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Quantum non-Markovian Langevin formalism for heavy ion reactions near the Coulomb barrier
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The generalized Langevin approach is suggested to describe the capture inside of the Coulomb barrier of two
heavy nuclei at bombarding energies near the barrier. The equations of motion for the relative distance (collective
coordinate) between two interacting nuclei are consistent with the generalized quantum fluctuation-dissipation
relations. The analytical expressions are derived for the time-dependent non-Markovian microscopic transport
coefficients for the stable and unstable collective modes. The calculated results show that the quantum effects
in the diffusion process increase with increasing friction or/and decreasing temperature. The capture probability
inside of the Coulomb barrier is enhanced by the quantum noise at low energies near the barrier. An increase of
the passing probability with dissipation is found at sub-barrier energies.
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I. INTRODUCTION

Heavy-ion fusion dynamics at energies near the Coulomb
barrier has been the object of many experimental and theo-
retical studies [1–13]. The diffusion Fokker-Planck equation
and the system of stochastic Langevin equations have been
applied [2,3,5,6,8,13] to the description of the dynamics of
fusion and deep-inelastic reactions. The most of investiga-
tions deal with a classical treatment in which the friction
and diffusion coefficients are related through the classical
fluctuation-dissipation relation. The capture process has been
simply modeled by classical equations of motion with friction
term or by a thermal diffusion over the potential barrier. A
classical treatment of dynamical fluctuations is restricted by
the Markovian limit. Because the curvature h̄ω̃ ≈ (1–3) MeV
of the Coulomb barrier is larger then the nuclear temperature
in the entrance phase of reaction, it is natural to expect the
importance of the quantum statistical effect in the capture
process. The importance of dynamical quantum fluctuations
in the description of the mass and charge distributions of
the products of deep inelastic heavy-ion collisions has been
mentioned in Refs. [2,3,5,6,8]. The coupling of relative motion
with the internal degrees of freedom of the colliding nuclei can
be organized to decrease the dissipation rate and enhance the
penetration of the Coulomb barrier that is necessary to explain
the experimental data on the sub-barrier fusion [11,12].

If the relative motion of two interacting nuclei is rather fast,
a colored noise and nonlocal dissipation can be assumed. In
this case, the transport coefficients can be strongly modified
by memory effect, especially at low temperatures and large
damping [14–18].

The present article is an effort to include the quantum
effects of fluctuations and dissipations in the treatment of the
capture process. We consider the model in which the Coulomb
barrier is represented by an inverted oscillator. We address
the dynamics of damped collective modes in terms of the first
and second moments with the non-Markovian time-dependent
transport coefficients. The generalized fluctuation-dissipation
relations contain the influence of quantum effects both on the

transport coefficients and on the collective motion. It should
be noted that there exist investigations [18–26] of the classic
and quantum collective motion in an inverted oscillator related
with the processes of capture and decay. The consideration of
time-dependent quantum diffusion coefficients that govern the
dynamics of the second moments for both the stable mode and
the unstable mode is still insufficient.

The generalized quantum Langevin equations for the
collective coordinate of the relative distance between the
interacting nuclei and the quantum fluctuation-dissipation
relations are derived in Sec. II A in the case of the general
coupling between the collective coordinate and the internal
subsystem consisting of the fermionic nucleon degrees of
freedom. Using the solution of these Langevin equations,
the equations of motion for the first and second moments,
which incorporate the quantum statistical effects in terms
of time-dependent non-Markovian transport coefficients, are
derived in Sec. II B for harmonic and inverted oscilla-
tors. In Sec. III the explicit expressions for the micro-
scopic time-dependent transport coefficients are presented
in the case of linear coupling in coordinate between the
collective and internal subsystems. The numerical calculations
of the diffusion coefficients for the stable and unstable
collective modes are given in Sec. IV A. The role of quantum
statistical effects in the passing probability of the parabolic
potential barrier is studied in Sec. IV B.

II. GENERALIZED NON-MARKOVIAN QUANTUM
LANGEVIN APPROACH

A. Quantum equations of motion

We consider the dynamics of the heavy-ion fusion reactions
at energies near the Coulomb barrier starting from the entrance
channel until the formation of the touching configuration.
For simplicity, we describe this dynamics in terms of a
single collective variable: the relative distance R between the
colliding nuclei. It is convenient to represent the Hamiltonian
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H of the total system in the form [5,7,8,27,28]

H = Hrel + Hin + Hint, (1)

where Hrel,Hin, and Hint are the Hamiltonians of the collective
subsystem, the intrinsic nucleonic degrees of freedom, and
the coupling of the relative motion to the internal motion,
respectively. The collective Hamiltonian

Hrel = P 2

2µ
+ U(R) (2)

of relative motion is the sum of the kinetic energy and the
interaction potential U (R) of colliding nuclei. Here, P is the
conjugate momentum, and µ is the reduced mass. The single-
particle Hamiltonian can be written as:

Hin =
∑

i

εia
+
i ai, (3)

where εi are the energies of the unperturbed single-particle
states “i” of the projectile and target. The intrinsic nucleonic
degrees of freedom are expressed through the nucleon creation
a+

i and annihilation ai operators. The coupling Hamiltonian
[8,27]

Hint =
∑
i,k

Vik(R,P )a+
i ak (4)

corresponds to the particle-hole transitions between the single-
particle levels in one of the nuclei under the influence of the
partner nucleus and to the transitions of the nucleons from
nucleus to nucleus because of the action of the mean field
of the dinuclear system. Information about the evolution of
the dinuclear system can be obtained by solving the equation
of motion for the single-particle degrees of freedom ni(t) =
nii(t) = a+

i (t)ai(t) and nik(t) = a+
i (t)ak(t)

ih̄
dni(t)

dt
= [H, ni(t)] =

∑
k

{Vki(R(t), P (t))nki(t)

−Vik(R(t), P (t))nik(t)}, (5)

ih̄
dnik(t)

dt
= [H, nik(t)] = h̄ωiknik + Vki(R(t), P (t))

× [nk(t) − ni(t)], (6)

where ωik = (εi − εk)/h̄. In Eq. (6) we make the simplification
(random-phase approximation)∑

k′
Vk′ink′k −

∑
i ′

Vki ′nii ′ ≈ Vki(nk − ni).

