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Simultaneous χ 2 analyses are performed for elastic scattering and fusion cross section data for the 12C+208Pb
system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization
potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as
a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without
introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the
polarization potential determined from the χ 2 analyses satisfy separately the dispersion relation. Furthermore, it
is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very
rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly
bound projectiles such as α-particle and 16O.
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I. INTRODUCTION

Recently we carried out analyses [1–3] based on the
extended optical model [4–6], in which the optical potential
consists of the energy independent Hartree-Fock potential and
the energy dependent complex polarization potential that has
two components, i.e., the direct reaction (DR) and fusion parts,
which we call the DR and fusion potentials, respectively. In
the original work based on the extended optical model [4–6],
use was made of a usual Woods-Saxon potential for the
Hartree-Fock part of the potential, but in Refs. [1–3], we started
using the double folding potential [7].

The main interest in the studies of Refs. [1–3] was the
normalization constant N introduced earlier to reproduce
the elastic scattering data for loosely bound projectiles such
as 6Li and 9Be; in the analysis of data for such loosely
bound projectiles using the usual optical model with a folding
potential [7] one was forced to reduce the strength of the
folding potential by a factor N = 0.5 ∼ 0.6 in order to
reproduce the data. This reduction factor was later ascribed
to the strong breakup character of the projectiles. Studies
were made on the effects of the breakup on the elastic
scattering, based on the coupled discretized continuum channel
(CDCC) method [8,9]. These studies were very successful in
reproducing the elastic scattering data without introducing any
arbitrary normalization factors and further in understanding
the physical origin of the factor N = 0.5 ∼ 0.6 needed
in one channel optical model calculations. The authors of
Refs. [8,9] projected their coupled channel equations to a
single elastic channel equation and deduced the polarization
potential arising from the coupling with the breakup channels.
The resultant real part of the polarization potential was then
found to be repulsive at the surface region around the strong
absorption radius, Rsa . This means that the reduction of the
folding potential by a factor of N = 0.5 ∼ 0.6 needed in the
one-channel optical model calculation is to effectively take

into account the effects of the coupling with the breakup
channels.

We explored this problem for the 6Li [1], 7Li [2] and
9Be [3] induced scattering and fusion in the framework of
the extended optical model with the double folding potential.
Simultaneous χ2 analyses of the elastic scattering and fusion
cross section data were performed to determine the two types of
the polarization potentials as functions of the incident energy
Elab. Our expectation was that the resulting real part of the
DR potential would become repulsive consistently with the
results of the CCDC calculations. We have indeed obtained
repulsive real DR polarization potentials [1–3]. In addition,
it was shown that both DR and fusion potentials satisfied the
dispersion relation [10,11] separately.

In the present study, we extend the work of Refs. [1–3] to the
12C+208Pb system. Since 12C is a tightly bound projectile, such
an anomalous normalization constant N = 0.5 ∼ 0.6 observed
in 6Li or 9Be induced scattering is not expected around the
Coulomb barrier energies. In fact, the normalization factor N

for reproducing the 12C projectile data was found to be close
to unity, N ≈ 1 (see Ref. [7]).

In Sec. II, we first discuss characteristic features of elastic
scattering cross section data of 12C+208Pb [12] in comparison
with those of 6Li induced scattering. From this comparison
it will be shown that the DR cross section is expected to be
significantly smaller in 12C+208Pb than in 6Li or 9Be induced
reactions. In Sec. III, we then generate the so-called semi-
experimental DR cross section, σ

semi-exp
D , by using the elastic

scattering data together with the fusion cross section data [13]
by following the method described in, e.g., Ref. [14]. The data
of σ

semi-exp
D is needed in making the separate determination of

the DR and fusion potentials in the extended optical model.
Simultaneous χ2 analyses of the data of the elastic scattering,
fusion and semi-experimental DR cross sections are then
carried out in Sec. IV, where the results are also presented.
Section V concludes the paper.
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II. REVIEW OF EXPERIMENTAL CROSS SECTIONS

We begin with the discussion of some characteristic features
of the elastic scattering cross section dσel/dσ� data of
12C+208Pb in comparison with those of 6Li, 7Li, and 9Be
induced scattering [1–3]. Such features can best be seen in the
ratio, PE , defined by

