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An analytical recursive formula of the partial-wave scattering matrix for the total effective complex potential
of nucleus-nucleus collisions is derived to conveniently analyze the data of angular variations of elastic scattering
cross sections. Further, another expression of cross sections for the absorption from arbitrarily small intervals is
derived. This leads to the explanation of the fusion cross section (σfus) data at various incident center-of-mass
energies Ec.m. by collecting the absorption contributions in the interior region of the effective potential. This
concept is akin to that used by Udagawa et al. in the calculation of fusion cross sections in elastic channels.
The interaction potential considered in the analysis is energy independent and by virtue of its weakly absorbing
character it supports resonance states in different partial-wave trajectories. Consequently, occurrence of these
resonances is shown to be the physical origin of the observed oscillatory structure in the variation respect to
energy of the quantity D(Ec.m.) = d2(Ec.m.σfus)/dE2

c.m., the second derivative of the product Ec.m.σfus with respect
to Ec.m.. In this article, we investigate two well-known cases of heavy-ion collisions, namely 12C+208Pb and
16O+208Pb, and obtain simultaneous and very successful explanations of cross sections for elastic scattering and
fusion and the results of D(Ec.m.). These results obtained by using a somewhat novel and convenient method
demonstrate the unified description of scattering and fusion for interacting heavy-ion systems.
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I. INTRODUCTION

In the nucleus-nucleus collision process, there have been
numerous experiments, and precise data of angular distribu-
tion of elastic scattering [dσ (θ )/dσR(θ )] at several incident
energies and fusion cross sections [σfus(E)] at close energy
intervals are available [1–5]. In this regard, we mention two
such systems: 12C+208Pb in Refs. [1,3] and 16O+208Pb in
Refs. [2,4], where these data are extensive. Unlike in light
ion systems, the shape resonances generated by the effective
potential in heavy-ion systems, though present, are hardly
observable experimentally [6]. The possible influence and
manifestation of such resonances in any other observable
forms in the process of collision are to be investigated further.
To analyze these data of heavy-ion collisions, one uses the
phenomenological potential, which is usually complex. All
the parameters describing the potential is set by fitting the
measured data of elastic scattering cross section at various
energies. Using the same interaction potential, one has to
explain the fusion cross-section (σfus) data arising from the
fusion process and resonance phenomena occurring via the
elastic-scattering process of the colliding nuclei. In view
of the fact that the scattering process is sensitive to the
nature of the potential on the surface region and the fusion
process is an interior activity, it is quite difficult to find a
unique potential that can take care of both these phenomena
simultaneously. Further, in the theoretical analysis, having
obtained the elastic-scattering data, one can simply obtain the
results of the total reaction cross section (σr ), which includes
the cross section for different reaction channels of which the
fusion channel is predominant in the low-energy collision
activities. Now, a problem arises in extracting the part of the

reaction cross section from the total σr , which can exactly
account for the measured data of σfus.

Within the framework of optical potential model analysis
of scattering, the expectation value of the imaginary part of
the potential calculated using the distorted waves from the
full potential in the elastic channel accounts for σr . This
can simply be understood as and equated to the sum of the
cross sections due to absorption in different regions of the
potential where the imaginary part is actively present. Using
the same wave function that describes the elastic-scattering
data, one can obtain the absorption cross section σ i

A in the
infinitesimally small ith radial interval δri giving the total
absorption cross section σA = ∑n

i=1 σ i
A, where n is the total

number of intervals such that the total range of the potential
R = ∑n

i=1 δri . Using this expression, it becomes quite easy to
give explicitly the amount of absorption over various regions
or intervals of the potential. Based on the concept that fusion
of two nuclei occurs in the region interior to the radial position
(RB) of the electrostatic Coulomb barrier, one expects that the
absorption in this spatial region 0 < r < RB has to account
for the experimental data of fusion cross section (σ expt

fus ). The
exact radius Rfus up to which the absorption cross section is
to be calculated to explain σ

expt
fus is known as the fusion radius.