Then substituting the solution

nik(t) = eiωki (t−t0)nik(t0) + 1

ih̄

∫ t

t0

dt ′eiωki (t−t ′)Vki(R(t ′), P (t ′))

× [nk(t ′) − ni(t
′)] (7)

of Eq. (6) in Eq. (5), we obtain the equation for the dynamical
occupation numbers ni(t):

dni(t)

dt
= 1

h̄2

∑
k

∫ t

t0

dt ′Re[{Vki(R(t), P (t)), Vik(R(t ′), P (t ′))

× [nk(t ′) − ni(t
′)]}+eiωik (t−t ′)]. (8)

Here, {G1,G2}+ = G1G2 + G2G1 and t0 is starting time
of the process. Following the random-phase approximation,
the term 2/h̄

∑
k Im{Vki(R(t), P (t))nki(t0)eiωik (t−t0)} is disre-

garded in Eq. (8). Equation (8) resembles in its structure a
master equation, but, in contrast to this equation, it takes into
consideration the memory effects due to its integral nature.
The process of intense excitation of the nuclei affects a large
number of single-particle states. Therefore, the occupation
number ni(t) of each level changes very slowly with time.
In addition, the kernel of the integro-differential Eq. (8) has a
sharp maximum at t = t ′.

The system of Heisenberg equations of motion for the
collective variables R and P is obtained by commuting them
with H :

d

dt
R(t) = i

h̄
[H,R(t)] = P (t)

µ
+

∑
ik

∂Vik(R(t), P (t))

∂P (t)
nik(t),

d

dt
P (t) = i

h̄
[H,P (t)] = −∂U (R(t))

∂R(t)
(9)

−
∑
ik

∂Vik(R(t), P (t))

∂R(t)
nik(t).

If we substitute Eq. (7) into Eqs. (9), we obtain a set of
nonlinear integro-differential stochastic dissipative equations

d

dt
R(t) = P (t)

µ̃
+ 1

2

∫ t

t0

dt ′{KPR(t, t ′), Ṙ(t ′)}+

+ 1

2

∫ t

t0

dt ′{KPP (t, t ′), Ṗ (t ′)}+ + FR(t),

(10)
d

dt
P (t) = −∂Ũ (R(t))

∂R(t)
− 1

2

∫ t

t0

dt ′{KRR(t, t ′), Ṙ(t ′)}+

− 1

2

∫ t

t0

dt ′{KRP (t, t ′), Ṗ (t ′)}+ − FP (t).

Here,

P (t)

µ̃
= P (t)

µ
− 1

2

∑
ik

nk(t) − ni(t)

h̄ωik

∂|Vik(R(t), P (t))|2
∂P (t)

and

Ũ (R(t)) = U (R(t)) − 1

2

∑
ik

nk(t) − ni(t)

h̄ωik

|Vik(R(t), P (t))|2,

where µ̃ and Ũ are the renormalized reduced mass parameter
and potential energy, respectively. The dissipative kernels in
Eqs. (10) are:

KPR(t, t ′) =
∑
ik

1

2h̄ωik

× Re

[{
∂Vik(R(t), P (t))

∂P (t)
,
∂Vki(R(t ′), P (t ′))

∂R(t ′)

× [nk(t ′) − ni(t
′)]

}
+

eiωki (t−t ′)
]

,
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KPP (t, t ′) =
∑
ik

1

2h̄ωik

× Re

[{
∂Vik(R(t), P (t))

∂P (t)
,
∂Vki(R(t ′), P (t ′))

∂P (t ′)

× [nk(t ′) − ni(t
′)]

}
+

eiωki (t−t ′)
]

,

(11)
KRP (t, t ′) =

∑
ik

1

2h̄ωik

× Re

[{
∂Vik(R(t), P (t))

∂R(t)
,
∂Vki(R(t ′), P (t ′))

∂P (t ′)

× [nk(t ′) − ni(t
′)]

}
+

eiωki (t−t ′)
]

,

KRR(t, t ′) =
∑
ik

1

2h̄ωik

× Re

[{
∂Vik(R(t), P (t))

∂R(t)
,
∂Vki(R(t ′), P (t ′))

∂R(t ′)

× [nk(t ′) − ni(t
′)]

}
+

eiωki (t−t ′)
]

.

These kernels contain the occupation numbers and, thus,
are dependent on the temperature. The fluctuations enter in
the analysis through the specification of the distribution of the
initial conditions. In Eqs. (10) the operators of random forces
in the coordinate and momentum are

FR(t) =
∑
ik

∂Vik(R(t), P (t))

∂P (t)
nik(t0)eiωki (t−t0) =

∑
ik

F ik
R (t)

(12)

and

FP (t) =
∑
ik

∂Vik(R(t), P (t))

∂R(t)
nik(t0)eiωki (t−t0) =

∑
ik

F ik
P (t),

(13)

respectively. Following the usual procedure of statistical
mechanics, we identify the operators F ik

R (t) and F ik
P (t) as

fluctuations because of the uncertainty in the initial conditions
for the operators of the internal subsystem [14,29,30]. The
statistical properties of random forces are

〈〈nik(t)〉〉 = 〈〈F ik
P (t)〉〉 = 〈〈F ik

R (t)〉〉 = 〈〈FP (t)〉〉
= 〈〈FR(t)〉〉 = 0, (14)

〈〈FR(t)FR(t ′)〉〉 �= 0, 〈〈FR(t)FP (t ′)〉〉 �= 0,

〈〈FP (t)FP (t ′)〉〉 �= 0, 〈〈FP (t)FR(t ′)〉〉 �= 0, (15)

〈〈nik(t0)nk′i ′(t0)〉〉 = δik′δki ′ni(t0)[1 − nk(t0)],

where ni = 〈〈ni〉〉. The symbol 〈〈...〉〉 denotes the ave-
rage over the intrinsic degrees of freedom. There are
the fluctuation-dissipation relations between the diss-
ipation of the collective subsystem and the
fluctuations ϕik

nm(t, t ′) = 1
2 〈〈F ik

n (t)Fki
m (t ′) + Fki

m (t ′)F ik
n (t) +

F ik
n (t ′)Fki

m (t) + Fki
m (t)F ik

n (t ′)〉〉 (n,m = R,P ) of random

forces:

∑
ik

ϕik
RR(t, t ′)

1

h̄ωik

nk(t ′) − ni(t ′)
ni(t0)[1 − nk(t0)] + nk(t0)[1 − ni(t0)]

= 〈〈KRR(t, t ′)〉〉,∑
ik

ϕik
PP (t, t ′)

1

h̄ωik

nk(t ′) − ni(t ′)
ni(t0)[1 − nk(t0)] + nk(t0)[1 − ni(t0)]

= 〈〈KPP (t, t ′)〉〉,
(16)∑

ik

ϕik
PR(t, t ′)

1

h̄ωik

nk(t ′) − ni(t ′)
ni(t0)[1 − nk(t0)] + nk(t0)[1 − ni(t0)]

= 〈〈KPR(t, t ′)〉〉,∑
ik

ϕik
RP (t, t ′)

1

h̄ωik

nk(t ′) − ni(t ′)
ni(t0)[1 − nk(t0)] + nk(t0)[1 − ni(t0)]

= 〈〈KRP (t, t ′)〉〉.