PE ≡ dσel

dσ�

/dσC

dσ�

= dσel/dσC (1)

as a function of the distance of the closest approach D (or
the reduced distance d), where dσC/dσ� is the Coulomb
scattering cross section, while D (d ) is related to the scattering
angle θ by

D = d
(
A

1/3
1 + A

1/3
2

) = 1

2
D0

(
1 + 1

sin(θ/2)

)
(2)

with

D0 = Z1Z2e
2

E
(3)

being the distance of the closest approach in a head-on
collision. Here (A1, Z1) and (A2, Z2) are the mass and charge
of the projectile and target ions, respectively, and E ≡ Ec.m. is
the incident energy in the center-of-mass system. PE as defined
by Eq. (1) will be referred to as the elastic probability.

In Figs. 1(a) and 1(b), we present the experimental values of
PE for incident energies available around the Coulomb barrier
energy as a function of the reduced distance d for 12C+208Pb
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FIG. 1. (Color online) PE values for the (a) 12C+208Pb system
and (b) 6Li+208Pb system.

[13] and 6Li+208Pb [15] systems, respectively. The latter case
is presented as an example of PE for a loosely bound projectile.
As seen, the values of PE at different energies line up to form
a very narrow band for both cases. This is a characteristic
feature observed in many of the heavy-ion collisions, reflecting
the semiclassical nature of the collisions. PE remains close to
unity until the two ions approach each other at around d ∼ dI ,
where PE begins to fall off. The distance dI is usually called the
interaction distance, at which the nuclear interactions between
the colliding ions are switched on, so to speak. The values of
dI are about 1.65 fm for 12C+208Pb and 1.9 fm for 6Li+208Pb.

The fall off of the PE value in the region immediately
next to dI is due to DR. The fact that the dI -value of
1.9 fm for 6Li+208Pb is much larger than dI = 1.65 fm for
12C+208Pb implies that DR starts to take place in 6Li+208Pb
at larger distances than it does in 12C+208Pb. Further it is
seen that the amount of decrease of the PE value from unity
in 6Li+208Pb is significantly larger than in 12C+208Pb in the
region of d = 1.5 ∼ 1.9 fm, where DR takes place. These
features clearly indicate that DR (which may be dominated by
breakup) takes place significantly more strongly in 6Li+208Pb
than in 12C+208Pb. This is indeed the case as seen from
the semi-experimental DR cross section extracted in the next
section.

Finally, we note that in the region of d < 1.5 fm where
fusion dominates, the values of PE for 12C+208Pb and
6Li+208Pb become almost identical, implying that there may
not be much difference in the absorption rates of both systems
when these colliding nuclei approach each other as close as
d < 1.5 fm. In fact, the PE value becomes 0.1 for both cases
at approximately d = 1.43 ∼ 1.44 fm.

III. EXTRACTING SEMI-EXPERIMENTAL DR CROSS
SECTION

For our purpose of determining the fusion and DR potentials
separately, it is desirable to have the data of DR cross sections
in addition to fusion and elastic scattering cross sections.
For the 12C+208Pb system, however, no reliable data of the
DR cross section are available, although some efforts have
been devoted to measure the inelastic and transfer reaction
cross sections [12]. Here, we thus generate the so-called
semi-experimental DR cross section σ

semi-exp
D , following the

method proposed in Ref. [14].
Our method to generate σ

semi-exp
D resorts to the well-known

empirical fact that the total reaction cross section σR calculated
from the optical model fit to the available elastic scattering
cross section data, dσ

exp
E /d�, usually agrees well with the

experimental σR , in spite of the well known ambiguities in
the optical potential. Let us call σR thus generated the semi-
experimental reaction cross section σ

semi-exp
R . Then, σ

semi-exp
D

can be generated by

σ
semi-exp
D = σ

semi-exp
R − σ

exp
F . (4)

This approach seems to work even for loosely bound projec-
tiles, as demonstrated by Kolata et al. [16] for the 6He+209Bi
system.
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Following Ref. [14], we first carry out rather simple optical
model χ2 analyses of elastic scattering data solely for the
purpose of deducing σ

semi-exp
R . For these preliminary analyses,

we assume the optical potential to be the sum of V0(r)+iWI (r)
and U1(r, E), where V0(r) is the real, energy independent
bare folding potential discussed in Sec. IV B, iWI (r) is an
energy independent short range imaginary potential discussed
in Sec. IV A, and U1(r, E) is a Woods-Saxon type complex
potential with common geometrical parameters for both real
and imaginary parts. The elastic scattering data are then fitted
with a fixed radius parameter r1 for U1(r, E), treating, however,
three other parameters, the real and the imaginary strength V1

and W1 and the diffuseness parameter a1, as adjustable. The
χ2 fitting is done for three choices of the radius parameter;
r1 = 1.3, 1.4, and 1.5 fm. These different choices of the
r1-value are made to examine the dependence of the resulting
σ

semi-exp
R on the value of r1.