This concept of fusion cross section has been used in the direct
reaction model (DRM) of Udagawa et al. [7,8]. However, they
estimated the value of Rfus to be larger than the corresponding
value of RB in most of the heavy-ion systems analyzed, thereby
theorizing that fusion initiates before crossing the Coulomb
barrier. This is contrary to the popular assumption [9,10]
that fusion takes place only after the barrier has been fully
penetrated and hence this result has attracted severe criticism
in the literature [11,12].
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In our present calculation, we overcome this problem
and explain results of σ

expt
fus in the cases of 12C+208Pb and

16O+208Pb systems with the value of the Rfus parameter always
less than the value of RB in a given system.

We adopt a different method to solve the Schroedinger
equation for a given nucleus-nucleus potential instead of using
Runge-Kutta or similar methods of numerical integration. Our
method is suitable for the study of regionwise absorption
in the reaction process. In our calculation, we simulate the
potential by arbitrarily small rectangular parts and, using exact
wave functions and their analytical continuation in between
neighboring parts, we obtain analytical expression for the
scattering matrix (S-matrix) that is used to explain the elastic-
scattering data. Using the same wave functions, the amount
of absorption in each small part (width) of the potential is
calculated. The sum of contributions for absorption of all the
parts covering the whole range of the potential is found to be
equal to the total reaction cross section σr . However, to account
for the value of fusion cross section σfus, which is always less
than that of σr , we consider the sum of the contributions for
absorption over a limited region 0 < r < Rfus within the radial
position RB of the Coulomb barrier. We have verified that the
results of elastic scattering obtained by our procedure and
Runge-Kutta method are same.

Measurements with high precision provide results of σfus at
very close energy intervals in the collision of two heavy nuclei
at incident energies near the Coulomb barrier. The variation
of the results of σfus with bombarding center-of-mass energy
Ec.m. looks smoothly varying without any special feature or
structure in the cases of heavy pairs of nuclei, though it is
oscillatory in light colliding pairs. But, when the product
Ec.m.σfus is differentiated twice with respect to Ec.m. using
some point difference formula, the corresponding result of
D(Ec.m.) = d2(Ec.m.σfus)/dE2

c.m., generally referred to as the
barrier distribution, exhibits peculiar oscillatory structure in its
variation with Ec.m. [5]. The theoretical results of σfus obtained
in our above method of regionwise absorption at various
incident Ec.m. is presented in the form of D(Ec.m.) and the
corresponding experimental results of D(Ec.m.) in the cases of
12C+208Pb [3] and 16O+208Pb [4] systems are explained with
remarkable success, addressing the peak structure in detail. In
this analysis, we find the following important characteristics
in the potential used by us: (i) the real part is very deep and has
small diffuseness and (ii) the imaginary part is comparatively
weak. As a result of this less absorptive nature of the potential,
shape resonance states (experimentally unobserved) [6] could
survive in the collision process due to the formation of standing
waves in the nuclear well. As a consequence, these resonances
become responsible for the oscillatory structure in the results
of D(Ec.m.) as a function of Ec.m..

It may be mentioned here that the natural language for
studying fusion reactions at energy around the Coulomb
barrier is the coupled-channels (CC) formulation. Various
computer codes such as CCFUS [13,14] and CCFULL [15]
are developed for this purpose. Due to the complex nature
of the heavy-ion collision process, the number of channels
encountered is very large and the solution of coupled equations
incorporating all these channels becomes very complicated and
tedious. Such formulations are, however, somewhat schematic

and include important approximations to ease the process
of calculations. It has been observed [4] that simultaneous
explanation of the shapes of both σfus and D(Ec.m.) in
most pairs of nuclei is far from satisfactory no matter how
exhaustive the CC calculation is. This disappointing situation
still persists in the recent CC calculations [16] based on M3Y
plus repulsion potential applied to the analysis of the data
of the 16O+208Pb system. In a most recent calculation [17],
it is reported that even the measured data of σfus alone
from deep sub-barrier region to the above barrier region
of energy cannot be reproduced simultaneously by the CC
calculations with same Woods-Saxon nuclear potential. The
microscopic CC calculation is basically a one-dimensional
barrier passing model [18,19] incorporating a large number of
barriers of different heights generated due to coupling between
the relative motion and the internal degrees of freedom of the
colliding nuclei such as static deformation, collective vibration
[20], inelastic excitation, and nucleon transfer [16]. Thus, the
CC calculation for fusion cross section does not incorporate
the effect of any mechanism generated by the interaction
potential in the interior pocket region, which is considered
highly absorptive to impose ingoing-wave boundary condition
for the barrier-passing model.

