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Energy dependence of jet transport parameter and parton saturation in quark-gluon plasma
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We study the evolution and saturation of the gluon distribution function in the quark-gluon plasma as probed
by a propagating parton and its effect on the computation of jet quenching or transport parameter q̂. For thermal
partons, the saturation scale Q2

s is found to be proportional to the Debye screening mass µ2
D . For hard probes,

evolution at small x = Q2
s /6ET leads to jet energy dependence of q̂. We study this dependence both for a

conformal gauge theory in weak and strong coupling limit and for (pure gluon) QCD. The energy dependence
can be used to extract the shear viscosity η of the medium, since η can be related to the transport parameter
for thermal partons in a transport description. We also derive upper bounds on the transport parameter for both
energetic and thermal partons. The latter leads to a lower bound on the shear viscosity to entropy density ratio
which is consistent with the conjectured lower bound η/s � 1/4π . We also discuss the implications of these
results on the study of jet quenching at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron
Collider and the bulk properties of the dense matter.
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I. INTRODUCTION

Experimental data from the BNL Relativistic Heavy-ion
Collider (RHIC) have shown significant suppression of both
high transverse momentum single inclusive hadron spectra
and the back-to-back dihadron correlation in central high-
energy heavy-ion collisions [1–3]. The observed jet quenching
phenomena can be attributed to parton energy loss and medium
modification of the effective parton fragmentation functions
[4–6] due to gluon bremsstrahlung induced by multiple parton
scattering.

Within the picture of multiple parton scattering in QCD,
the energy loss for an energetic parton propagating in a
dense medium is dominated by induced gluon bremsstrahlung.
Taking into account of the non-Abelian Landau-Pomeranchuk-
Midgal (LPM) interference, the radiative parton energy
loss [7],

�E = αsNc

4
q̂RL2, (1)

is found to depend quadratically on the medium length L and
a jet transport or energy loss parameter

q̂R = ρ

∫
dq2

T

dσR

dq2
T

q2
T , (2)

which describes the averaged transverse momentum transfer
squared per unit distance (or mean free path). Here R is the
color representation of the propagating parton in SU(3) and ρ

is the color charge density of the medium. According to this
picture, jet quenching as observed in high-energy heavy-ion
collisions is a direct measurement of the jet transport parameter
q̂R in dense medium which characterizes not only the color
charge density but also the interaction strength between the
propagating parton and the medium.

Phenomenological studies based on variations of the parton
energy loss picture [8–11] all indicate the formation of an
extremely high density matter in the initial stage of high-energy
heavy-ion collisions at the RHIC energy. The averaged trans-
port parameter extracted from different phenomenological

studies of the single inclusive high pT hadron suppression
in the most central Au+Au collisions at RHIC is [12] q̂F ∼ 1–
15 GeV2/fm (for a propagating quark) at an initial time τ0 =
1 fm/c. A recent simultaneous fit of the next-to-leading order
(NLO) pQCD calculation to both single and back-to-back
dihadron suppression [13] narrows the uncertainty to q̂F =
1.1–1.4 GeV2/fm, which is still about 100 times higher than
that in a cold nucleus q̂F ≈ 0.013 GeV2/fm as extracted from
leading hadron suppression in deeply inelastic scattering off
large nuclei [14].

In most of the theoretical studies of parton energy loss
[7,15–18], except the twist-expansion approach [19], a static
potential model for jet interaction with the medium was
assumed which led to the factorized dependence of parton
energy loss on the transport parameter q̂R in Eq. (1). In this
static potential model, energy and longitudinal momentum
transfer between a jet parton, and the medium is ignored.
Therefore, elastic energy loss due to the recoil of the medium
parton during the jet-medium interaction is neglected in the
calculation of radiative parton energy loss. Furthermore, the
static potential model does not include the effect of inelastic
breakup (or parton radiation) of the medium partons which can
give rise to jet energy dependence of the transport parameter
q̂R . In a dynamical picture, the transport parameter can be
related to gluon distribution density of the medium [7]. The jet
energy dependence of the transport parameter is then directly
related to the scale and momentum fraction dependence of
the gluon distribution density. Understanding the jet energy
dependence of the transport parameter not only helps us to
improve the phenomenological study of experimental data on
jet quenching but also provides additional information about
the structure of the dense quark-gluon matter in heavy-ion
collisions. Furthermore, as illustrated in a recent study [20],
the low energy limit (E ∼ T temperature of the medium)
of the transport parameter in jet quenching is directly related
to the shear viscosity of the quark-gluon matter in a transport
description. Therefore, experimental and theoretical study of
the jet energy dependence of the transport parameter will be
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able to provide another piece of important information on bulk
properties of the dense medium.

Recently, the transport parameter q̂R has also been calcu-
lated for a strongly coupled N = 4 supersymmetric Yang-
Mills (SYM) theory in different limiting scenarios. With a
definition in terms of an adjoint Wilson loop along the light
cone, Liu, Rajagopal, and Wiedemann [21] found that q̂A in
the large limit of the t’ Hooft coupling λ = Ncg

2 in SYM,
that is,

q̂A = π3/2	(3/4)

	(5/4)

√
λT 3, (3)

scales with the temperature cubed and is independent of the
jet (propagating parton) energy. In another limit for a slowly
moving heavy quark, the transport parameter,

q̂F = 2π
√

λγT 3, (4)

as defined in Eq. (2) is found [22,23] to depend on the
square-root of the heavy-quark energy, where γ = E/M <

(M/
√

λT )2. It is not clear how these two results are related to
each other, though both describe the transport properties in a
SYM theory.

In this paper, we investigate the jet energy dependence of
the transport parameter q̂R within perturbative QCD (pQCD).
We will first re-exam the relationship between the transport
parameter and the unintegrated gluon distribution function of
the color charges in the medium and how they are related to
parton energy loss in the medium. For energetic jet partons,
there are large logarithms of both momentum scale and small
momentum fraction. They allow us to take a double logarithmic
approximation (DLA) and resum gluon radiation of the target
color charges to all orders. The initial condition to such a
resummed evolution of the gluon distribution can be calculated
perturbatively within pQCD at finite temperature with the
hard thermal loop (HTL) resummation. From such resummed
gluon distributions one can further take into account gluon
saturation and calculate the saturation scale self-consistently,
which will determine the transport parameter and its jet energy
dependence.

II. PARTON ENERGY LOSS, GLUON DISTRIBUTION
FUNCTION, AND TRANSVERSE MOMENTUM

BROADENING

Multiple parton scattering within the high-twist expansion
framework [24] can go beyond the static potential model and
include energy and longitudinal momentum transfer in the
calculation of medium modified fragmentation functions. The
total energy loss for a propagating parton in a deeply inelastic
scattering (DIS) off a large nucleus as shown in Fig. 1 due
to secondary quark-gluon scattering in this framework can be
expressed as [19]

�E

E
= Ncαs

2αsCR

N2
c − 1

∫
d2qT

(2π )2

∫
d�2

T

∫ 1

0
dz

× 1 + (1 − z)2

�2
T

(
�2

T + µ2
T

) T A
qg(xB, xL, qT )

f A
q (xB)

, (5)

FIG. 1. Feymann diagram for induced gluon radiation that con-
tributes to the quark energy loss.

where

xL = �2
T

2z(1 − z)p · k
, (6)

is the total longitudinal momentum transfer related to induced
gluon radiation with final transverse momentum �T . A similar
longitudinal momentum transfer,

xT = q2
T − 2qT · �T

2(1 − z)p · k
, (7)

is always provided by the initial gluon with transverse
momentum qT . As illustrated in Fig. 1, p = [0, p−, 0T ] is the
initial quark momentum after its interaction with the photon,
k = [k+, 0, 0T ] is the momentum per nucleon in the medium,
qT is the transverse momentum of the gluon exchange with the
medium, �T is the transverse momentum, and z is the fractional
longitudinal momentum carried by the radiated gluon with
four-momentum � = [�2

T /2zp−, zp−, ��T ]. The quark distribu-
tion function f A

q (xB) represents the production rate of the
initial quark carrying xB fraction of the nucleon longitudinal
momentum in DIS. Equation (5) is derived for the quark energy
loss, and one can extend it for the gluon by replacing the
corresponding Casimir factor CR for gluons. In the collinear
expansion of the twist expansion approach, one normally
makes Taylor expansion of the hard partonic parts in qT and
only the quadratic terms lead to the twist-four contribution.
One can, however, approximate higher twist contributions
from the qT dependence of the hard partonic part of the
multiple scattering by using the average value 〈q2

T 〉 = µ2
T in the

cross section. As an extension of the twist expansion, we will
keep the integration over the gluon’s transverse momentum
qT . The unintegrated quark-gluon correlation function is
defined as

T A
qg(x, xL, qT )

=
∫

dy−
0

2π
dy−

1 dy−
2 d2ξT ei(x+xL)k+y−

0 (1 − e−ixLk+y−
2 )

× (1 − e−ixLk+(y−
0 −y−

1 ))eixT k+ξ−−iqT ·ξT θ (−y−
2 )θ (y−

0 − y−
1 )

×〈A|ψ̄q(0)
γ +

2
F+

σ (y−
2 )F+σ (y−

1 ) ψq(y−
0 )|A〉, (8)

where ξ = y1 − y2, y0, y1, and y2 are space-time coordinates
associated with the quark and gluon fields as illustrated in
Fig. 1. The relative transverse coordinate ξT is the Fourier
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conjugate of the transverse momentum qT in the gluon
distribution function.