As observed in Ref. [14], the values of σ
semi-exp
R thus

extracted for three different r1 values agree with the average
value of σ

semi-exp
R within 3%, implying that σ

semi-exp
R is

determined without much ambiguity. We then identified the
average values as the final values of σ

semi-exp
R . Using thus

determined σ
semi-exp
R , we generated σ

semi-exp
D by employing

Eq. (4). The resultant values of σ
semi-exp
R and σ

semi-exp
D are

presented in Table I, together with σ
exp
F . In Table I, given

are also σ
semi-exp
R determined in Ref. [12] from the optical

model calculations. The two sets of σ
semi-exp
R determined

independently agree within 6% except for the lowest energy
case of Ec.m. = 55.7 MeV where the discrepancy amounts to
25%. However, at this energy the value of the cross section
is very small, and thus σ

semi-exp
R determined from the elastic

scattering data has a relatively large uncertainty.
As seen in Table I, σ

exp
F is much larger than σ

semi-exp
D , and

σ
semi-exp
R is dominated by σ

exp
F . This is quite in contrast to the

case for the 6Li+208Pb system, where σ
semi-exp
R is dominated by

σ
semi-exp
D (see Table I of Ref. [1]). To demonstrate differences,

we present in Fig. 2 the ratio, RF , defined by

RF ≡ (
σ

exp
F /σ

semi-exp
R

) × 100 (5)

for both 12C+208Pb and 6Li+208+Pb systems as a function
of Ec.m. − VB, VB being the Coulomb barrier height. It is
seen that the RF values for the 12C+208Pb system are larger
than 50% at all the energies considered and become close to
100% at Ec.m. < VB , while for the 6Li+208Pb system the RF

values are less than 50% everywhere and become close to

TABLE I. Semi-experimental total reaction and DR
cross sections for the 12C+208Pb system.

Elab Ec.m. σ
exp
F σ

semi-exp
D σ

semi-exp
R σ

semi-exp
R

(MeV) (MeV) (mb) (mb) (mb) (mb)

58.9 55.7 14 1 15 20
60.9 57.6 85 57 142 136
62.9 59.5 189 111 300 286
64.9 61.4 291 129 420 429
69.9 66.1 520 179 699 715
74.9 70.8 718 241 959 969
84.9 80.3 1045 327 1371 1373
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FIG. 2. (Color online) RF ≡ (σ exp
F /σ

semi-exp
R ) × 100(%) values

for the 12C+208Pb and 6Li+208Pb systems.

zero at Ec.m. < VB . For the 12C+208Pb system, the reaction is
dominated by fusion, in particular near and below the Coulomb
barrier energy.

IV. SIMULTANEOUS χ 2 ANALYSES

Simultaneous χ2 analyses were then performed on the
data sets of (dσ

exp
E /d�, σ

semi-exp
D , σ

exp
F ) by taking the data for

dσ
exp
E /d�, and σ

exp
F from the literature [12,13]. In calculating

the χ2 value, we simply assumed 1% errors for all the
experimental data. The 1% error is about the average of
errors in the measured elastic scattering cross sections, but
much smaller than the errors in the DR (∼5%) and fusion
(∼10%) cross sections. The choice of the 1% error for DR
and fusion cross sections is thus equivalent to increasing the
weight for the DR and fusion cross sections by factors of 25 and
100, respectively. Such a choice of errors may be reasonable,
since we have only one datum point for each of these cross
sections, while there are more than ten data points for the
elastic scattering cross sections.