We assume that the collective motion is sufficiently slow
and the intrinsic degrees of freedom are close to those of
local equilibrium for each value of the collective variable.
Approximating the occupation numbers in terms of Fermi-
Dirac occupation factors ni = exp[(εi − εF )/T + 1]−1 (εF is
the energy of Fermi), we express the fluctuation-dissipation
relations as (16) but with the replacements

nk(t ′) − ni(t ′)
ni(t0)[1 − nk(t0)] + nk(t0)[1 − ni(t0)]

→ tanh

(
h̄ωik

2T

)
.

These relations, which combine the thermal and quantal fluctu-
ations, are valid at all temperatures. The quantum fluctuation-
dissipation relations differ from the classical ones and are
reduced to them in the limit of high temperature (or h̄ → 0).
The effective temperature converges to the thermodynamical
temperature when the thermal energy dominates with respect
to the average zero-point motion energy of internal subsystem:
h̄ωik � 2T . The validity of Eqs. (16) means that we have
properly identified the dissipative and fluctuating terms in the
non-Markovian dynamical equations of motion.

B. Derivation of equations for first and second moments

Approximating locally the renormalized potential by a
harmonic or an inverted oscillator, Ũ = δR2/2, assuming that
in Eqs. (10) the functionals µ̃, ∂Vik(R(t), P (t))/∂P (t) and
∂Vik(R(t), P (t))/∂R(t) weakly dependent on fluctuations of
P and R in the considered interval of t − t0 → t , and replacing
P and R in these functionals by their average values, we obtain
the set of generalized non-Markovian equations which can be
solved analytically [14]. Applying the Laplace transformation
L to Eqs. (10), we obtain the set of linear equations for the
transforms. For the solution of this system of equations, one
should find the roots si of its determinant

d(s) = s2[1 + KPR(s)][1 − KRP (s)] + [δ̃ + sKRR(s)]

× [1/µ̃ + sKPP (s)].
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The explicit solutions are

R(t) = AtR(0) + BtP (0)

+
∫ t

0
dτ [CτFR(t − τ ) + C̃τFP (t − τ )],

P (t) = MtR(0) + NtP (0)

+
∫ t

0
dτ [LτFP (t − τ ) + L̃τFR(t − τ )], (17)

where the time-dependent coefficients are denoted as follows:

At = L−1

{
s[1 + KPR(s)][1 − KRP (s)] + [1/µ̃ + sKPP (s)]KRR(s)

d(s)

}
,

Nt = L−1

{
s[1 − KRP (s)][1 + KPR(s)] + [δ̃ + sKRR(s)]KPP (s)

d(s)

}
, Bt = L−1

{
µ̃−1[1 − KRP (s)]

d(s)

}
,

Mt = −L−1

{
δ̃[1 + KPR(s)]

d(s)

}
, Ct = L−1

{
s[1 − KRP (s)]

d(s)

}
, Lt = L−1

{
s[1 + KPR(s)]

d(s)

}
,

C̃t = L−1

[
1/µ̃ + sKPP (s)

d(s)

]
, L̃t = −L−1

[
δ̃ + sKRR(s)

d(s)

]
.

Here, L−1 means the inverse Laplace transformation and
KRR(s),KPP (s),KPR(s),KRP (s) are the Laplace transforms
of the dissipative kernels. The subscripts t and τ denote the
time dependence. The exact solutions R(t) and P (t) in terms
of roots si can be given by the residue theorem [14].

To determine the friction and diffusion coefficients, we
consider the equations for the first moment and the variances
in the coordinate σRR(t) = 〈R2(t)〉 − 〈R(t)〉2 and in the mo-
mentum σPP (t) = 〈P 2(t)〉 − 〈P (t)〉2 and for the mixed vari-
ance σPR(t) = 1

2 〈P (t)R(t) + R(t)P (t)〉 − 〈P (t)〉〈R(t)〉. Mak-
ing derivative of Eqs. (17) in t and simple but tedious algebra,
we obtain the following equations [14]:

〈Ṙ(t)〉 = −λR(t)〈R(t)〉 + 1

m(t)
〈P (t)〉,

〈Ṗ (t)〉 = −ξ (t)〈R(t)〉 − λP (t)〈P (t)〉,
σ̇RR(t) = −2λR(t)σRR(t) + 2

m(t)
σPR(t) + 2DRR(t),

(18)
σ̇PP (t) = −2λP (t)σPP (t) − 2ξ (t)σPR(t) + 2DPP (t),

σ̇PR(t) = −[λP (t) + λR(t)]σPR(t) − ξ (t)σRR(t)

+ 1

m(t)
σPP (t) + 2DPR(t).

The same equations were derived within density matrix
formalism in Refs. [18,24] where the approximate expressions
for transport coefficients are obtained. From the structure of
Eqs. (18) it is seen that the dynamics of system is ruled
by the nonstationary friction coefficients in the coordinate
λR(t) and momentum λP (t), by the mass parameter m(t), by
the stiffness coefficient ξ (t), by the diffusion coefficients in
coordinate DRR(t) and momentum DPP (t), and by the mixed
diffusion coefficient in coordinate-momentum DPR(t). These
transport coefficients expressed through the time-dependent
coefficients of solutions of the equations of motion (17) and
the correlators of the random forces are given in Refs. [14].
Thus, we have obtained the Markovian-type (local in time)
equations for the first and second moments but with the

general form of transport coefficients that explicitly depend on
time. The general coupling in the coordinate and momentum
gives us nonzero diffusion and friction coefficients in the
coordinate and momentum because two random forces FR(t)
and FP (t) are incorporated in the equations of motion. For the
given coupling, the fluctuation-dissipation relations are exactly
satisfied in the forms (16). It can be shown that the appropriate
canonical equilibrium distribution is achieved in the course of
the time evolution of harmonic oscillator.

As shown in Refs. [31], the tunneling through a potential
barrier and decay of a metastable state crucially depend on
the transport coefficients. The passing of a barrier is larger
in the case of DRR �= 0 due to a stronger coherence between
different states. For the harmonic oscillator the dissipation rate
increases with λR(t) and λP (t) but decreases with increasing
DPP (t) and DRR(t). For the case of inverted oscillator, ξ < 0,
the friction in coordinate λR(t) increases the value of E, but
the diffusion coefficient in coordinate DRR(t) decreases it.

