution is very difficult to make, but
we argued that the polarization should be there for a general
accelerated fluid motion. Also this effect should be better
observed at the LHC, where the angular momentum density
should be larger.
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