In the present formulation, the nucleus-nucleus potential
in the interior or pocket region plays an important role in
accounting for the experimental results of σfus and the corre-
sponding function D(Ec.m.) derived from measured σfus. The
resonances generated by the pocket due to its less absorptive
nature describe the the oscillatory structure of D(Ec.m.) with
remarkable success. Further, the effect of coupling is invoked,
though not explicitly, in our formulation as follows. The
coupling of a nonelastic channel with the entrance channel is
expected to change the shape of the entrance channel potential
barrier significantly [21], particularly in the interior region
r < RB such that there is a sharp fall in the effective potential in
the inner region [22,23]. This effect of coupling can be readily
incorporated in the formulation by using a small value for the
diffuseness parameter in the Woods-Saxon form of nuclear
potential. The present formulation uses such small diffuseness
parameter in the simultaneous analysis of elastic scattering and
fusion cross-section data and, hence, incorporates the effect of
channel coupling in a phenomenological way.

In Sec. II, we present the formulation for analytical ex-
pression for S-matrix and regionwise absorption. Application
of the formulation is done in Sec. III to the analysis of
experimental data of dσ (θ )/dσR(θ ), σfus(Ec.m.), and D(Ec.m.)
in the cases of 12C+208Pb and 16O+208Pb systems. We
summarize the results in Sec. IV.

II. FORMULATION

The solution of the radial Schroedinger equation for a
complex Coulomb nuclear potential is the most important
part of scattering and reaction cross section in the nuclear
optical model widely used in the study of heavy-ion collision.
The effective potential in the radial equation is a sum of
the complex nuclear potential [VN (r)], the electrostatic or
Coulomb potential [VC(r)], and the centrifugal term [V�(r)].
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Use of the Runge-Kutta- (RK) type method of numerical
integration is most popular in solving the Schroedinger
equation with this potential to get the wave function and its
derivative at a radial point outside the range of the nuclear
potential that is then connected to the corresponding exact
Coulomb wave function and its derivative to obtain the results
of the scattering matrix for the analysis of scattering data and
so on. But the extraction of a part of the reaction cross section
from the total reaction cross section to analyze the fusion
cross section is not straightforward in this method. Hence,
in this article we adopt a convenient but somewhat different
procedure to solve the Schroedinger equation.

Let us first consider the s-wave scattering in detail. A
potential U (r) can be considered as a chain of n number
of rectangular potentials, each of which has arbitrarily small
width w. In fact in any numerical integration of differential
equation similar procedure is implicit. Having simulated the
potential up to a maximum range of r = Rmax, we have
Rmax = ∑n

i wi , where wi = w is the width of the ith rectangle.
Let, in the j th region,

∑j−1
i=1 wi < r �

∑j

i=1 wi , the
strength and width of the potential are denoted by Uj and
wj , respectively. The reduced Schroedinger equation in this
region is

d2�(r)

dr2
+ 2m

h̄2 (E − Uj )�(r) = 0, (1)

with the following solution

�j (r) = aj e
ikj r + bj e

−ikj r , (2)

where the wave number kj is defined as kj =
√

2m

h̄2 (E − Uj )

for the j th segment of width wj . For two adjacent segments,
we use the notation qji = −qij = kj − ki/kj + ki . Here, E

indicates the incident energy and m stands for the mass of the
particle. Explicitly, the solution in first three segments close to
the origin r = 0 can be written as

�I = sin k1(r − c1), 0 < r < w1 (3)

�II = a2e
ik2(r−c2) + b2e

−ik2(r−c2),

w1 < r < (w1 + w2) (4)

�III = a3e
ik3(r−c3) + b3e

−ik3(r−c3),

(w1 + w2) < r < (w1 + w2 + w3) (5)

Here, a2, b2, a3, and b3 stand for the coefficients of the wave
functions and c1, c2, and c3 indicate some arbitrary constants.