III. APPLICATION TO LINEAR COUPLING IN
COORDINATE

The dominant contributions to the friction and diffusion
coefficients arise from the coupling matrix element Vik over
the single-particle energy interval |εi − εk| ≈ 
 = 6 MeV (the
major shell spacing in the heavy nuclei) which is much
larger then the typical value of collective frequency h̄ω̃ =
1 MeV considered here. If the single-partical spectrum is
sufficiently dense, the magnitude of coupling matrix elements
|∂Vik/∂R|2 and |∂Vik/∂P |2 must decrease as a function of
energy difference, mainly as a result of the mismatch of the
overlap of the wave functions. We can represent this behavior
by the Lorentzian function [8,24,32]

|∂Vik/∂R|2, |∂Vik/∂P |2 ∼ 1

π

h̄2γ 2

h̄2γ 2 + (εi − εk)2
,
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where h̄γ = 2
. One can replace the energy difference |εi −
εk| with h̄ω0 and approximately take the Lorentzian for the
frequency ω0, and convert the summation over the single-
particle states to the integral in frequency:

∑
ik

|∂Vik/∂R|2(nk − ni)

h̄2ωik

...

=
∫ ∞

0
dω0

∑
ik

δ(ω0 − ωik)
|∂Vik/∂R|2(nk − ni)

h̄2ωik

...

≈ λ̃

π

∫ ∞

0
dω0

γ 2

γ 2 + ω2
0

...,

where λ̃ is related to the strength of coupling between
collective and internal subsystems, and g(ω0) = ∑

ik δ(ω0 −
ωik) ∼ ω0 is the level density [27].

For a damped quantum oscillator Ũ (R) = ±µω2R2/2 =
δR2/2 (a positive sign stands for a parabolic potential well and
a negative sign for a parabolic potential barrier) with linear
coupling in coordinate R (∂Vij /∂P = 0, ∂Vij /∂R �=0), the
expressions for transport coefficients in Eqs. (18) are [14]

λR(t) = DRR(t) = 0, m(t) = µ,
(19)

λP (t) = d

dt
ln(BtMt − AtNt ),

ξ (t) = ṀtNt − ṄtMt

BtMt − AtNt

, (20)

DPP (t) = λP (t)JPtPt
+ 1

2
[J̇PtPt

+ µξ (t)J̇RtRt
], (21)

DPR(t) = 1

2

{
ξ (t)JRtRt

− 1

µ
JPtPt

+ µ

2
[λP (t)J̇RtRt

+ J̈RtRt
]

}
, (22)

where

JRtRt
= h̄2λ̃γ 2

π

∫ t

0
dτ ′Bτ ′

∫ t

0
dτ ′′Bτ ′′

×
∫ ∞

0
dω

ω

ω2 + γ 2
coth

[
h̄ω

2T

]

× cos[ω(τ ′ − τ ′′)],

JPtPt
= h̄2λ̃γ 2

π

∫ t

0
dτ ′Nτ ′

∫ t

0
dτ ′′Nτ ′′

(23)

×
∫ ∞

0
dω

ω

ω2 + γ 2
coth

[
h̄ω

2T

]

× cos[ω(τ ′ − τ ′′)],

JRtPt
+ JPtRt

= 2h̄2λ̃γ 2

π

∫ t

0
dτ ′Nτ ′

∫ t

0
dτ ′′Bτ ′′

×
∫ ∞

0
dω

ω

ω2 + γ 2
coth

[
h̄ω

2T

]

× cos[ω(τ ′ − τ ′′)],

Bt = 1

µ

3∑
i=1

βi(si + γ )esi t , Nt = µḂt , Mt = −µδBt ,

At =
3∑

i=1

βi[si(si + γ ) + h̄λ̃γ /µ]esi t .

Here, dot means the time derivative, β1 = [(s1 − s2) ×
(s1 − s3)]−1, β2 = [(s2 − s1) (s2 − s3)]−1 and β3 = [(s3 −
s1)(s3 − s2)]−1, and si are the roots of the following equation:

d(s) = [(s + γ )(s2 + δ/µ) + h̄λ̃γ s/µ]/(s + γ ) = 0. (24)

For the case of coupling in coordinate between the collective
and internal subsystems, the equations for the first and second
moments do not contain the terms λR(t) and DRR(t). This is
consequence of the absence of random force FR(t).

Note that in numerical calculations of the time-dependent
transport coefficients all three roots si of the cubic
Equation (24) are taken into consideration. For the inverted
oscillator, the three roots are real: one positive and two
negative. For example, for h̄(|ξ (∞)|/µ)1/2 = 1 MeV we obtain
h̄s1 = 0.62, 0.41, 0.30 MeV, h̄s2 = −1.62, −2.41, −3.30 MeV,
and h̄s3 = −11, −10, −9 MeV at h̄λP (∞) = 1, 2, 3 MeV,
respectively. For the harmonic oscillator, the one root is real
and negative and two other roots are complex conjugate at
2[ξ (∞)/µ]1/2 > λP (∞), and all roots are real and negative
at 2[ξ (∞)/µ]1/2 � λP (∞). For example, for h̄[ξ (∞)/µ]1/2 =
1 MeV we get h̄s1 = −0.50 + i0.87, −1.0, −0.38 MeV,
h̄s2 = −0.50 − i0.87, −1.0, −2.62 MeV, and h̄s3 = −11,
−10, −9 MeV at h̄λP (∞) = 1, 2, 3 MeV, respectively. Note
that the values of ξ (∞) and λP (∞) depend on λ̃. Below the
low indexes are ascribed to the roots in accordance with the
following rule: Re(s3) < Re(s2) � Re(s1), Im(s1) � 0.

In accordance with Eqs. (19)–(23) the friction and diffusion
coefficients for a parabolic potential well and a parabolic
potential barrier have the following form at t → ∞:

λP (∞) = −(s2 + s1),

ξ (∞) = δ
(s1 + γ )(s2 + γ )

(s1 + γ )(s2 + γ ) − h̄λ̃γ /µ
,

DPP (∞) = λP (∞)JP∞P∞ + ξ (∞)
JR∞P∞ + JP∞R∞

2
,

DPR(∞) = 1

2

[
λP (∞)

JR∞P∞ + JP∞R∞

2
+ ξ (∞)JR∞R∞

− 1

µ
JP∞P∞

]
, (25)

where

JR∞R∞ = h̄2λ̃γ 2

πµ2

∑
i,j

βiβj (si + γ )(sj + γ )φa(si, sj ),

JP∞P∞ = h̄2λ̃γ 2

π

∑
i,j

βiβj sisj (si + γ )(sj + γ )

×φa(si, sj ),

JR∞P∞ + JP∞R∞ = h̄2λ̃γ 2

πµ

∑
i,j

βiβj (si + sj )(si + γ )

× (sj + γ )φa(si, sj ),
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φa(si, sj ) = sjψ[−h̄sj /(2πT )]

(si + sj )
(
s2
j − γ 2

) + siψ[−h̄si/(2πT )]

(si + sj )
(
s2
i − γ 2

)

+ (γ 2 − sisj )ψ[h̄γ /(2πT )](
γ 2 − s2

i

)(
γ 2 − s2

j

)