A. Necessary formulas

The optical potential U (r, E) we use in the present work
has the following form:

U (r; E) = VC(r) − [V0(r) + UF (r; E) + UD(r; E)], (6)

where VC(r) is the usual Coulomb potential with rC = 1.25 fm
and V0(r) is the bare nuclear potential, for which use is made of
the double folding potential described in the next subsection.
UF (r; E) and UD(r; E) are, respectively, fusion and DR parts
of the so-called polarization potential [17] that originates from
couplings to the respective reaction channels. Both UF (r; E)
and UD(r; E) are complex and their forms are assumed to be of
volume-type and surface-derivative-type [5,18], respectively.
UF (r; E), and UD(r; E) are explicitly given by

UF (r; E) = (VF (E) + iWF (E))f (XF ) + iWI (r), (7)
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and

UD(r; E) = (VD(E) + iWD(E))4aD

df (XD)

dRD

, (8)

where f (Xi) = [1 + exp(Xi)]−1 with Xi = (r − Ri)/ai(i =
F and D) is the usual Woods-Saxon function with the fixed
geometrical parameters of rF = 1.40 fm, aF = 0.35 fm, rD =
1.50 fm, and aD = 0.55 fm, while VF (E), VD(E),WF (E),
and WD(E) are the energy-dependent strength parameters.
Since we assume the geometrical parameters of the real and
imaginary potentials to be the same, the strength parameters
Vi(E) and Wi(E) (i = F or D ) are related through a dispersion
relation [10],

Vi(E) = Vi(Es) + E − Es

π
P

∫ ∞

0
dE′ Wi(E′)

(E′ − Es)(E′ − E)
,

(9)

where P stands for the principal value and Vi(Es) is the value
of Vi(E) at a reference energy E = Es . Later, we will use
Eq. (9) to generate the final real strength parameters VF (E)
and VD(E) using WF (E) and WD(E) fixed from χ2 analyses.

The last imaginary potential WI (r) in UF (r; E) given by
Eq. (7) is a short-range potential of the Woods-Saxon type
given by

WI (r) = WIf (XI ), (10)

with WI = 40 MeV, rI = 1.0 fm, and aI = 0.30 fm. This
imaginary potential is introduced to eliminate unphysical
oscillations appearing in the radial wave functions of low
partial waves when this WI (r) is not included. Because of
the deep nature of the folding potential V0 used in this study
and also because WF (E)f (XF ), another imaginary part in
UF (r; E), turns out to be not strong enough, reflections of
lower partial waves appear, which causes the oscillations
mentioned above, but physically such oscillations should not
occur. WI (r) is introduced in order to eliminate this unphysical
effect. We might introduce a real part VI (r) associated with
WI (r), but we ignore this part, simply because such a real
potential does not affect at all real physical observables, which
means that it is impossible to extract the information of VI (r)
from analyzing the experimental data.

In the extended optical model, fusion and DR cross sections,
σ th

F and σ th
D , respectively, are calculated by using the following

expression [4–6,19]:

σ th
i = 2

h̄v
〈χ (+)|Im[Ui(r; E)]|χ (+)〉(i = F or D), (11)

where χ (+) is the usual distorted wave function that satisfies
the Schrödinger equation with the full optical model potential
U (r; E) in Eq. (6). σ th

F and σ th
D are thus calculated within

the same framework as dσE/d� is calculated. Such a unified
description enables us to evaluate all the different types of
cross sections on the same footing.

B. The folding potential

The double folding potential V0(r) we use in the present
study as the bare potential may be written as [7]

V0(r) =
∫

dr1

∫
dr2ρ1(r1)ρ2(r2)vNN (r12 = |r − r1 + r2|),

(12)

where ρ1(r1) and ρ2(r2) are the nuclear matter distributions for
the target and projectile nuclei, respectively, while vNN is the
M3Y interaction that describes the effective nucleon-nucleon
interaction and the knock-on exchange effect given as

vNN (r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
− 262δ(r). (13)

For ρ1(r) we use the following Woods-Saxon form taken from
Ref. [20]:

ρ1(r) = ρ0

/ [
1 + exp

(
r − c

z

)]
, (14)

with c = 6.624 fm and z = 0.549 fm, while for ρ2(r) the
following form is taken from Ref. [20]:

ρ2(r) = ρ0(1 + wr2/c2)
/[

1 + exp

(
r − c

z

)]
, (15)

with c = 2.355 fm, z = 0.522 fm, and w = −0.149 fm. We
then use the code DFPOT of Cook [21] for evaluating V0(r).