Even though the above parton energy loss is derived for
quark production and propagation in DIS, it is also valid for
high-energy heavy-ion collisions. In the latter case, we assume
the lifetime of the quark-gluon plasma to be much longer than
its formation time and expansion time scale, and therefore we
can treat thermal partons inside the produced dense matter as
in asymptotic states. One therefore can neglect the correlation
between the initial production rate of the jet parton and the
quark and gluon density of the produced medium. The quark-
gluon correlation function will then take a factorized form,

T A
qg(x, xL, qT )

f A
q (x)

=
∫

dy−
∫

d3k

(2π )32k+ f (k, y) dξ− d2ξT

× eixT k+ξ−−iqT ·ξT 〈k|F+
σ (y−

2 )F+σ (y−
1 )|k〉

× [eixLk+ξ−
(1 − eixLk+y−

) + c(xL)(1 − e−ixLk+y−
)]

= π

∫
dy−

∫
d3k

(2π )3
f (k, y)[1 − cos(xLk+y−)]

× [φk(xT + xL, qT ) + c(xL)φk(xT , qT )] , (9)

where f (k, y) is the local phase-space distribution of the color
sources in the medium, and c(xL) = fq(x + xL)/fq(x) is the
relative initial quark distributions in DIS and is given by the
corresponding ratio of jet production cross sections in heavy-
ion collisions. The unintegrated gluon distribution function per
color source φk(x, qT ) is defined as

φk(x, qT ) =
∫

dξ−

2πk+ d2ξT eixk+ξ−−iqT ·ξT

×〈k|Fσ+(0)F+
σ (ξ−, ξT )|k〉. (10)

The structure of the quark-gluon correlation function in
Eq. (9) corresponds to two different bremsstrahlung processes
and their interference [19] associated with the different pole
structures in Fig. 1. One can also categorize them according
to how the longitudinal momentum transfer xL is provided.
In the first term, the final gluon is induced by the secondary
scattering with the medium gluon in which the intermediate
gluon is off-shell. The longitudinal momentum transfer xL is
therefore provided by the medium gluon, and the contribution
is proportional to the gluon distribution φk(xT + xL, qT ) per
medium or “constituent” parton. These secondary processes
correspond to quark-gluon Compton scattering, where the
initial gluon comes from a thermal constituent parton with
a gluon distribution φk(xT + xL, qT ). Among these processes,
one can identify a special case in which the quark scatters
directly with a medium constituent gluon (xL = 1) as purely
elastic processes and the corresponding energy loss as the
conventional elastic energy loss [25]. The second term in
Eq. (9) corresponds to the processes in which gluon radiation is
induced by the hard scattering that produces the initial jet (the
quark after the photon interaction in Fig. 1 is off-shell), and
the final gluon scatters again with a soft medium gluon with
momentum fraction xT . It is therefore proportional to the soft
gluon distribution φk(xT , qT ). The longitudinal momentum

transfer xL of the bremsstrahlung in this case is provided by
the initial hard process with the cross section given in c(xL).

One can now define a generalized jet transport parameter,

q̂R(E, xL, y) = 4π2αsCR

N2
c − 1

∫
d3k

(2π )3
f (k, y)

×
∫

d2qT

(2π )2
φk(xT + xL, qT ), (11)

which includes the extra longitudinal momentum transfer xL

from the medium to the propagating parton and the radiated
gluon. The total parton energy loss from Eq. (5) can be
expressed as

�E

E
= αsNc

π

∫
dy− dz d�2

⊥
1 + (1 − z)2

�2
T

(
�2

T + µ2
T

) [q̂R(E, xL, y)

+ c(xL)q̂R(E, 0, y)] sin2

[
�2

T y−

4Ez(1 − z)

]
, (12)

in terms of the generalized jet transport parameter. The first
term with the generalized transport parameter involves energy
transfer between the propagating parton and the medium.
It contains (but is not limited to) what is normally defined
as pure elastic energy loss [25]. The second term that is
proportional to the normal (or special) transport parameter
q̂R(E, y) = q̂R(E, xL = 0, y) corresponds to pure radiative
energy loss.

Completing the integration over the phase-space of the
radiated gluon, one can recover from the second term a similar
form of total radiative energy loss in a static and uniform
medium with finite length as in Eq. (1). However, one needs to
know the xL dependence of the unintegrated gluon distribution
function in order to calculate the “elastic” part of the energy
loss. Furthermore, the transport parameter as defined in Eq. (2)
should have some nontrivial jet energy (E) and temperature
(T ) dependence.

Within the framework of twist expansion, the transverse
momentum broadening of the quark jet has also been calcu-
lated [26] as〈

�p2
T

〉 = 4παsCR

N2
c − 1

T A
qg(x, 0)

f A
q (x)

=
∫

dy−q̂R(E, 0, y), (13)

which is directly related to the normal transport parameter
qR(E, y) ≡ qR(E, 0, y) as defined in Eq. (11) in terms of the
unintegrated gluon distribution density of the medium. The
jet transport parameter qR(E, y) therefore can be interpreted
as the transverse momentum broadening per unit length for
the propagating parton, as defined in Eq. (2). Resummation of
higher twist contributions leads to a diffusion equation for the
transverse momentum distribution in which the above is the
averaged transverse momentum broadening [27].

The approach leading to the above total energy loss and
transverse momentum broadening has gone beyond the con-
ventional static potential model in two aspects: (i) The result
includes the longitudinal momentum transfer xT between the
jet parton and the medium parton, which is related to the
transverse momentum transfer qT through the unintegrated
gluon distribution density of the medium. This will result in
the jet energy dependence of both the generalized and the
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normal transport parameter q̂R(E, y) (or transverse momen-
tum broadening) which is absent in the static potential
model. (ii) The formula also includes the processes in which
longitudinal momentum transfers xL comes from the medium
parton, and therefore it depends on the generalized jet transport
parameter q̂R(xL). It contains contributions from elastic energy
loss.

For the remainder of this paper, we will focus on the energy
dependence of the normal transport parameter q̂R ≡ q̂R(E, y).
Since it is essentially the transverse momentum broadening
per unit length which can be directly measured in experiments
such as DIS and γ -jet events in heavy-ion collisions, we
will suppress the space and time dependence to simplify the
notation.

III. GLUON DISTRIBUTION IN
A QUARK-GLUON PLASMA

As shown in Eq. (11), the transport parameter q̂R expe-
rienced by a propagating parton can be defined in terms of
the unintegrated gluon distributions φk(x, q2

T ) of the color
sources in the quark-gluon plasma. After averaging over the
momentum of the color sources, it can be expressed as

q̂R = 4π2CR

N2
c − 1

ρ

∫ µ2

0

d2qT

(2π )2

∫
dxδ

(
x − q2

T

2p−〈k+〉
)

×αs

(
q2

T

)
φ
(
x, q2

T

)
, (14)

where 〈k+〉 is the average energy of the color sources and
φ(x, q2

T ) is the corresponding average unintegrated gluon
distribution function per color source. The integrated gluon
distribution is

xG(x, µ2) =
∫ µ2

0

d2qT

(2π )2
φ(x, qT ). (15)

We have extended our earlier definition of q̂R to include the
case of a running strong coupling constant αs in QCD. We
will refer to the case of a fixed coupling constant as conformal
gauge theory. However, for any scale below the temperature
µ2 � T 2, we will consider αs frozen and treat it as a constant.