− πT (si + sj − 2γ )

h̄γ (si + sj )(γ − si)(γ − sj )
. (26)

The two roots s1,2 with Re(s1) > Re(s3) and Re(s2) > Re(s3)
are taken in λP (∞) and ξ (∞). There is no contribution of the
third root s3 of Eq. (24) into λP (∞) and ξ (∞). In the Eq. (26)
all three roots are presented. In expressions (26) ψ(z) =
�′(z)/�(z), where �(z) is a γ function and �′(z) = d�(z)/dz.
Thus, in quantum treatment there are two diffusion coefficients
DPP and DPR instead of one diffusion coefficient DPP =
Dc

PP in the classical limit.
In the case of parabolic potential well the expressions for

the Jn∞m∞ are simplified:

JR∞R∞ = h̄2λ̃γ 2

πµ2

∫ ∞

0
dω0

ω0 coth[h̄ω0/(2T )](
s2

1 + ω2
0

)(
s2

2 + ω2
0

)(
s2

3 +ω2
0

) ,

JP∞P∞ = h̄2λ̃γ 2

π

∫ ∞

0
dω0

ω3
0 coth[h̄ω0/(2T )](

s2
1 + ω2

0

)(
s2

2 + ω2
0

)(
s2

3 +ω2
0

) ,

JR∞P∞ + JP∞R∞ = 0. (27)

IV. ILLUSTRATIVE CALCULATIONS FOR HARMONIC
AND INVERTED OSCILLATORS

A. Diffusion coefficients

To illustrate the influence of the quantum effects on the
dynamics of the initial stage of reaction at energies near the
Coulomb barrier, we consider, as an example, the evolution
of the system 100Mo+100Mo in the relative distance R. Note
that the results obtained would be qualitatively universal for
other reactions. During the approach stage of collision, the
system overcomes the Coulomb barrier, the main part of the
initial kinetic energy is dissipated into the internal excitations,
and the touching configuration is formed. The dependence of
the potential energy of this system on the coordinate R is
approximated by the inverted oscillator with frequency h̄ω̃ =
1 MeV. The reduced mass parameter is µ = 50m0 (where m0

is the nucleon mass). The diffusion and friction coefficients
depend on the parameters ω, λ̃, and γ . We set h̄γ = 12 MeV.
The value of γ holds the condition γ 
 ω̃ [14,29]. The
dependence of diffusion coefficients on γ is rather weak. The
values of ω and λ̃ are fixed by given certain asymptotic values
of ξ (∞) and λP (∞)

ξ (∞) = ξ = δ̃ = µω̃2, λP (∞) = λP .

Near the Coulomb barrier the used values h̄λP = (1–3) MeV
are consistent with those extracted from the experimental data
on the heavy-ion reactions [2].

To describe the sub-barrier fusion, the role of transport
coefficients in the barrier penetration should be clarified.
The time dependencies of the microscopic friction [Eq. (19)]
and diffusion [Eqs. (21) and (22)] coefficients are shown
in Figs. 1 and 2 for the harmonic and inverted oscillators
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FIG. 1. The calculated time dependence of microscopic diffusion
[Eqs. (21) and (22)] and friction [Eq. (19)] coefficients for the inverted
(the left-hand side) and harmonic (the right-hand side) oscillators at
T = 1 MeV. The results leading to the asymptotic friction coefficients
h̄λP = 1, 2, and 3 MeV are presented by solid, dashed, and dotted
lines, respectively.

that have the same parameters. All three roots of Eq. (24)
are taken into account. The values of DPP ,DPR , and λP

are equal to zero at initial time. In short transient time
∼γ −1 the coefficients take asymptotic values. The transient
time slightly increases with λP . During a short initial time
interval the value of DPR is positive and becomes negative
later on. The mixed diffusion coefficient arises from the non-
Markovian character of dynamics. It is absent in the Markovian
limit (γ → ∞). At high temperature (T = 1 MeV) the
asymptotic values of diffusion coefficients for the inverted
and harmonic oscillators almost coincide with the accuracy
about of 6–11% (5%). The deviation increases with decreasing
temperature. At low temperature (T = 0.3 MeV), the values of
DPP (∞) [DPR(∞)] for the harmonic oscillator (h̄ω̃ = 1 MeV)
are larger of 45% (17%), 20% (13%), and 13% (12%) than
those for the inverted oscillator (h̄ω̃ = 1 MeV) at h̄λP (∞) =
1, 2, and 3 MeV, respectively. For the comparison with the
asymptotic values of the microscopical diffusion coefficients
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FIG. 2. The same as in Fig. 1, but for T = 0.3 MeV.

DPP (∞) obtained for the inverted and harmonic oscillators,
the dependence of phenomenological diffusion coefficient in
momentum

Dc
PP = λp

h̄ω̃

2
coth [h̄ω̃/(2T )] (28)

on λP (∞) is presented at two temperatures in Fig. 3 (Dc
PR =

0). Note that Dc
PP partly contains the quantum effects. In all

cases Dc
PP is smaller than the microscopically calculated DPP .

This difference increases with λP but decreases with increasing
T . So, the purely microscopic treatment is necessary at the low
temperatures and large frictions.

The asymptotic values of DPP (t) and DPR(t) as functions
of T are shown in Fig. 4 at h̄λp = 1 and 3 MeV. DPP depends
nearly linear on T at T � h̄ω̃/2. For smaller ω̃ in Fig. 4,
the dependence of DPP on T is rather weak because of the
importance of quantum effects. With increasing temperature
the absolute value of DPR decreases approaching to zero in
the limit of T → ∞.

Figure 5 demonstrates the behavior of the microscopic
diffusion coefficients DPP (∞) and DPR(∞) (25) at transition
from the harmonic oscillator to the inverted oscillator. This
transition corresponds to the change of the sign of stiffness
coefficient ξ . The asymptotic values of DPP (∞) and DPR(∞)
smoothly change across the point ω̃ = 0. In the considered
range of frequencies the absolute values of DPP (∞) and
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FIG. 3. The calculated asymptotic diffusion coefficients as func-
tion of asymptotic friction coefficient for the indicated temperatures.
The results for the microscopic diffusion coefficients [Eqs. (21)
and (22)] for the harmonic (solid line) and inverted (dashed line)
oscillators, and the phenomenological diffusion coefficient [Eq. (28)]
in momentum (dash-dotted line) are presented.

DPR(∞) for the inverted and harmonic oscillators are almost
close to each other at the finite collective frequency and tem-
perature. The difference of diffusion coefficients for negative
and positive stiffness decreases with increasing temperature.