C. Threshold energies of sub-barrier fusion and DR

As in Ref. [1], we utilize as an important ingredient the so-
called threshold energies E0,F and E0,D of sub-barrier fusion
and DR, respectively, which are defined as zero intercepts of
the linear representation of the quantities Si(E), defined by

Si ≡
√

Eσi ≈ αi(E − E0,i)(i = F or D), (16)

where αi is a constant. Si with i = F , i.e., SF is the quantity
introduced originally by Stelson et al. [22], who showed that
in the sub-barrier region SF from the measured σF could
be represented very well by a linear function of E (linear
systematics) as in Eq. (16). In Ref. [18], we extended the
linear systematics to DR cross sections. In fact the DR data
are also well represented by a linear function.

In Fig. 3, we present the experimental SF (E) and SD(E). For
SD(E), use is made of σ

semi-exp
D . From the zeros of Si(E), one

can deduce E
semi-exp
0,D = 55.6 MeV and E

exp
0,F = 53.7 MeV. For

both i = F and D, the observed Si are very well approximated
by straight lines in the sub-barrier region and thus E0,i can
be extracted without much ambiguity. E

semi-exp
0,D is found to

be about 2 MeV higher than E
exp
0,F , showing that the DR

channels open at higher energies than fusion channels, which
is somewhat unusual; normally the DR channels open at lower
energies than fusion channels. This unusual opening of the DR
channels at higher energies than fusion is related to the small
DR cross sections at lower energies as shown in Table I and
Fig. 2. The 12C+208Pb system is a system in which DR takes
place very weakly particularly at lower energies.

E0,i may then be used as the energy where the imaginary
potential Wi(E)(i = F,D) in Eqs. (7) and (8) becomes zero,
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FIG. 3. (Color online) The Stelson plot of Si = √
Eσi for DR (i =

D, open circles) and fusion (i = F , filled circles) cross sections. Use
is made of the semi-experimental DR cross section for SD , while the
experimental fusion cross section is employed for SF . The intercepts
of the straight lines with the energy axis give us the threshold energies
E

semi-exp
0,D = 55.6 MeV and E

exp
0,F = 53.7 MeV.

i.e., Wi(E0,i) = 0 [18,23]. This procedure will be used in the
next subsection for obtaining a mathematical expression for
Wi(E).

D. χ 2 analyses

All the χ2 analyses performed in the present work are
carried out by using the folding potential described in Sec. IV B
as the bare potential V0(r) and by using the fixed geometrical
parameters for the polarization potentials, rF = 1.40 fm,
aF = 0.35 fm, rD = 1.50 fm, and aD = 0.55 fm, which are
close to the values used in our previous study [18]. A slight
change of the values from those of Ref. [18] was made to
improve the χ2 fitting.

As in Ref. [18], the χ2 analyses are done in two steps; in the
first step, all four strength parameters, VF (E),WF (E), VD(E)
and WD(E) are varied. In this step, we can fix fairly well the
strength parameters of the DR potential, VD(E) and WD(E),
in the sense that VD(E) and WD(E) are determined as a
smooth function of E. The values of VD(E) and WD(E) thus
extracted are presented in Fig. 4 by open circles. The values of
WD(E) thus extracted can be well represented by the following
function of E (in units of MeV):

WD(E)

=




0 for E � E
semi-exp
0,D = 55.6

0.147(E − 55.6) for 55.6 < E � 59.0
0.007(E − 59.0) + 0.15 for 59.0 < E � 111.0
0.50 for 111.0 < E

.

(17)

Note that the threshold energy where WD(E) becomes zero is
set equal to E

semi-exp
0,D as determined in the previous subsection

and are also indicated by the open circle at E = 55.6 MeV in
Fig. 4. The dotted line in the lower panel of Fig. 4 represents
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FIG. 4. (Color online) The strength parameters Vi (upper panel)
and Wi (lower panel) for i = D and F as functions of Ec.m.. The
open and solid circles are the strength parameters for i = D and F ,
respectively. The dotted and solid lines in the lower panel denote WD

and WF from Eqs. (17) and (18), respectively, while the dotted and
solid curves in the upper panel represent VD and VF calculated by
using the dispersion relation of Eq. (9) with Wi given by Eqs. (17) and
(18). The values of Vi(Es) and the corresponding reference energies
Es used in Eq. (9) are such that VF (Es = 60.3 MeV) = 1.5 MeV and
VD(Es = 59.0 MeV) = 0.57 MeV, respectively.