Considering the lowest order parton-parton small angle
scattering, we can obtain q̂R as

q̂R =
∑

b

νbg
4CRb

∫
d3k

(2π )3
fb(k)(1 ± fb(k′))q2

T |MRb|2

× d3k′

(2π )3

d3p′

(2π )3
(2π )4δ4(p + k − p′ − k′), (16)

where MRb is the truncated parton-parton scattering matrix
element

MRb

≈
[

1

q2 + µ2
DπL(xq)

−
(
1 − x2

q

)
cos φ

q2
(
1 − x2

q

)+ µ2
DπT (xq) + µ2

mag

]
,

(17)

where cos φ = (�v × �q) · (�vb × �q)/q2, xq = q0/q and µ2
D =

g2(Nc + nf /2)T 2/3 is the Debye screening mass in thermal

QCD medium with temperature T , and µmag ≈ Ncg
2/2π is the

nonperturbative magnetic screening mass [28–30]. The color
factors for different scatterings are Cqq = CF /2Nc,Cqg =
1/2, and Cgg = N2

c /
(
N2

c − 1
)
. The statistical factor νb is

2
(
N2

c − 1
)

for gluons and 4Ncnf for nf flavors of quarks. We
use an effective gluon propagator to include the resummation
of hard thermal loops (HTL) [31]. The scaled self-energies in
the effective propagator in the long-wavelength limit are given
by [32]

πL(xq) = 1 − xq

2
ln

(
1 + xq

1 − xq

)
+ i

π

2
xq, (18)

πT (xq) = x2
q

2
+ xq

4

(
1 − x2

q

)
ln

(
1 + xq

1 − xq

)
− i

π

4
xq

(
1 − x2

q

)
.

(19)

One can rewrite the phase-space integration in Eq. (16) as∫
d3k′

(2π )3

d3p′

(2π )3
(2π )4δ4(p + k − p′ − k′)

= 1

(2π )2

∫
dx d2qT δ

(
x − q2

T

2p−k+

)
, (20)

where x = q+/k+. For small angle scattering, one can set
q2 ≈ q2

T and xq ≈ x k+/qT . We further approximate k+ by
its average value 〈k+〉 = 3T in the scattering matrix. Note
that energy-momentum conservation fixes the relative angle
between k and q. Therefore, the angular phase-space for k

is only 2π . One can complete the rest of the phase-space
integration over the initial momentum,∫

k2dk

4π2
fb(k)(1 ± fb(k′)) ≈

∫
k2dk

4π2
fb(k)(1 ± fb(k))

= T 3

12
(gluons) or

T 3

24
(quarks).

(21)

Using

1

2
CRqνq + CRgνg = 2NcCR

(
1 + nf

2Nc

)
, (22)

and

ρ = T 3

π2
ζ (3)

(
νg + 3νq

4

)
= 2
(
N2

c − 1
)(

1 + 3nf

4CF

)
T 3

π2
ζ (3),

(23)

one can express Eq. (16) as

q̂R = 4π2αsCR

N2
c − 1

ρNc

αs

2π

π2

6ζ (3)

1 + nf /2Nc

1 + 3nf /4CF

×
∫

dx dq2
T δ

(
x − q2

T

2p−〈k+〉
)

q2
T |MRb|2. (24)

The factor π2/6ζ (3) comes from the quantum statistics effect
for the final state partons in the scattering processes. According
to the definition in Eq. (14), one can obtain the unintegrated
gluon distribution function

φ
(
x, q2

T

) = 2Ncαs

π2

6ζ (3)

1 + nf /2Nc

1 + 3nf /4CF

|MRb|2q2
T (25)
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in a quark-gluon plasma, and the integrated gluon distribution
function is

xG(x, µ2) = Ncαs

2π

π2

6ζ (3)

1 + nf /2Nc

1 + 3nf /4CF

∫ µ2

0
dq2

T |MRb|2q2
T .

(26)

We concentrate in the small xq region, xq = 3xT /qT 
 1.
For a typical momentum transfer of the order of µD , the
requirement that xq is small leads to x 
 (

√
Ncg2/3)/3.

Within this approximation, we obtain

πL(xq) ≈ 1 − ix
3πT

2qT

, πT (xq) ≈ −ix
3πT

4qT

, (27)

and

φ
(
x, q2

T

) = 2Ncαs

µ2
D

π2

6ζ (3)

1 + nf /2Nc

1 + 3nf /4CF

φ̃(x, yq ), (28)

φ̃(x, yq ) ≡ µ2
D|MRb|2q2

T ≈ y2
q

yq(yq + 1)2 + x29π2T 2
/

4µ2
D

+ 1

2

y2
q

yq

(
yq + µ2

mag

/
µ2

D

)2 + x29π2T 2
/

16µ2
D

,

(29)

where yq = q2
T /µ2

D . For x � 4µmag/π = 2Ncg
2/π2, one can

neglect the magnetic mass and complete the integration in
Eq. (26) and obtain

xG(x, µ2) ≈ Nc

αs

2π

π2

6ζ (3)

1 + nf /2Nc

1 + 3nf /4CF

×
{[

ln

(
1 + µ2

µ2
D

)
− µ2

/
µ2

D

1 + µ2
/
µ2

D

]

×
[

1 − 0.035
3xT

µD

]
e−3xT µD/µ2

+ 1

6
ln

(
1 + 16

9π2

µ6

x2T 2µ4
D

)}
, (30)

where the first term is an approximation of the numerical
integration from the electric part of the interaction for
x � 2µD/3πT = 2

√
Ncg2/3/3π . Because of the static Debye

screening, it has a very weak x dependence in this x region,
which can be ignored for large values of µ/µD � 1. The
magnetic part of the interaction, on the other hand, has only
dynamical screening and therefore leads to the dominant x de-
pendence of the gluon distribution from a quark-gluon plasma
at small x. However, our approximations are not valid for
x � 4µmag/3πT ≈ 2Ncg

2/3π2, where the the nonperturbative
magnetic mass [28–30]µmag ≈ Ncg

2/2π becomes important.
In this region, the logarithmic x dependence of the gluon
distribution from the magnetic interaction disappears and is
replaced by a constant ln(µ2/µ2

mag).

For large µ2/µ2
D � 1 in the small Ncg

2 < x <
√

Ncg re-
gion of a pure gluonic plasma (nf = 0), the gluon distribution
per gluonic color source is then

xG(x, µ2) ≈ CA

αs

π

π2

6ζ (3)

1

2

[
3

2
ln

µ2

µ2
D

+ 1

3
ln

µD

xT

]
, (31)

which is generated from perturbative gluon radiation. For a
pure quark plasma, the corresponding gluon distribution for
each quark color source is

xG(x, µ2) ≈ CF

αs

π

π2

6ζ (3)

1

3

[
3

2
ln

µ2

µ2
D

+ 1

3
ln

µD

xT

]
. (32)

For the remainder of this paper, we will focus on a pure gluonic
plasma.