B. Peculiarities for inverted oscillator at low temperature

The results demonstrate that there are limitations in ap-
plying the microscopical diffusion coefficients to the inverted
oscillator at low temperatures T � Tcr = h̄s1/(2π ), where Tcr

is the crossover temperature of the transition between thermal
activation and quantum tunneling escape, and s1 is the positive
root of Eq. (24). At T � Tcr the values of DPP (t) and DPR(t)
have no asymptotics and diverge as functions of time so that
diagonal element DPP (t) may become zero or even negative.
It is seen in Fig. 4 that the deviations of the values of
DPP (t) and DPR(t) from those for the harmonic oscillator
grow when T approaches to Tcr from above. In the case of
inverted oscillator with h̄ω̃ = 1 MeV we get Tcr = 0.1 and
0.05 MeV at h̄λP = 1 and 3 MeV, respectively. Such small

024607-7



SARGSYAN, KANOKOV, ADAMIAN, AND ANTONENKO PHYSICAL REVIEW C 77, 024607 (2008)

5

6

7

8

9

10

D
P

P
 (

 M
eV

 f
m

-2
)

 λ
p
=3 MeV

0.5

1.0

1.5

2.0

2.5

3.0

D
P

P
 (

 M
eV

 f
m

-2
)

 λ
p
=1 MeV

-0.8

-0.6

-0.4

-0.2

0.0

D
P

R
 (

M
eV

)

λ
p
=3 MeV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-0.4

-0.3

-0.2

-0.1

D
P

R
 (

M
eV

)

T  (MeV)

 λ
p
=1 MeV

h

h

h

h

h
h

FIG. 4. The calculated asymptotic diffusion coefficients as func-
tion of temperature for the indicated asymptotic friction coefficients.
The results for the microscopic diffusion coefficients [Eqs. (21)
and (22)] for the harmonic (solid line) and inverted (dashed
line) oscillators and the modified microscopic diffusion coefficients
DPP (t = 1/s1) and DPR(t = 1/s1) for the inverted oscillator (dotted
line) are presented.

values of T are rarely realized in the nuclear reactions at
energies near the Coulomb barrier. The value of Tcr becomes
smaller with increasing λP or with decreasing ω̃. The physical
meaning of diffusion coefficients is lost below Tcr. This
happens because at low temperatures the correlation time
of the fluctuations of the random forces τcor = h̄/T [29]
is comparable or even larger than the characteristic time
τcoll = 2π/s1 of the collective subsystem. In the Markovian
limit, τcoll = 2π/[

√
ω̃2 + (λP /2)2 − λP /2]. One can improve

the behavior of DPP and DPR at T � Tcr by restricting
the upper limits of integrals on τ ′ and τ ′′ in Eqs. (23). We
make the replacement t → 1/s1 in Eqs. (23), where 1/s1 is
the time during which the collective system is closed to the
top of the barrier with an infinitesimally small momentum
(δp = s1δq). With this replacement the values of DPP (DPR)
obtained for the inverted and harmonic oscillators are closed
to each other at low temperatures (Fig. 4). It should be noted
that this modification of the diffusion coefficients does not
influence on the values of DPP and DPR at high temperatures

FIG. 5. The calculated asymptotic microscopic diffusion coeffi-
cients [Eqs. (21) and (22)] as functions of sign(ξ )h̄ω̃ for the indicated
asymptotic friction coefficients and temperatures T = 1 MeV (solid
line) and T = 0.3 MeV (dashed line). The results for the modified
microscopic diffusion coefficient DPP (t = 1/s1) and DPR(t = 1/s1)
for the inverted oscillator are presented by dotted line at T =
0.3 MeV. At T = 1 MeV, the values of DPP (t = 1/s1) and DPR(t =
1/s1) coincide with the corresponding microscopic diffusion
coefficients.

(T > Tcr) because the transition time 1/γ of reaching the
asymptotic is smaller than the time t = 1/s1.

C. Passing probability of barrier

Let us study the capture inside of the Coulomb barrier
of the initial Gaussian packet moving toward the barrier at
R = Rb = 0 from the left-hand side with some kinetic energy.
With the initial Gaussian distribution the distribution function
remains Gaussian at any time in quadratic potential [14]. The
capture probability P0(t) is defined by the passing probability
of potential barrier. Calculating 〈R(t)〉 and σRR(t) with the sets
of friction and diffusion coefficients mentioned above, one can
use the time-dependent density matrix

ρ(R, t) = 1√
2πσRR(t)

e
− (R−〈R(t)〉)2

2σRR (t)
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in coordinate representation and find the passing probability
P0(t) of a particle through a barrier

P0(t) =
∫ ∞

Rb

dR[ρ(R, t) − ρ(R, t = 0)]

/∫ Rb

−∞
dRρ(R, 0)

= Erf[〈R(t)〉/√2σRR(t)] − Erf[〈R(0)〉/√2σRR(0)]

1 − Erf[〈R(0)〉/√2σRR(0)]
.

(29)

Because the initial variance σRR(0) is not zero in the quantum
treatment, this expression is slightly different from the expres-
sion in Refs. [22–25]. We take the initial variances in accor-
dance with the uncertainty relation and use σRR(0)σPP (0) =
h̄2/4 and σPR(0) = 0. When the packet approaches the barrier,
the value of P0(t) increases up to the quasistationary value that
defines the part of the initial packet penetrated in the right-hand
side. The value of P0(t) depends on 〈R(t)〉 and the spreading
σRR(t) of the wave packet in the direction of barrier. Due to
the friction, the value of P0 depends on the initial position
〈R(0)〉 of the packet as well as on the initial kinetic energy
Ekin(0) = [〈P (0)〉2 + σPP (0)]/(2µ). The final barrier passing
probability is given by taking the limit t → ∞ in P0(t). The
ratio 〈R(∞)〉/√2σRR(∞) approaches a finite limit because

〈R(t)〉 → es1t

µ(s1 − s2)

R = es1t

µ(s1 − s2)
[〈P (0)〉− µs2〈R(0)〉],

(30)

and

σRR(t) → e2s1t

µ2(s1 − s2)2

RR, (31)

where


RR = µ2s2
2σRR(0) − 2µs2σPR(0) + σPP (0)

+ 2µs2
2DPR(∞)/ω̃ − s2DPP (∞)/ω̃2

(see discussion of the roots of Eq. (24) in Sec. III). In
the Markovian limit s2 = −(

√
ω̃2 + (λP /2)2 + λP /2) < 0 and

s1 = −ω̃2/s2 > 0. At 
R = 0 the trajectory tends to the top of
potential barrier. The trajectory with 〈R(0)〉 < 0 and a positive
initial momentum 〈P (0)〉 always stays on the same side at

R < 0 (〈P (0)〉 < −µs2〈R(0)〉) but crosses the barrier for
the 
R > 0 (〈P (0)〉 > −µs2〈R(0)〉). The asymptotic value
of P0 reaches 1 and vanishes at very large positive and
negative values of the ratio 〈R(∞)〉/√2σRR(∞), respectively.
The passing probability of a barrier depends on DPP (∞) and
DPR(∞), i.e., depends on the dynamical fluctuations.