Matching the wave functions and the derivatives at the
boundary at r = w1, we get

a2 = 1

2
e−ik2(w1−c2)

[
sin k1(w1 − c1) + k1

ik2
cos k1(w1 − c1)

]
,

(6)

b2 = 1

2
eik2(w1−c2)

[
sin k1(w1 − c1) − k1

ik2
cos k1(w1 − c1)

]
,

(7)
a2

b2
= e−2ik2(w1−c2) × q21, (8)

where

q21 = sin k1(w1 − c1) + k1
ik2

cos k1(w1 − c1)

sin k1(w1 − c1) − k1
ik2

cos k1(w1 − c1)
. (9)

Similar calculation at the boundary at r = w1 + w2 yields

a3 = 1

2
e−ik3(w1+w2−c3)b2e

−ik2(w1+w2−c3)

×
[(

1 − k2

k3

)
+

(
1 + k2

k3

)
e2ik2w2q21

]
, (10)

b3 = 1

2
eik3(w1+w2−c3)b2e

−ik2(w1+w2−c3)

×
[(

1 + k2

k3

)
+

(
1 − k2

k3

)
e2ik2w2q21

]
, (11)

a3

b3
= e−2ik3(w1+w2−c3) × q321, (12)

where

q321 = q32 + q21e
2ik2w2

1 + q32 × q21e2ik2w2
(13)

and

q32 = k3 − k2

k3 + k2
. (14)

This can be generalized for n boundaries to give

an

bn

= e
−2ikn

(∑n−1
j=1 wj −cn

)
× qn,n−1,n−2,...1, (15)

qn,n−1,n−2,...1 = qn,n−1 + qn−1,n−2,...1e
2ikn−1wn−1

1 + qn,n−1 × qn−1,n−2,...1e2ikn−1wn−1
, (16)

...

q21 = sin k1(w1 − c1) + k1
ik2

cos k1(w1 − c1)

sin k1(w1 − c1) − k1
ik2

cos k1(w1 − c1)
, (17)

where qn,n−1 = kn − kn−1/kn + kn−1.
Setting the arbitrary constants as c1 = w1 and

cn =
n−1∑
j=1

wj,

we get

D(0) = an

bn

= qn,n−1,n−2,...1

= qn,n−1 + qn−1,n−2,...1e
2ikn−1wn−1

1 + qn,n−1 × qn−1,n−2,...1e2ikn−1wn−1
, (18)

with

qn−1,n−2,...1 = qn−1,n−2 + qn−2,n−3,...1e
2ikn−2wn−2

1 + qn−1,n−2 × qn−2,n−3,...1e2ikn−2wn−2
, (19)

...

q21 = −1. (20)

Using the recursive character of the formula for qn,n−1,n−2,...1,
the function in the m region can be expressed in terms of that in
the (m − 1) region. With this we can develop a straightforward
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numerical program for the n-step potential for the evaluation
of the scattering matrix and the wave function at a given
incident energy, having simulated the potential U (r) by n-step
potentials. If

∑n
i=1 wi = Rn = Rmax, such that the potential

Uj (r) considered in Eq. (1) is zero for r > Rn, it can be easily
understood that the s-wave S-matrix is given by S0 = − an

bn

and the total absorption or reaction cross section in the region
0 < r < Rn is given by

σ
(0)
abs = π

k2

(
1 − |an|2

|bn|2
)

.