IV. GLUON SATURATION IN A PLASMA

Similar to gluon saturation in a large nucleus at small x,
saturation could also happen in the small x region of a quark-
gluon plasma. The saturation scale is given by [33]

Q2
s (x) = 4π2Ncαs

N2
c − 1

ρxG
(
x,Q2

s

)
min(L,Lc), (33)

where Lc = 1/xT is the coherence length for parton scattering
in a thermal medium. Since the HTL resummation does not
include coherence effects, the use of the gluon distribution in
Eq. (31) requires that the mean free path of thermal gluons must
be larger than the coherence length. Given the perturbative
expression of the mean free path [20],

λ−1
f = 〈ρσtr〉 ≈ 4ζ (3)

9π
N2

c α2
s T ln

1

Ncαs

, (34)

which implies that

Lc

λf

= 4ζ (3)

9π

N2
c α2

s

x
ln

1

Ncαs

� 1, (35)

or

x �
4ζ (3)

9π
N2

c α2
s ln

1

Ncαs

∼ (Ncαs)
2 ln

1

Ncαs

. (36)

In this regime, one can use the perturbative gluon distribution
[Eq. (31)] to determine the saturation scale,

Q2
s (x) = 4π2Ncαs

N2
c − 1

ρxG
(
x,Q2

s

)
Lc

= π

x
(Ncαs)

2T 2

[
ln

Q2
s

µ2
D

+ 2

9
ln

µD

xT

]
. (37)

Neglecting the logarithmic terms, one can get a simple
expression for the saturation scale in the perturbative regime,

Q2
s (x)

/
T 2 ∼ (Ncg

2)2

x
. (38)

Since µ2
D = Ncg

2T 2/3 ∼ Ncg
2T 2, we note the following

hierarchy of the saturation scale in a perturbative gluonic
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1ln
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FIG. 2. Hierarchy of the saturation scale Q2
s (x) below the hard

scale µ2 = T 2 in a weak coupling gluonic plasma.

plasma:

Q2
s (x) ∼ (Ncg

2)2T 2 ∼ µ2
mag, for x ∼ 1,

Q2
s (x) ∼ Ncg

2T 2 ∼ µ2
D, for x ∼ Ncg

2 ∼ µ2
D

T 2
, (39)

Q2
s (x) ∼ T 2, for x ∼ N2

c g4 ∼ µ2
mag

T 2
,

as illustrated in Fig. 2.
In the calculation of q̂R for interaction among thermal par-

tons, the typical xm = Q2
s /〈ŝ〉 = Q2

s /18T 2. One can determine
the saturation scale at xm from Eq. (37),1

Q2
s (xm) ≈ µ2

D

3

2

√
1

π
ln

18T

µD

. (40)

It is interesting to note that the gluon saturation scale for
interaction among thermal partons coincides approximately
with the Debye screening mass. Therefore, resummation of
HTL effectively provides some kind of mechanism for gluon
saturation in a thermal gluon plasma.

To obtain the transport parameter q̂R at scale µ2 � T 2 due
to interaction with the gluonic color sources via exchange of
HTL gluons, one has to complete the integral in Eq. (24).
A simple integration in Eq. (24) without considering effect of
gluon saturation gives

q̂R ≈ 14

15
πN2

c α2
s T

3 ln
µ2

µ2
D

, (41)

as obtained by a previous calculation of q̂R with dynamic
screening [34]. One can also obtain the above result from the
integrated gluon distribution

q̂R � 4π2CR

N2
c − 1

ρ[xG(x, µ2)]x=µ2
D/µ2 . (42)

In principle, one should take into account the effect of
gluon saturation in evaluating the transport parameter in

1Note that the typical xm ∼ Ncg
2; thus the breakdown of the

approximation in Eq. (31) due to magnetic mass coincides with the
onset of nonlinear effects.

the region q2
T < Q2

s (x). In this regime, we can follow the
Kharzeev-Nardi-Levin (KNL) model [35] and assume the
saturated unintegrated gluon distribution as a constant in qT ,
that is,

φ
(
x, q2

T

) = 2Ncαs

µ2
D

π2

6ζ (3)

 φ̃
(
x,Q2

s

/
µ2

D

)
, q2

T < Q2
s ,

φ̃
(
x, q2

T

/
µ2

D

)
, q2

T > Q2
s ,

(43)

where φ̃(x, yq ) is given by Eq. (29), and the saturation scale
Q2

s (x) is determined by Eq. (37). Using the above model for
gluon distribution in the saturated regime in Eq. (14), one can
evaluate the thermal parton transport parameter. The result,

q̂R ≈ πN2
c α2

s T
3 ln

Q2
m

µ2
D

, (44)

with Q2
m = 18T 2, is nearly identical to Eq. (41). This is

because the dominant contribution to the parton transport
parameter comes from q2

T > Q2
s for large Q2

m/µ2
D > 1, and

therefore the effect of gluon saturation is negligible in the
calculation of transport parameter for thermal partons.

The similarity between results in Eqs. (44) and (41) is
also an indication that the saturation effect is already present
in the unintegrated gluon distribution function φ(x, q2

T ) in
Eqs. (28) and (29) due to HTL resummation. One can
clearly see this by analyzing the unintegrated gluon dis-
tribution φ(x, q2

T ) [Eqs. (28) and (29)] at x = q2
T /〈ŝ〉. For

large q2
T � µ2

D, φ(x, q2
T ) ∼ 1/q2

T . The electric contribution to
φ(x, q2

T )(x = q2
T /〈ŝ〉) reaches its peak value ∼Ncαs/µ

2
D at

q2
T ≈ µ2

D ∼ Q2
s and vanishes at q2

T = 0. Without the magnetic
mass, however, the magnetic contribution to φ(x, q2

T )(x =
q2

T /〈ŝ〉) continues to increase at q2
T < Q2

s ∼ µ2
D and reaches

a finite value φ(x, q2
T )(x = q2

T /〈ŝ〉) ∼ 1/µ2
D at q2

T 
 µ4
D/T 2.

However, the contribution to q̂R from this region of limited
phase space is subleading in the leading logarithmic approxi-
mation.

V. EVOLUTION OF THE THERMAL GLUON
DISTRIBUTION

The gluon distribution function in Eq. (31) was obtained
via parton interaction in a thermal medium with a HTL
resummed gluon propagator and, thus, is only valid for scales
µ2 < T 2. At larger scales, radiation of hard modes, i.e.,
partons with momentum k > T , is possible. These processes
lead to the evolution of the gluon distribution which in
vacuum is governed by the Balisky, Fadin, Kuraev, and
Lipatov (BFKL) and Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations in the linearized regime. In the
medium, this evolution may be modified due to the interaction
of the radiated gluons with thermal partons. However, since
the medium effects are of the order of µD 
 T , we neglect
those at hard scales and use the vacuum evolution to
determine the gluon distribution. The previous computation
in Eq. (31) serves as an initial condition of this evolution at
µ2 = T 2.

Since we are interested in the determination of q̂R at large jet
energies, we need to know the unintegrated parton distribution
φ(x, q2

T ) in Eq. (14) at small x ∼ 〈q2
T 〉/6ET . For a large path
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length, the typical total momentum transfer q̂L, which will set
the scale of the process, is also large. This is the regime of the
double logarithmic approximation (DLA), in which the BFKL
and DGLAP equations coincide [36,37]. In this approximation,
all terms enhanced by two large logarithms of the type(

αs(k
2)Nc ln

k2

µ2
ln

1

x

)n

(45)

are resummed. Thus, the DLA approximation is valid if terms
of the above type are larger than those of type(

αs(k
2)Nc ln

1

x

)n

,

(
αs(k

2)Nc ln
k2

µ2

)n

. (46)

The resummation of the terms in Eq. (45) leads to the evolution
equation

∂2xG(y, ξ )

∂y∂ξ
= 1

2
xG(y, ξ ), (47)

where, following Ref. [36], we have defined variables y and
ξ as2

ξ =
∫ Q2

µ2

dk2

k2

2αs(k)Nc

π
, (48)

y = ln
1

x
. (49)

The asymptotic solution to Eq. (47) leads to a growth of the
gluon distribution function of the order exp(

√
2ξy), while

resummation of terms in Eq. (46) leads to exp(αsNcy) and
exp(ξ ), respectively [36]. Therefore, the DLA approximation
is valid as long as

ξ 

√

ξy, (50)

αNcy 

√

ξy. (51)

Note that the definition of ξ allows one to describe simultane-
ously the evolution of a conformal and nonconformal theory.
For these two cases, we have

ξ (Q2) =
{

λ̄ ln(Q2/µ2) for fixed αs,

2Nc

πb
ln ln(Q2/�2)

ln(µ2/�2) for running αs,
(52)

where the reduced t’Hooft coupling is λ̄ = 2Ncαs/π and b =
(11Nc − 2Nf )/12π .

The general solution of Eq. (47) can be found by performing
a Laplace transformation and is given by [37,38]

xG(x,Q2) =
∫ a+i∞

a−i∞

dn

2πi
eny+ ξ

2n D(n), (53)

where a is any real number larger than the real part of any poles
of D(n). The corresponding Laplace transformation D(n) of

2The definition we use is slightly different from that of Ref. [36]
and is more suitable for the description of a conformal plasma
(αs fixed).

the gluon distribution in Eq. (31) at Q2 = µ2 = T 2 (ξ = 0) is

D(n) =
∫ ∞

0−
dye−nyxG(x, T 2)

= Ncα
T
s

2π

π2

6ζ (3)

1

3

[
1

n
4 ln

T 2

µ2
D

+ 1

n2

]
, (54)

where αT
s is the strong coupling constant αs evaluated at a scale

that is proportional to T 2, since Eq. (31) is obtained through
scattering between thermal partons.