As found above, the negative value of DPR keeps the
probability smaller. To obtain the same probability for the
case of DPR = 0, we should decrease the diffusion coefficient
DPP , i.e., use κclDPP (κcl <1) instead of DPP . Using the
equality

σRR(DPR(∞),DPP (∞)) = σRR(DPR = 0, κclDPP )

and explicit analytical expression for σRR(t), one can find the
factor

κcl = 1 − 2µs2DPR

DPP

, (32)
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FIG. 6. The calculated dependencies of 〈R(t)〉, σRR(t), and
〈R(t)〉2/σRR(t) as functions of time for the relative motion of
two nuclei with 〈R(0)〉 = −2 fm, σRR(0) = 0.42 fm2, σPP (0) =
0.6 h̄2 fm−2, σPR(0) = 0 in the inverted oscillator potential with h̄ω̃ =
1 MeV. The results were obtained with the microscopic transport
coefficients [Eqs. (19)–(22)] and with E(0) = −1 MeV [h̄λP =
1 MeV (dash-dotted line) and h̄λP = 3 MeV (dotted line)] and with
E(0) = −2.4 MeV [h̄λP = 1 MeV (dashed line) and h̄λP = 3 MeV
(solid line)]. The values of σRR(t) calculated with E(0) = −1 and
−2.4 MeV coincide.

which gives the effect of DPR on the absolute value of σRR .
If κcl ≈ 1, than this effect is weak. The results of calculations
show that the role of DPR enhances with decreasing T and λP

because κcl � 1 (s2DPR > 0).
Figure 6 shows 〈R(t)〉, σRR(t), and 〈R(t)〉/√2σRR(t) as

functions of time for sub-barrier energies at h̄λP = 1 and
3 MeV. The minimal distance between the center of the wave
packet and Rb = 0 increases with friction. At the same time,
at the distances close to the top of barrier the energy of
collective subsystem E(t) at h̄λP = 1 MeV is larger than
one at h̄λP = 3 MeV (Fig. 7). Therefore, one can expect
smaller 〈R(∞)〉/√2σRR(∞) and, correspondingly, a larger
passing probability of a barrier with decreasing λP . This
effect is clearly demonstrated in Fig. 6 by the behaviors of
the dot-dashed and dotted curves for the initial energy E(0) =
−1 MeV (〈P (0)〉 = 1.9h̄ fm−1). However, if the initial energy
is small, for example, E(0) = −2.4 MeV (〈P (0)〉 = 0), the
passing probability can increase with friction. It can be
explained by fact that E(t) at h̄λP = 1 MeV is smaller than
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FIG. 7. The calculated dependencies of E(t) and P0(t) as func-
tions of time for the relative motion of two nuclei with 〈R(0)〉 =
−2 fm, σRR(0) = 0.42 fm2, σPP (0) = 0.6h̄2 fm−2, σPR(0) = 0 in an
inverted oscillator potential with h̄ω̃ = 1 MeV. The results were
obtained with the microscopic transport coefficients and with E(0) =
−1 MeV [h̄λP = 1 MeV (dash-dotted line) and h̄λP = 3 MeV (dotted
line)] and with E(0) = −2.4 MeV [h̄λP = 1 MeV (dashed line) and
h̄λP = 3 MeV (solid line)].

one at h̄λP = 3 MeV at the distances close to the top of barrier.
At larger friction the dissipation rate of collective subsystem

Ė(t) = −2λP (∞)Ekin(t) + DPP (∞)

µ
(33)

can be smaller because of smaller kinetic energy and larger
diffusion coefficient in momentum. Due to the presence of
DPP in Eq. (33) or due to the dynamical fluctuations, one
can increase E(t) during short initial time interval (Fig. 7).
An increase of the passing probability with friction coefficient
or coupling was also found in Refs. [31] when DRR �= 0. An
increase of the coupling between the motion in R and internal
excitations can be caused by weakly bound neutrons in the
projectile and/or target. Thus, some enhancement of the sub-
barrier fusion can be explained in the reactions with neutron-
rich projectiles or targets. In our treatment the neutron transfers
are modeled with the values of λP and DPP .

Figures 6–8 show the values of 〈R(t)〉/√2σRR(t), which
reach the asymptotic values in short time about of 2 h̄ MeV−1.
Figure 8 demonstrates that with the microscopical set of dif-
fusion coefficients {DPP (t),DPR(t)} [Eqs. (21) and (22)] the
passing probability is larger than with the phenomenological
set {Dc

PP ,Dc
PR = 0} [Eq. (28)]. The quantum statistical effects

0 1 2 3 4 5 6 7
0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.03

0.06

0.09

0.12

0.15

P
0

T=1 MeV

t (  / MeV) 
P

0

T=0.3 MeV

h

FIG. 8. The calculated probability of capture of the Gaussian
packet inside of the barrier (the inverted oscillator potential with
h̄ω̃ = 1 MeV) as function of time for the indicated tempera-
tures at 〈R(0)〉 = −1 fm, 〈P (0)〉 = 0, σRR(0) = 0.42 fm2, σPP (0) =
0.6 h̄2 fm−2, σPR(0) = 0, E(0) = −0.6 MeV, and h̄λP = 1 MeV. The
results were obtained with the microscopic diffusion coefficients
[Eqs. (21) and (22)] (solid line) and with the phenomenological
diffusion coefficient [Eq. (28)] in momentum (dashed line).

promote the formation of touching nuclear configuration.
This is due to the fact that the quantum statistical effects
enhance the diffusion. Our capture probabilities are larger
than those calculated by the classical formulas in Ref. [25]
because of the quantum effects. In spite of DPP (∞) > Dc

PP ,
the difference between σRR(∞) and σ c

RR(∞), obtained with
the microscopical and phenomenological sets of diffusion co-
efficients, respectively, is quite small due to the negative DPR .
It should be noted that the value of 


σnm

RR = µ2s2
2σRR(0) −

2µs2σPR(0) + σPP (0) in the expression for 
RR is comparable
or larger than 


Dnm

RR = 2µs2
2DPR(∞)/ω̃ − s2DPP (∞)/ω̃2. In

the overdamped limit (λP > 2ω̃) and at low temperatures
(T � 1 MeV) the value of P0(t) is insensitive to different
sets of the diffusion coefficients because 


σnm

RR 
 

Dnm

RR . This
is more obvious at 2πT � h̄λP and λP 
 2ω̃ when we get



Dnm

RR ≈ 2µT λ2
P .