Similarly, S
p

0 = − ap

bp
can be interpreted as the S-matrix of the

original potential truncated at Rp(= ∑p

i=1 wi) < Rmax. Hence,
π
k2 (1 − |ap |2

|bp |2 ) can be taken as the absorption cross section

generated in the region 0 < r < Rp. Thus, π
k2 [(1 − |ap |2

|bp |2 ) −
(1 − |aq |2

|bq |2 )] shall give the contribution to the absorption cross

section from the region Rp > r > Rq = ∑q

i=1 wi .
Taking the complex conjugate of the Schroedinger

equation (1) and rearranging, we get

2ikn(|an|2 − |bn|2) =
∫ Rn

0
2iIm U (r)��∗dr, (21)

1 − |an|2
|bn|2 = I1 + I2 + . . . , (22)

I1 = − 1

kn

∫ w1

0
Im U (r)

∣∣∣∣ �

bn

∣∣∣∣
2

dr, (23)

I2 = − 1

kn

∫ (w1+w2)

w1

Im U (r)

∣∣∣∣ �

bn

∣∣∣∣
2

dr. (24)

Using the respective wave function and the potential in a given
segment, we simplify the corresponding integral and obtain

I1 =
(

− 1

kn

)
ImU1

|bn|2
{ |b1|2

2Imk1

(
e2Imk1w1 − 1

)

− |b1|2
2Imk1

(
e−2Imk1w1 − 1

)

+ 1

Rek1
Im

[
a1b

∗
1

(
e2iRek1w1 − 1

)]}
, (25)

I2 =
(

− 1

kn

)
ImU2

|bn|2
{ |b2|2

2Imk2
e−2Imk2w1

(
e2Imk2w2 − 1

)

− |b2|2
2Imk2

e2Imk2w1
(
e−2Imk2w2 − 1

)

+ 1

Rek2
Im

[
a2b

∗
2e

2Imk2w1
(
e2iRek2w2 − 1

)]}
. (26)

This result in the j th segment can be expressed as

Ij =
(

− 1

kn

)
ImUj

|bn|2
{ |bj |2

2Imkj

e−2Imkj wj−1
(
e2Imkj wj − 1

)

− |bj |2
2Imkj

e2Imkj wj−1
(
e−2Imkj wj − 1

)

+ 1

Rekj

Im
[
ajb

∗
j e

2Imkj wj−1
(
e2iRekj wj − 1

)]}
. (27)

The asterisk indicates the complex conjugate of the respective
quantity. So that

1 − |an|2
|bn|2 =

n∑
j=1

Ij , (28)

with

Rn =
n∑

j=1

wj = Rmax. (29)

Considering same width for all segments, i.e., w = w1 =
w2 = w3 = . . . , we have n = Rmax

w
.

The procedure for calculation of S-matrix through
Eqs. (18)–(20) with a multistep potential (MP) approximation
makes the procedure an algebraic recursive method that can be
easily programed. The Eqs. (27)–(29) give a method to study
the absorption cross section as discrete sums of contributions
from various sections.

Generalization of this procedure for the complex heavy-ion
Coulomb nuclear problem for all partial waves is straightfor-
ward. The problem of higher partial waves can be treated as
the scattering by the effective potential VN (r) + VC(r) + V�(r)
and one can adopt the MP approximation method described
above for this effective potential. In the complex potential
scattering, the subtlety involved regarding the r�+1 behavior
of the wave function very close to the origin is not very
critical for the following reasons. In the case of complex
absorptive potential, the suitably normalized wave function
in general rapidly attenuates to zero well beyond origin
because of the presence of absorption. Hence, one can start
the calculation of the S-matrix well beyond r = 0, where the
multistep approximation is quite accurate. We have verified
that the results of the S-matrix and cross sections obtained by
our procedure are essentially the same as those obtained by
conventional methods.

In the region 0 < r � Rmax, the potential consists of all the
three parts, VN (r), VC(r), and V�(r). But in the outer region
r � Rmax, the potential of the nucleus-nucleus interaction is
only Coulombic [VC(r)] with the centrifugal terms V�(r) =
h̄2

2m

�(�+1)
r2 for different angular momentum partial wave �.