For large yξ values, the integral in Eq. (53) can be
performed by saddle point approximation, yielding

xG(x,Q2) = Ncα
T
s

2π

π2

6ζ (3)

1

3

e
√

2ξy

√
π (2ξy)1/4

×
[

2 ln
T 2

µ2
D

+ y

(2ξy)1/2

]
. (55)

The above evolved gluon distribution function grows
rapidly (faster than a power) with the rapidity y. Thus,
at large y, nonlinear effects become important leading to
parton saturation. Similarly, we can determine the saturation
scale Q2

s (x) from Eq. (33), with the above gluon distribution
function xG(x,Q), as

Q2
s = B

(
x,Q2

s

)
min (L,Lc) exp

{√
2ξsy

}
, (56)

where ξs = ξ (Q2
s ) and

B
(
x,Q2

s

) = 1

9

π3

ζ (3)

Ncαs

(
Q2

s

)
N2

c − 1
ρ

Ncα
T
s√

π (2ξsy)1/4

×
[

2 ln
T 2

µ2
D

+ y

(2ξsy)1/2

]
. (57)

In solving the self-consistent equation (56), we will neglect
the weak dependence of B(x,Qs) on x and ξs and treat it as a
constant as compared to the dependence in the exponent. This
is an approximation we will take throughout this paper.

We now can use the evolved gluon distribution function in
Eq. (55) to compute the jet transport parameter as defined in
Eq. (14). In the linear evolution region (q2

T > Q2
s ), the

unintegrated parton distribution is computed by taking the
derivative of Eq. (55) with respect to the scale. Keeping
the leading term in ξy (i.e., considering only the ξy dependence
in the exponent), we find

φDLA
(
x, q2

T

) = 4π
∂

∂q2
T

xG
(
x, q2

T

)
≈ 8

y√
2ξy

αs

(
q2

T

)
Nc

q2
T

xG
(
x, q2

T

)
. (58)

Using Eq. (33), we find at q2
T = Q2

s ,

φDLA
(
x,Q2

s

) = 2

π2

N2
c − 1

ρ min(L,Lc)

y√
2ξsy

. (59)

At scales q2
T < Q2

s , Eq. (55) is no longer valid, since
saturation effects take place which tame the growth of the
gluon distribution function. Inspired by the KLN model of
saturation [35], we use a simplified model for the unintegrated
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gluon distribution function

φ
(
x, q2

T

) =


2
π2

N2
c −1

ρ min(L,Lc)
y√
2ξsy

, q2
T < Q2

s ,

φDLA
(
x, q2

T

)
, q2

T > Q2
s .

(60)

We can then express q̂R in Eq. (14) as

q̂R = CR

Nc

4π2ρ

N2
c − 1

∫
dx

[∫ Q2
s

0

d2qT

(2π )2
δ

(
x − q2

T

Q2
max

)

×αs

(
q2

T

)
NcφDLA

(
x,Q2

s

)+
∫ Q2

max

Q2
s

d2qT

(2π )2

× δ

(
x − q2

T

Q2
max

)
αs

(
q2

T

)
NcφDLA

(
x, q2

T

)]
, (61)

where Q2
max ≈ 6ET . Integrating out the δ function, we have

q̂R = CR

Nc

2

π
Q2

max

∫ xm

0
dx

αs

(
xQ2

max

)
Nc

min(L,Lc)

× ln 1
x√

2 ln 1
x
ξ
(
xQ2

max

) + CR

Nc

4π2ρ

N2
c − 1

×
∫ 1

xm

dxNcαs

(
xQ2

max

)
φDLA

(
x, xQ2

max

)
, (62)

where xm = Q2
s /Q

2
max.

VI. CONFORMAL PLASMA

We first examine the behavior of the saturation scale and jet
transport parameter in a medium with fixed coupling constant.
For a medium length L that is always larger than the coherence
length for any jet energy, we find

ln
Q2

s

µ2
∼ ln

1

x
(63)

for small x. This means that both constraints in Eqs. (50) and
(51) are fulfilled at small coupling λ̄. We can then use the
DLA approximation to describe the evolution of the gluon
distribution function and evaluate the saturation scale and
transport parameter at small xm ∼ 1/E. Note that the eikonal
approximation is valid for distances such that the total
momentum transferred to the probe q̂L 
 Q2

max, since Q2
max

is the momentum transfer for a large angle (90◦) scattering.
From this requirement and Eq. (67) we find

λ̄L 
 Lc

Q2
max

Q2
s

, (64)

which is compatible with the weak coupling approximation
and L > Lc if Q2

max � Q2
s .

We determine the saturation scale by solving the self-
consistent equation (56). Treating B as a constant and using
the definition of ξ for the fixed coupling constant [Eq. (52)] at

Q2
s (xm) and xm = Q2

s (xm)/Q2
max, one obtains

ln
Q2

s (xm)

µ2
= 1

2

 2

2 + λ̄
ln

B

T µ2
+ ln

Q2
max

µ2

+
√

λ̄

2 + λ̄
ln2 Q2

max

µ2
− 2λ̄

(2 + λ̄)2
ln2 B

T µ2

 .

(65)

In the large energy limit, the above solution simplifies to

Q2
s (xm)

µ2
≈
(

B

µ2T

) 1
2+λ̄
(

Q2
max

µ2

) 1
2 + 1

2

√
λ̄

2+λ̄

. (66)

To compute the quenching parameter, we study numerically
the integral in Eq. (62) and find that for the infinite conformal
plasma, it can be well approximated by

q̂R = CR

Nc

Q2
s (xm)

min(L,Lc(xm))

2

π
αs

(
Q2

s (xm)
)

×Nc ln
1

xm

 δL√
2 ln 1

xm
ξ
(
Q2

s (xm)
)

+ 1

ξ
(
Q2

s (xm)
)− 2

π
Ncαs

(
Q2

s (xm)
)

ln 1
xm

 . (67)

This is a very good approximation for values of λ̄ > 1. For
small λ̄ it approximates the exact integral within a factor
of 2 as long as λ̄ ln(Q2

max/T 2) > 1. Substituting Eq. (66) in
Eq. (67), we find

q̂R = CR

Nc

Q2
s (xm)T xm

 ln 1
xm

ln x2
mQ2

max
µ2

+ 1

2

√
λ̄

2

ln 1
xm√

ln 1
xm

ln xmQ2
max

µ2

.

(68)

As expected [39], the transport parameter is determined by the
saturation scale.

To determine the dependence on the coupling, we substitute
the definition of B and set µ2 = T 2 to obtain

q̂R

T 3
= CR

Nc

(
Q2

max

T 2

)√ λ̄
2+λ̄

[
π5/2λ̄5/4(2 + λ̄)1/4

36
√

ln Q2
max/T 2

] 2
2+λ̄

× (√2 + λ̄ −
√

λ̄
) 4+λ̄

2+λ̄
1

4

[√
λ̄ + 2√

λ̄

]
. (69)

Let us point out two interesting features in the above result:
(i) q̂R grows as a coupling dependent power of the energy, and
(ii) it depends nonanalytically on the reduced t’Hooft coupling
λ̄. The nonanalyticity is a consequence of the evolution
process.

The derivation of Eq. (69) for a conformal plasma is
strictly valid for small values of λ̄, since both the evolution
equation (47) and the initial conditions in Eq. (31) are based
on perturbation theory. However, in our computation, we
have not made any further assumption about the smallness
of λ̄. Given the recent interest in the computation of transport
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FIG. 3. Normalized jet transport parameter as a function of
reduced t’Hooft coupling λ̄ in a formal plasma for an energetic probe
of log10(Q2

max/T 2) = 90.

properties in strongly coupled N = 4 SYM [21–23,40,41], it
is still instructive to study the strong coupling behavior of the
jet transport parameter. Plotted in Fig. 3 is the jet transport
parameter as a function of the reduced t’Hooft coupling λ̄,
normalized by its large coupling limit,

q̂R(λ̄ = ∞) = CR

Nc

T Q2
max

4
= CR

Nc

3T 2E

2
. (70)

The normalized jet transport parameter increases monotoni-
cally with the coupling λ̄ and reaches its asymptotic value
in the strong coupling limit. Note also that the above limit
assumes that the energy of the probe is large such that
ln(Q2

max/T 2) � ln λ̄.
Several comments on this strong coupling limit are in order:

(i) In the strong coupling limit, the saturation scale
approaches its maximum limit Q2

s (xm) = Q2
max and,

thus, the eikonal approximation is questionable. Both
the saturation scale and the transport parameter become
independent of the initial condition as contained in B.