Eq. (17). The dotted line in the upper panel of Fig. 4 denotes
VD as predicted by the dispersion relation of Eq. (9), with
WD(E) given by Eq. (17). As seen, the dotted lines reproduce
the open circles fairly well, indicating that VD(E) and WD(E)
extracted by the χ2 analyses satisfy the dispersion relation.

In this first procedure of the χ2 fitting, however, the values
of VF (E) and WF (E) are not reliably fixed in the sense that
the extracted values fluctuate considerably as functions of E.
This is understandable from the expectation that the elastic
scattering can probe most accurately the optical potential
in the peripheral region, which is nothing but the region
characterized by the DR potential. The part of the nuclear
potential responsible for fusion is thus difficult to pin down in
this first step.

To obtain more reliable information on VF and WF , we
thus performed the second step of the χ2 analysis; this time,
instead of doing a four-parameter search we fixed VD and WD

as determined by the first χ2 fitting, i.e., WD(E) given by
Eq. (17) and VD(E) predicted from the dispersion relation.
We then performed two-parameter χ2 analyses, treating only
VF (E) and WF (E) as adjustable parameters. The parameter
values thus determined are presented in Fig. 4 by solid circles.
The solid circles in the lower panel of Fig. 4 can be well
represented by

WF (E)

=



0 for E � E
exp
0,F = 53.7

0.485(E − 53.7) for 53.7 < E � 60.3
3.20 for 60.3 < E

. (18)
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As is done for WD(E), the threshold energy where WF (E)
becomes zero is set equal to E

exp
0,F that is also indicated by the

solid circle in Fig. 4. As seen, the WF (E) values determined
by the second χ2 analyses can fairly well be represented by
the functions given by Eq. (18).

Using WF (E) given by Eq. (18), one can generate VF (E)
from the dispersion relation. The resulting VF (r) is shown by
the solid curve in the upper panel of Fig. 4, which again well
reproduces the values extracted from the χ2 fitting. This result
shows that the fusion potential determined from the present
analysis also satisfies the dispersion relation.

Note that the energy variations in WF (E) and VF (E) are
more rapid compared to those in WD(E) and VD(E), and are
similar to those in tightly bound projectiles [24–26]. It is thus
seen that the resultant VF (E) and WF (E) exhibit the threshold
anomaly.

E. Final calculated cross sections in comparison with the data

Using WD(E) given by Eq. (17) and WF (E) given by
Eq. (18) together with VD(E) and VF (E) generated by the
dispersion relation, we have performed the final calculations
of the elastic, DR and fusion cross sections. The results are
presented in Figs. 5 and 6 in comparison with the experimental
data. All the data are well reproduced by the calculations.

It may be worth noting here that the theoretical fusion
cross section, σ th

F , includes contributions from two imaginary
components WI (r) and WF (r) = WF (E)f (XF ) in UF (r, E)
of Eq. (7). In Table II the partial contributions from WI (r)
and WF (r), denoted by σI and σF , respectively, are presented
separately, together with the total theoretical fusion cross
section, σ th

F . As seen, the contribution from the inner part,
WI (r), amounts to less than 10% except at highest energies
Ec.m. = 80.3 MeV, where the inner part contributes by 14%.
This enhanced contribution from the inner part at higher
energies may be due to deeper penetration of the projectile
into the inner part at higher energies.

It should be recalled at this stage that we assumed a constant
value of WI = 40 MeV. Such an assumption is apparently
inconsistent with a rapid energy variation expected to exist
in the fusion potential around the Coulomb barrier energy.
Note, however, that elastic scattering, fusion and total reaction
cross sections are all rather insensitive to the value of WI (r),
in particular, at low energies below the Coulomb barrier

TABLE II. Partial contributions σF and
σI to the fusion cross sections.

Elab

(MeV)
Ec.m.