Using the exact Coulomb wave functions, i.e., G� and F�

and their derivatives G′
� and F ′

�, in the outer region r � Rmax

and the wave function �n(r) = ane
iknr + bne

−iknr and its
derivative �′

n(r) in the left side of r = Rmax, and matching
them at r = Rmax, we get the expression for partial wave
S-matrix η� as

η� = 2iC� + 1, (30)

where

C� = kF ′
� − F�H

H (G� + iF�) − k(G′
� + iF ′

�)
, (31)

H = �′
n

�n

= ikn

D(�)eiknRmax − e−iknRmax

D(�)eiknRmax + e−iknRmax
, (32)

D(�) = an

bn

, (33)
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with kn =
√

2m

h̄2 (E − Vn), which is real at r = Rmax, where the

potential Vn = VC + V� is real and E > Vn.
Using the above expression (30) for η�, we explain the

elastic scattering of a given system. For the total reaction cross
section one can use the formula

σr = π

k2

∑
�

(2� + 1)(1 − |η�|2). (34)

As formulated above, this is equal to the absorption cross
section

σabs = π

k2

∑
�

(2� + 1)

(
1 − |an|2

|bn|2
)

= π

k2

∑
�

(2� + 1)


 n∑

j=1

I
(�)
j


 . (35)

The contribution to absorption or reaction cross section
from any part within the range 0 − Rmax can be obtained
by considering the corresponding number of segments in
the above summation. This is the unambiguous calculation
of regionwise absorption in the collision process with no
disturbance of potential and hence the wave function that
explain the angular distribution of elastic-scattering data. If one
wishes to obtain the amount of absorption cross section in the
region 0 < r < Rfus, where Rfus < Rmax, the total number of
segments to be considered in the summation (35) is nfus = Rfus

w
.

The resulting cross section

σfus = π

k2

∑
�

(2� + 1)


 nfus∑

j=1

I
(�)
j


 (36)

corresponds to the fusion cross section in the framework of the
DRM [7], as discussed in the Introduction.

At this stage a brief discussion of this MP formulation as
a numerical method is desirable. This approach is in a way
the simplest approximation to the solution of the differential
equation as compared to the trapezoidal rule using straight-line
sections, Simpson’s rule using parabolic sections, and the
spline method using cubic polynomials [24–26]. The latter
methods are very useful for a more precise calculation of
the wave function but have the disadvantage of not being
amenable to simple algebraic representations in different
intervals. However, in the nuclear cross-section calculation,
considering the experimental errors involved, the calculation
of the wave function and the cross section up to three to
four significant places of decimal is quite adequate. We have
compared the numerical results obtained by using the MP
method in one dimension with that of RK and exact solution
for typical potentials like Eckart and Ginocchio potentials in
a recent article [27] and found that results agree up to three
significant places. As described in this section, our analytical
formulation leads to a neat recursive relation facilitating the
calculation of the S-matrix and cross sections. In particular,
estimation of contribution to absorption in different segments
of the potential and study of the nature of the wave function
and its normalization can be carried out in a transparent way in
this MP formulation. However, in the nucleus-nucleus optical

model calculations carried out using standard procedures like
the RK method [28], because of the imaginary potential,
the wave function rises rapidly and hence needs to be
appropriately renormalized at several stages to carry out the
efficient phase-shift calculations. This makes the estimation
of regionwise contributions to the cross section and reactions
more cumbersome [29]. To demonstrate the feasibility and
applicability of this MP method in nuclear-scattering analysis,
in this article we carried out the calculations of cross sections
of both elastic scattering and fusion in heavy-ion collisions and
compared them with the respective experimental results with
remarkable success. The numerical results of elastic-scattering
cross sections presented in this article are also verified using
standard optical model methods [28].

III. APPLICATION

We applied the formulation developed in Sec. II to the
analysis of the collision data of two typical heavy-ion systems,
namely 12C+208Pb and 16O+208Pb, and obtained a unified and
consistent description of the measured cross sections of elastic
scattering and fusion and the peculiar peak structure in the
variation of the quantity D(Ec.m.) = d2(Ec.m.σfus)

dE2
c.m.

as a function
of Ec.m..

In the optical model potential (OMP) analysis of scattering
of two nuclei of mass number A1 and A2 and proton numbers
Z1 and Z2, the OMP is described by

V (r) = −VNf (r, RV , aV ) − iWg(r, RW , aW ) + VC(r)

in the entrance channel. The form factor used in this article is

f (r, R, a) = g(r, R, a) = [1 + exp{(r − R)/a}]−1.