(ii) Equation (70) has a power dependence on the energy
of the probe, and the power becomes coupling indepen-
dent in the strong coupling limit.

(iii) The contribution to Eq. (70) comes completely from
the saturated part of the gluon distribution function. We
have performed a simplified treatment of this region by
considering it constant. This is well motivated by nu-
merical solutions of the Balitsky-Kovchegov equations
at weak coupling [42,43]. However, at strong coupling,
extra dependencies on the coupling (subleading at weak
coupling) may become important.

(iv) We have not considered the evolution of the wave
function of the probe. This is motivated by the weak
coupling picture, in which such evolution is considered
separately as the radiative processes of the probe and are
described by radiative energy loss. At strong coupling,
this separation of the probe and medium evolution
becomes ambiguous and may lead to an extra coupling
dependence.

VII. NONCONFORMAL PLASMA

From the analysis of a conformal plasma with a fixed
coupling, we concluded that the saturation scale grows faster

than any logarithmic jet energy dependence. Since the typical
momentum scale is dictated by Q2

s , effects of a running
coupling constant become important in the QCD plasma
for large energy probes. This issue is addressed by solving
numerically Eq. (62) with ξ given by Eq. (52). In this case, we
find that Eq. (62) is well approximated (within 20%)3 by

q̂R = CR

Nc

Q2
s

min(L,Lc)

ln 1
xm

ln Q2
s (xm)
�2

×

 δL√
π b

Nc
ln 1

xm
ln
(

ln Q2
s

�2

/
ln µ2

�2

)

+ 1

ln
(
ln Q2

s

�2

/
ln µ2

�2

)− ln(1/xm)
ln(Q2

s (xm)/�2)

 , (71)

where δL = 1/2 if L > Lc, and δL = 1 otherwise. As in the
conformal case, q̂R is determined by the saturation scale, which
is given by

Q2
s = B

(
x,Q2

s

)
min(L,Lc)

× exp

√
4Nc

πb
ln

(
ln

Q2
s

�2

/
ln

µ2

�2

)
ln

1

xm

, (72)

where B(x,Q2
s ) is given in Eq. (57) and Lc = 1/xmT =

Q2
s (xm)/Q2

maxT .
As in the conformal case, the saturation scale and jet

transport parameter have a fast growth with the jet energy. Even
though the above results are derived with an approximation for
asymptotically small x (which implies large saturation scales),
we would like to make some numerical evaluations of the
jet transport parameter for jet energies accessible at RHIC
and LHC and address the experimental consequences of this
growth.

We solve numerically the self-consistent equation (72) for
the saturation scale Q2

s (xm). To avoid the infrared singularity
of αs, we regulate the coupling constant as

αs(Q
2) = 1

b

1

ln Q2+T 2

�2

. (73)

To be consistent, we also replace

ln

(
ln

Q2
s

�2

/
ln

µ2

�2

)
→ ln

(
ln

Q2
s + T 2

�2

/
ln

µ2 + T 2

�2

)
.

3For determining this expression, we assumed that the coherence
length is always larger or smaller than the path length. In the numerical
computations presented, this is not assumed and the min( ) is replaced
by a smooth function.
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The coupling constant at a thermal scale is determined by
solving the coupled equations

αT
s = 1

b

1

ln Q2
s (T )+T 2

�2

, (74)

Q2
s (T ) = 18π

(
Ncα

T
s

)2
Q2

s (T )
T 4, (75)

which are essentially Eq. (37) at x = Q2
s (T )/18T 2 [we have

set the logarithms in Eq. (37) to be of order 1]. Finally, since
Eq. (72) is only valid for asymptotically large rapidities y, we
also shift the rapidities to

y → y + y0, (76)

with y0 = 0.24. This value has been chosen such that as y

decreases, we recover the value of the saturation scale Q2
s (T ).

In the following numerical evaluation we will choose µ2 = T 2

and � = 200 MeV.
Since the medium is finite in heavy-ion collisions, we start

by studying the coherence length. This is computed by solving

L2
c ≡ 1

x2
mT 2

= 6E

B
exp

[
−
√

4Nc

πb
ln

(
ln

Q2
s (xm)

�2

/
ln

µ2

�2

)
ln

1

xm

]
.

(77)

This coherent length is used to calculate the saturation scale
for any large medium size L > Lc. For small medium size,
L < Lc, the actual length L is used to calculate the saturation
scale. The coherence length is plotted in Fig. 4, and it shows
a strong energy dependence, as can be inferred from Eq. (77).
This strong jet energy dependence Lc ∼ √

E is approximately
independent of the evolution of the gluon distribution function
and stems from the definition of the coherence length as Lc =
1/xT . As expected from the running coupling, it does not
scale with temperature. For a characteristic temperature of T =
0.4 GeV in relativistic heavy-ion collisions, the coherence
length is significant: for a probe of E = 20 GeV, Lc ≈ 2.5 fm,
while at E = 100 GeV, Lc ≈ 4.5 fm, which are comparable
with the nuclear size.

When the coherence length becomes comparable to the
medium size, a nontrivial length dependence of the saturation
scale will arise, since the definition of Q2

s is different for path
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FIG. 4. (Color online) Coherence length times temperature as a
function of the energy of the probe for different temperatures.
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FIG. 5. (Color online) Saturation scale as a function of the jet
energy.

lengths longer or shorter than the coherence length. This is
illustrated in Fig. 5 where the saturation scale is plotted as a
function of the energy of the probe. When the path length
is longer than the coherence length, Q2

s shows a stronger
dependence on the energy. This is, in fact, driven by the energy
dependence of the coherence length and is mostly independent
of the evolution of the medium gluon distribution. When the
path length is smaller than the coherence length, we obtain a
significant reduction of the saturation scale and a much weaker
dependence on the energy, since the DLA evolution leads to a
growth that is weaker than a power but faster than a logarithmic
dependence. We note that the gluon saturation scale obtained
here for a gluonic plasma is significantly larger than that in
a nucleon, where Q2

s ≈ 1 GeV2 at x ≈ 10−4 [44]. This is a
consequence of the fact that the QGP is a much denser system
than a nucleon or cold nucleus. The saturation scale in a heavy
nucleus is enhanced by a factor of A1/3 and therefore might be
large enough to facilitate a perturbative calculation of gluon
distributions [45]. However, it is still an order of magnitude
smaller than in a high temperature quark-gluon plasma.

In Fig. 6, we show the value of the jet quenching parameter
q̂R from the integration of Eq. (62). For long path lengths,
q̂ becomes path-length independent. The leading energy
dependencies of both Q2

s and Lc cancel, and the observed
energy dependence is a consequence of the evolution of the
medium gluon distribution. At shorter path lengths, we obtain
an enhancement of q̂R as a consequence of the evolution.
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FIG. 6. (Color online) Jet quenching parameter q̂ as a function
of the jet energy. The square (triangle) marks the the value of q̂

for thermal particle at T = 0.4 GeV (T = 0.6 GeV). Significant
corrections to the energy dependence are expected at low energy
which should approach their thermal value at E = 3T .
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FIG. 7. (Color online) Saturation scale as a function of the path
length for different probe energies.

The length dependences of both the saturation scale and the
transport parameter are shown in Figs. 7 and 8 for different
energies of the probe. As shown in Fig. 7, the saturation scale
grows as a function of the path length. However this growth
is smaller than linear. Thus, the transport parameter, as shown
in Fig. 8, diverges at small path length. Note, however, that
at very short path lengths (L 
 λf ) the mean momentum
broadening should vanish, since the probe has no medium
with which to scatter. Thus, we expect correction to the small
L dependence of both Q2

s and q̂R . Finally, when the path length
is larger than the coherence length, both quantities become
length independent. Note that we have assumed a simplified
transition from the region L < Lc to L > Lc. This is the reason
for the abrupt change in the length dependence at L = Lc in
Figs. 7 and 8.