(MeV)
σI

(mb)
σF

(mb)
σ th

F

(mb)

58.9 55.7 1 13 14
60.9 57.6 5 71 76
62.9 59.5 9 171 180
64.9 61.4 12 269 281
69.9 66.1 37 482 520
74.9 70.8 72 659 731
84.9 80.3 149 925 1073
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FIG. 5. (Color online) Ratios of the elastic scattering cross
sections to the Rutherford cross section calculated with our final
dispersive optical potentials are shown in comparison with the
experimental data. The data are taken from Ref. [12].

energy as discussed somewhat in details in Sec. IV B of
Ref. [2]. Considering this and also the fact that VI (r), the
real potential associated with WI (r), would also be insensitive
to the observables, one could make the inner part of the
imaginary fusion potential WI (r) to be fully dispersive and
energy dependent. We have not tried here to make such an
extension, since as emphasized earlier one cannot achieve it
without ambiguity due to the fact that the observables cannot
be reflective of the inner part of the potential.
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FIG. 6. (Color online) DR and fusion cross sections calculated
with our final dispersive optical potential are shown in comparison
with the experimental data. σ

semi-exp
D denoted by the open circles are

obtained as described in Sec. III. The fusion data are from Ref. [13].
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FIG. 7. (Color online) The values of the fusion, DR, and total
imaginary potential, WF (r, E), WD(r, E) and Wtot(r, E), respectively,
(a) at r = Rsa = 12.3 fm for 12C+208Pb and (b) at r = Rsa = 12.4 fm
for 6Li+208Pb.

F. Discussions

As already remarked in Sec. IV D, the real and the
imaginary parts of both DR and fusion polarization potentials
determined from the present χ2 analyses satisfy the dispersion
relation [10,11] separately. We showed in Ref. [1] that for
the case of the 6Li+208Pb system the threshold anomaly as
was observed in heavy ion collisions involving strongly bound
projectiles [24–26] were distinctly seen only in the fusion
potential; the values of the DR potential changes with energy
much more slowly than those of the fusion potential. Now,
for the present case of 12C+208Pb, Fig. 4 shows that the
values of WD(E) are smaller than those of WF (E) by about
ten times. However, a somewhat different picture emerges if
one plots the values of the imaginary parts of the DR and
fusion potentials at a strong absorption radius r = Rsa , i.e.,
WD(Rsa, E) and WF (Rsa, E), respectively. In Fig. 7(a), plotted
are the values of WD(Rsa, E) and WF (Rsa, E), together with
the sum, Wtot(Rsa, E), assuming Rsa = 12.3 fm. In Fig. 7(b),
we also show for the sake of comparison the values of

WD(Rsa, E) and WF (Rsa, E) at r = Rsa = 12.4 fm for the
6Li+208Pb system obtained with the dispersive potentials of
Ref. [1].

It can be seen in Fig. 7(a) that the magnitudes of
WD(Rsa, E) are now comparable with those of WF (Rsa, E)
and that WD(Rsa, E) increases as much rapidly as WF (Rsa, E)
does with almost the same threshold energies. We can also
see that WF (Rsa, E) is larger than WD(Rsa, E) around the
Coulomb barrier energy for the 12C+208Pb system, which
is consistent with the ratio RF shown in Fig. 2. The sum
Wtot(Rsa, E) of WD(Rsa, E) and WF (Rsa, E) increases rapidly
as typically observed for strongly bound projectiles [24–26].
In contrast to the above features of Wtot(Rsa, E),WD(Rsa, E),
and WF (Rsa, E) for the 12C+208Pb system, those of the
6Li+208Pb system are very different; first of all, as seen in
Fig. 7(b), Eexp

0,D 	 E
exp
0,F and the total Wtot(Rsa, E) is dominated

by WD(Rsa, E), which is again consistent with the ratio RF

in Fig. 2, and thus Wtot(Rsa, E) 
 WD(Rsa, E) over the whole
energy range considered.

V. CONCLUSIONS

Simultaneous χ2 analyses are made for the elastic scattering
and fusion cross section data for the 12C+208Pb system at near-
Coulomb-barrier energies based on the extended optical model
approach in which the polarization potential is decomposed
into direct reaction (DR) and fusion parts. Use is made of the
double folding potential as a bare potential. It is found that
the experimental elastic scattering and fusion data are well
reproduced without introducing any normalization factor for
the double folding potential and also that both DR and fusion
parts of the polarization potential determined from the χ2

analyses satisfy separately the dispersion relation. Moreover,
it is found that the imaginary parts of both fusion and DR
potentials at the strong absorption radius show rapid energy
variation around the Coulomb barrier energy which is typical
for tightly bound projectiles [24–26]. The results are compared
with those for the 6Li+208Pb system involving a loosely bound
projectile 6Li.
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