One can see in Figs. 8–11 that there is no a large
deviation of the microscopically calculated asymptotic passing
probability P0(∞) from P c

0 (∞) calculated with the phe-
nomenological Dc

PP (Dc
PR = 0). Therefore, the wide use of

the phenomenological diffusion coefficients is justified. In
the purely quantum regime, h̄ω 
 T , the value of P c

0 is
smaller than P0. With increasing T the phenomenological
passing probability underestimates the microscopical passing
probability. The difference between these passing probabilities
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FIG. 9. The calculated asymptotic probability of capture of the
Gaussian packet inside of the barrier (the inverted oscillator potential
with h̄ω̃ = 1 MeV) as function of temperature at 〈R(0)〉 = −1 fm,
〈P (0)〉 = 0, σRR(0) = 0.42 fm2, σPP (0) = 0.6h̄2 fm−2, σPR(0) =
0, E(0) = −0.6 MeV, and h̄λP = 1 MeV. The results were obtained
with the microscopic diffusion coefficients [Eqs. (21) and (22)] (solid
line) and with the phenomenological diffusion coefficient [Eq. (28)]
in momentum (dashed line).

increases with λP . However, the difference between P c
0 and

P0 does not exceed 100% at h̄λP = 3 MeV. It should be noted
that the difference between P c

0 and P0 increases with mass
parameter.

In Fig. 10 the asymptotic values P0(∞) as functions of λP

are shown. The value of P0 decreases with λp at initial energies
E(0) = 2.4, 1, 0 and −1 MeV. If the initial energy is small,
i.e., E(0) = −2.4 MeV, the passing probability increases with
friction. This is explained by the same way like behavior of P0

versus λP in Fig. 7.
In Fig. 11 the passing probabilities P0(t) are presented

as functions of E or Ekin. One can see that the role of
friction is important in the passing process. Even at energies
exceeding the barrier only a part of the packet is penetrated
and, thus, P0 < 0.5. The increase of the passing probability
with the kinetic energy is slower at h̄λP = 3 MeV than at
h̄λP = 1 MeV. A deviation of the microscopically calculated
asymptotic passing probability P0 from P c

0 calculated with the
phenomenological Dc

PP (Dc
PR = 0) increases with E.

The probability of finding the system on the right-hand
side of the barrier varies with the width σRR(0) of the initial
wave packet localized to the left of the barrier at t = 0
(Fig. 12). This variation is smaller with increasing dissipation
and |〈R(0)〉|. The value of P0 reaches the maximum with
increasing σRR(0) and decreases later on. Such behavior is be-
cause of different rate of change of Erf[〈R(∞)〉/√2σRR(∞)]
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FIG. 10. The calculated asymptotic probability of capture of the
Gaussian packet inside of the barrier (the inverted oscillator potential
with h̄ω̃ = 1 MeV) as function of asymptotic friction coefficient
for the indicated temperatures and initial energies E(0) at 〈R(0)〉 =
−2 fm, σRR(0) = 0.42 fm2, σPP (0) = 0.6h̄2 fm−2, σPR(0) = 0. The
results were obtained with the microscopic diffusion coefficients
[Eqs. (21) and (22)] (solid line) and with the phenomenological
diffusion coefficient [Eq. (28)] in momentum (dashed line).

and Erf[〈R(0)〉/√2σRR(0)] for small and large σRR(0). In the
considered examples the values of P0 weakly depends on
σRR(0).

V. SUMMARY

Based on the non-Markovian quantum Langevin approach
and generalized quantum fluctuation-dissipation relations, the
equations of motion with the microscopic transport coefficients
explicitly depending on time were derived for the first
and second moments in the cases of general coupling and
linear coupling in coordinate between the relative motion of
interacting nuclei and internal nucleonic degrees of freedom.
With the transport coefficients for the damped harmonic and
inverted oscillators these equations of motion are exploited for
describing a large amplitude collective motion within a locally
harmonic approximation.

In the considered range of frequencies the values of
the microscopic diffusion coefficients for the inverted and
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FIG. 11. The calculated asymptotic probability of capture of the
Gaussian packet inside of the barrier (the inverted oscillator potential
with h̄ω̃ = 1 MeV) as function of the initial energy E(0) for the in-
dicated temperatures and asymptotic friction coefficients at 〈R(0)〉 =
−2 fm, σRR(0) = 0.42 fm2, σPP (0) = 0.6h̄2 fm−2, σPR(0) = 0. The
results were obtained with the microscopic diffusion coefficients
[Eqs. (21) and (22)] (solid line) and with the phenomenological
diffusion coefficient [Eq. (28)] in momentum (dashed line).

harmonic oscillators are close to each other at finite collec-
tive frequency and temperature. The difference of diffusion
coefficients for negative and positive stiffnesses decreases
with increasing temperature. The results demonstrates that
there are limitations in applying the microscopical diffusion
coefficients to the inverted oscillator below the crossover
temperature because at low temperatures the correlation time
of the fluctuations of the random forces is comparable or
even larger than the characteristic time of the collective
subsystem. In this case the modified diffusion coefficients were
suggested.

The calculated results showed that via the diffusion co-
efficients the quantum effects increase with damping. These
effects may be quite large at low temperatures. As illustrated,
the quantum statistical effects enhance the probability of
capture inside of the Coulomb barrier, i.e., the formation of
the touching nuclear configuration.

The results obtained prove that the quantum nature of the
passing over the barrier should be taken into consideration
when one calculates the capture cross section in nucleus-
nucleus collisions. As shown, the increase of the passing
probability over the barrier with kinetic energy is rather slow,
especially for the large friction coefficients. The increase of
the passing probability with dissipation was found at energies
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FIG. 12. The calculated asymptotic probability of capture of
the Gaussian packet inside of the barrier (the inverted oscillator
potential with h̄ω̃ = 1 MeV) as function of the initial variance σRR(0)
in coordinate for the indicated temperatures and initial values of
〈R(0)〉, and σPP (0) = 5h̄2 fm−2, σPR(0) = 0. The asymptotic friction
coefficients are 1 MeV (lower part) and 3 MeV (upper part). The
results were obtained with the microscopic diffusion coefficients
[Eqs. (21) and (22)] (solid line) and with the phenomenological
diffusion coefficient [Eq. (28)] in momentum (dashed line).

well below the Coulomb barrier. It could be explained by
the fact that at larger friction coefficient the dissipation rate
of the energy of collective subsystem is smaller because of
smaller kinetic energy and a larger diffusion coefficient in
momentum.

The elaborated non-Markovian nonstationary transport
coefficients could be applied to the analysis of experiments
on nuclear sub-barrier fusion, fission, and binary reaction
processes. For example, by solving numerically the master
equation for the density matrix, the role of friction, diffusion,
and memory effects in the collective dynamics of a quantum
system, and in the capture into the potential well can be studied
for the anharmonic nucleus-nucleus potential.
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