Let us remark that for path lengths smaller than the
coherence length, the interaction of the probe with the whole
length of the medium is coherent. Thus, if the length scales
of space and time variation are smaller or comparable to
the path length, the analysis of the saturation scales and jet
transport parameter should be revisited. This will complicate
the phenomenological extraction of the transport parameter
in an expanding medium with strong spatial variation as in
semiperipheral heavy-ion collisions.

Because of the running of the coupling constant or the
intrinsic scale (�) in QCD as a nonconformal gauge theory,
the transport parameter q̂R has a nontrivial temperature
dependence. To illustrate this, we plot in Fig. 9 the value of q̂R

scaled by the energy density

ε = 8π2

15
T 4 (78)
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FIG. 8. (Color online) Jet quenching parameter q̂ as a function of
the path length for different probe energies.
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FIG. 9. (Color online) Jet quenching parameter scaled by ε3/4,
with ε the energy density.

to the power of 3/4 for the long path lengths (L > Lc).
The dependence on the temperature is quite strong in the
temperature range showed. This is not surprising, since these
temperatures are of the order of � and the coupling constant is
very sensitive to the scale. The dependence, however, becomes
weaker at higher temperatures. The jet energy dependence of
the transport parameter is also stronger at lower temperatures.
This, of course, is only a lower limit, since q̂R is larger for
shorter path lengths.4

VIII. BOUND ON q̂ AND SHEAR VISCOSITY TO
ENTROPY DENSITY RATIO

Following Ref. [20], one can relate the jet quenching
parameter q̂R to the transport mean free path of the hard probe,
that is,

λ−1
f ≈ 4ρ

〈ŝ〉
∫

dq2
T q2

T

dσR

dq2
T

= 4q̂R(E)

〈ŝ〉 , (79)

where we have used the definition of jet transport parameter in
Eq. (2) and 〈ŝ〉 = Q2

max ≈ 6ET is the average center-of-mass
energy squared of the jet-gluon scattering. The requirement
that the mean free path of the hard probe must be larger than
the de Broglie wave length 1/E will set an upper bound for
the energy loss parameter,

q̂R(E) �
〈ŝ〉E

4
= 3E2T

2C
, (80)

where C is a constant on the order of O(1).
We have checked that our numerical solutions of q̂R

indeed satisfy this condition, as shown in Fig. 10. For a
conformal plasma, q̂R in Eq. (69) increases monotonically
with the reduced t’Hooft coupling λ̄ (see Fig. 3). In the
limit λ̄ → ∞,Q2

s (xm) = Q2
max, and the jet transport parameter

q̂R = CRT Q2
max/4Nc for a gluon jet satisfies the bound for

E � T . Since the strong coupling limit is an asymptotic
behavior, the above bound on the transport parameter is also
satisfied in the weak coupling limit of a conformal plasma.

4The initial value of q̂R before evolution is about half that of
Ref. [46]. The main reason is that we use αs = 0.3 for T =
0.4 GeV, while in Ref. [46], αs = 0.5.
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FIG. 10. (Color online) Ratio 4q̂/Q2
maxE = 2q̂/3E2T as a func-

tion of jet energy E.

For thermal partons with 〈E〉 ∼ 3T , the upper bound in
Eq. (80) becomes

T 3

q̂R(T )
�

2

27C
. (81)

According to Ref. [20], one can also relate the shear viscosity
to the transport parameter for a thermal parton,

η ≈ 1

3
sT λf ≈ s

3T 3

2q̂R(T )
, or

η

s
≈ 3

2

T 3

q̂R(T )
. (82)

Therefore, the upper bound on the transport parameter q̂R(T )
also provides a lower bound on the shear viscosity to entropy
density ratio

η

s
�

1

9C
. (83)

This is very similar to the bound found by Danielewicz and
Gyulassy [47] from transport theory and the bound 1/4π found
in the strong coupling limit of N = 4 SYM [48].

The upper bound on the transport parameter q̂R in
Eq. (80) and its connection with the shear viscosity in Eq. (82)
are quite general, since they do not rely on any assumption
about the nature (perturbative or nonperturbative) of parton
interaction inside the medium. They do rely, however, on a
transport description of the plasma in terms of quasiparticles.
Therefore, it is not surprising that the connection between the
transport parameter and shear viscosity does not hold in the
strong coupling limit of N = 4 SYM theory, since thermal
modes in such a strongly coupled theory cannot be described
as quasiparticles [49].

We should emphasize that the jet transport parameter is an
intrinsic property of the medium which could be dominated
by nonperturbative physics. However, in the case of large
saturation scale Q2

s and transverse momentum transfer, the
evolution of the gluon distribution function and the jet transport
parameter should still be described by perturbative QCD and
so should the interaction between the jet and the medium and
the radiative energy loss. Therefore, as far as the transport de-
scription of the dense medium is valid, one can use the energy
dependence of the jet (parton) transport parameter q̂R(E) as
determined by jet quenching phenomenology to estimate the
shear viscosity to entropy density ratio via extrapolation.

With a recent phenomenological study of both single and
dihadron spectra suppression using the NLO pQCD parton
model calculation [13], the average gluon jet energy loss

per unit length in a one-dimensional expanding medium is
estimated to be(

dE

dL

)
1d

≈ 1.9–3.4 GeV/fm, (84)

for E = 10–15 GeV, which also includes an empirical vari-
ation with jet energy. Using the relationship between parton
energy loss and the transport parameter in Eq. (1), one obtains
an estimate of the average gluon jet transport parameter

q̂0(E) = 2

τ0αsNc

(
dE

dL

)
1d

≈ 1.0–1.9 GeV2/fm, (85)

at an initial time τ0 = 1 fm/c 5. Here, we used αs ≈ 0.24 at
Q2

s ≈ 5 GeV2 in a pure gluonic plasma. This roughly agrees
with the numerical calculation in Fig. 8. As shown in Fig. 6,
the energy dependence of q̂R is very weak for E < 20 GeV and
a long propagation length. Even for a short propagation length
L ∼ Lc ∼ 2 fm, the energy dependence is limited to about
25% variation. We therefore can use the above estimate for
the thermal parton transport parameter. Using the same initial
temperature T0 = (337 ± 10) MeV as in Ref. [20], one obtains

η0

s0
≈ 3

2

T 3
0

q̂0(T )
≈ 0.15–0.24. (86)

For more consistent analysis, one should consider explicit
energy dependence of the parton energy loss beyond that in q̂R .

Finally, the requirement that the coherence length is larger
than the mean free path of thermal particle sets a limit on
the coupling constant αT

s . Indeed, from Eqs. (79) and (71),
q̂R ≈ xmQ2

s (xm)T , and we find

xm = Qs(xm)/〈ŝ〉 � 1/4. (87)

This bound is only satisfied at weak coupling

2Ncα
T
s

√
2π ln

1

Ncg2
� 1. (88)

For larger values of the coupling αT
s , the coherence effects in

the multiple scattering of thermal particles become important.

IX. SUMMARY AND DISCUSSIONS

In this paper. we have studied the energy dependence of the
jet transport (or quenching) parameter q̂R . By relating q̂R to
the unintegrated gluon distribution function of the plasma, we
have shown that the energy dependence of q̂R arises from the
evolution of the gluon distribution function. Thermal quarks
and gluons in the plasma play the same role as the valence
quarks of the nucleus, and high energy jets probe their wave
functions at small x. Similar to that in a cold nuclear matter,
the evolution leads to a growth in the gluon number which
is eventually tamed by saturation effects. Therefore, the jet

5This phenomenological analysis was based on the assumption that
q̂ is independent of the path length. The nontrivial length dependence
of q̂ as obtained in this paper will affect the extracted average value
of the jet transport parameter.
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transport parameter, also defined as the momentum broadening
per unit length, is determined by the saturation scale Q2

s .
Using thermal field theory with HTL resummation, we have

derived the gluon distribution function for scales µ2 < T 2

as probed by the interactions among thermal partons. For
such interaction among thermal partons, the coherence length
is smaller than the mean free path, and thus the saturation
scale grows fast for small x; i.e., Q2

s ∼ 1/x. Remarkably,
evaluating the saturation scale at the typical x of the scattering
among thermal partons, i.e., x ≈ Q2

s /4T 2, leads to Q2
s ∼ µ2

D .
Therefore, the typical momentum transfer is of the order of µD

as expected. What is more interesting is that for large angle
scattering of thermal particles with x ∼ 1, the saturation scale
is of the order of the magnetic mass Q2

s ∼ µ2
mag.

The hard thermal loop result for the gluon distribution
function serves as the initial condition of the evolution of
the gluon distribution as probed by an energetic jet. Since this
process involves scales much larger than the medium scale,
we neglected thermal modification of the evolution kernel. We
then used the double logarithmic approximation to describe
the evolution in a conformal theory and in (pure gluon) QCD.

For a conformal plasma, both the saturation scale and the
jet transport parameter q̂R grow with energy as a coupling-
dependent power. The evolution leads to a q̂R which is nonan-
alytic in the t’Hooft coupling λ = g2 Nc. In the large coupling
limit, q̂R becomes independent of the coupling and grows
linearly with E. This is very different from results obtained
in N = 4 SYM [21–23,40,41]. As remarkable as this may be,
the analysis we have performed is perturbative in nature, and
the extrapolation to infinite coupling might not be justified.

In the case of (pure gluon) QCD, the evolution leads to a jet
energy dependence of the transport parameter that is stronger
than any power of logarithmic dependence. The saturation
effect also gives rise to a nontrivial length dependence of the
jet transport parameter. The running of the coupling constant
also results in a significant temperature dependence which
becomes weaker at higher temperatures. We have numerically
evaluated the saturation scale and jet transport parameter in
a temperature range T = 0.4–0.6 GeV that is relevant for
relativistic heavy-ion collisions at RHIC and LHC. The growth
of q̂R with jet energy is modest for a large medium size
L � Lc. However, the energy dependence is significant for
L <∼ Lc. The obtained transport parameter is also larger than
that computed via perturbation theory without evolution [46].
For T = 0.4 GeV and E = 10–20 GeV, our computed value
q̂R ≈ 1.5–2 GeV2/fm for a gluon jet is in agreement with the
results from recent phenomenological studies of experimental
data on jet quenching at RHIC [11–13,50]. It is, however,
smaller than the results from phenomenological studies [10,51]
based on an implementation of energy loss by Salgado and
Wiedemann [52]. A recent study within this model with
explicit space-time dependent profiles of energy density from
two- and three-dimensional hydrodynamic calculations gives
a transverse averaged q̂R ≈ 4–5 GeV2/fm [53] at initial time

τ0 = 1 fm/c. Inclusion of dihadron suppression in the phe-
nomenological study has been shown [13] to greatly improve
the sensitivity of jet quenching to variation of q̂R . It is clear
that inclusion of the energy and length dependence of the jet
transport parameter will also influence the phenomenological
study of the jet quenching measurements.

Given the relation between shear viscosity η and transport
parameter q̂R(T ) for a thermal parton as derived recently in
Ref. [20], the energy dependence of the jet transport parameter
determined from theoretical and phenomenological studies
can also be used to estimate the shear viscosity in the dense
matter produced in heavy-ion collisions. This will unify high
pT and low pT aspects of heavy-ion collisions. The latter
can characterize the collective behavior of the produced dense
matter which is well described by relativistic hydrodynamics
with a negligible shear viscosity [54]. We have also derived
an upper bound on the transport parameter of high energy
jets. This upper bound can lead to a lower bound on the shear
viscosity to entropy density ratio, which is consistent with
other transport studies.

The saturation scale in a gluon plasma we obtained in
this study is much larger than that in a cold nucleus or a
nucleon at extremely small x. This results from the high gluon
density in a plasma with coherence length comparable to the
medium size. This is quite different from the analysis of HERA
(Hadron-Electron Ring Accelerator) data which leads to a
power dependence of Q2

s on x [44], that is,

Q2
s = 1 GeV

(
3 × 10−4

x

)0.288

, (89)

where the coherence length is much larger than the nucleon
size. When the coherence length is comparable to the medium
length, the saturation scale is not linear with the path length.
Thus, instead of using the phenomenological expression
of Eq. (89), we used the DLA approximation to estimate
Q2

s . Numerical solutions to the Balitsky-Kovchegov (BK)
equation with a running coupling constant [42,43] show that
the unintegrated gluon distribution is consistent with the
DLA asymptotes and that the saturation scale behaves as
Q2

s ∼ exp{�√
y}, similar to what is expected from the DLA

asymptotes. Note, however, that these conclusions are for large
values of the rapidity, y ∼ 10, while in our case the typical x

probed by high energy jets in the kinematic range relevant
to heavy-ion collisions at RHIC and LHC is not very small,
x ∼ 0.1. The large values of x obtained imply that significant
corrections to the obtained behavior may occur, which could
be addressed by a numerical analysis of the BK equation.
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[18] M. Gyulassy, P. Lévai, and I. Vitev, Nucl. Phys. B594, 371

(2001).
[19] X. F. Guo and X.-N. Wang, Phys. Rev. Lett. 85, 3591 (2000);

Nucl. Phys. A696, 788 (2001).
[20] A. Majumder, B. Muller, and X. N. Wang, Phys. Rev. Lett. 99,

192301 (2007).
[21] H. Liu, K. Rajagopal, and U. A. Wiedemann, Phys. Rev. Lett.

97, 182301 (2006); arXiv:hep-ph/0612168.
[22] S. S. Gubser, Nucl. Phys. B790, 175 (2008).
[23] J. Casalderrey-Solana and D. Teaney, JHEP 04 (2007) 039.
[24] M. Luo, J. W. Qiu, and G. Sterman, Phys. Lett. B279, 377 (1992);

Phys. Rev. D 50, 1951 (1994); 49, 4493 (1994).
[25] X. N. Wang, Phys. Lett. B650, 213 (2007).
[26] X. F. Guo, Phys. Rev. D 58, 114033 (1998).
[27] A. Majumder and B. Muller, arXiv:0705.1147 [nucl-th].
[28] T. S. Biro and B. Muller, Nucl. Phys. A561, 477 (1993).
[29] G. Alexanian and V. P. Nair, Phys. Lett. B352, 435 (1995).

[30] G. M. von Hippel and R. R. Horgan, Phys. Rev. Lett. 90, 132001
(2003).

[31] R. D. Pisarski, Phys. Rev. Lett. 63, 1129 (1989).
[32] H. A. Weldon, Phys. Rev. D 26, 1394 (1982); 28, 2007 (1983).
[33] A. H. Mueller, Nucl. Phys. B558, 285 (1999).
[34] X. N. Wang, Phys. Lett. B485, 157 (2000).
[35] D. Kharzeev and M. Nardi, Phys. Lett. B507, 121 (2001);

D. Kharzeev and E. Levin, ibid. B523, 79 (2001); D. Kharzeev,
E. Levin, and M. Nardi, Nucl. Phys. A730, 448 (2004); A743,
329(E) (2004).

[36] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Nucl. Phys. B188,
555 (1981).

[37] A. H. Mueller and J. W. Qiu, Nucl. Phys. B268, 427 (1986).
[38] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977); [Zh. Eksp.

Teor. Fiz. 73, 1216 (1977)].
[39] R. Baier, Nucl. Phys. A715, 209 (2003).
[40] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. G. Yaffe,

J. High Energy Phys. 07 (2006) 013.
[41] J. Casalderrey-Solana and D. Teaney, Phys. Rev. D 74, 085012

(2006).
[42] J. L. Albacete, N. Armesto, J. G. Milhano, C. A. Salgado, and

U. A. Wiedemann, Phys. Rev. D 71, 014003 (2005).
[43] J. L. Albacete and Y. V. Kovchegov, Phys. Rev. D 75, 125021

(2007).
[44] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D 59, 014017

(1998).
[45] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233

(1994).
[46] R. Baier and D. Schiff, J. High Energy Phys. 09 (2006) 059.
[47] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31, 53 (1985).
[48] G. Policastro, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

87, 081601 (2001).
[49] D. Teaney, Phys. Rev. D 74, 045025 (2006).
[50] A. Majumder, C. Nonaka, and S. A. Bass, Phys. Rev. C 76,

041902 (2007).
[51] A. Dainese, C. Loizides, and G. Paic, Eur. Phys. J. C 38, 461

(2005).
[52] C. A. Salgado and U. A. Wiedemann, Phys. Rev. D 68, 014008

(2003).
[53] T. Renk and K. J. Eskola, Phys. Rev. C 75, 054910 (2007);

T. Renk, private communication.
[54] D. Teaney, Phys. Rev. C 68, 034913 (2003).

024902-14