VN and W are the strength of real and imaginary parts of OMP.
The radius parameters are expressed as rV = RV /(A1/3

1 +
A

1/3
2 ) and rW = RW/(A1/3

1 + A
1/3
2 ). The symbols aV and aW

indicate diffuseness parameters. The Coulomb potential VC(r)
is given by

VC(r) = Z1Z2e
2
(
3 − r2

/
R2

C

)
2RC

, r � RC ;

VC(r) = Z1Z2e
2/r, r > RC,

where RC = rC(A1/3
1 + A

1/3
2 ) with rC as the Coulomb radius

parameter. Thus, there are a total of seven parameters,
VN, rV , aV ,W, rW , aW , and rC , in this OMP.

A. Elastic-scattering cross section

We know that there can be several sets of parameters de-
scribing the potential that can explain the angular distribution
of elastic scattering equally well. In our present calculation, all
seven parameters are energy independent and while selecting
the values of the parameters for the potential we are motivated
by the fact that resonance can be manifested if the imaginary
part W is weak and, further, such a weak absorption is sufficient
if the real part is considered deep [30] and less diffused [31]
to explain the elastic-scattering cross section. In Table I, the
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TABLE I. Optical model potential parameters used in the calculations. VB and RB represent height and radial position of the Coulomb
barrier, respectively.

System VN (MeV) rV (fm) aV (fm) W (MeV) rW (fm) aW (fm) rC (fm) VB (MeV) RB (fm) Rf us (fm)

12C+208Pb 125 1.31 0.320 3.0 1.325 0.25 0.90 56.7 12.16 9.9
16O+208Pb 125 1.35 0.285 2.0 1.320 0.15 1.02 73.7 12.52 8.8

values of the OMP parameters used in the calculation for
the analysis of elastic scattering data for the 12C+208Pb and
16O+208Pb systems are given. Table I also contains the values
of height VB and radius RB of the s-wave barrier for each of
the above two systems.

In the case of 12C+208Pb, as per the above prescription,
the real part is made deep with depth VN = 125 MeV and
less diffused with diffuseness parameter aV = 0.32 fm along
with the radius parameter rV = 1.31 fm. The imaginary part
is given a weak attractive strength W = 3.0 MeV along
with other parameters rW = 1.325 fm and aW = 0.25 fm.
The value of the Coulomb radius parameter is taken to be
rC = 0.9 fm. For a pictorial view, the real part of the combined
nuclear and Coulomb potentials for s-wave can be plotted as
a function of radial distance in Fig. 1. This clearly shows a
repulsive barrier falling sharply in the interior side with height
VB = 56.7 MeV and position RB = 12.16 fm as mentioned
in Table I for the 12C+208Pb system. As pointed out in
the formulation the potential is simulated by n number of
rectangular potentials, each of width equal to 0.008 fm in the
spatial region 0 < r � Rmax. The region r > Rmax ≈ 15 fm is
the region where the nuclear potential along with its imaginary
part is zero leaving the effective potential only as Coulombic
with the centrifugal term. Using the S-matrix given by the
expression (30), we obtain the results of angular variation of
differential scattering cross section at laboratory energies 58.9,

FIG. 1. Plot of real part of nuclear plus Coulomb potentials for
partial wave � = 0 as a function of radial distance with potential
parameters V0 = −125 MeV, rV = 1.31 fm, aV = 0.32 fm, and rC =
0.9 fm for the 12C+208Pb system.

60.9, 62.9, 64.9, 74.9, and 84.9 MeV. These calculated results
are represented by solid curves in Fig. 2 and they are compared
with the corresponding experimental data taken from Ref. [1]
and shown by solid dots in the same figure. It is clearly seen
that the explanation of the data in each case of energy is quite
good. It may be pointed out here that to explain the data for
all energies from 58.9 to 84.9 MeV, we have used the same
set of OMP parameters given in Table I. In other words, the
values of OMP parameters are energy independent. We may
mention further that the value of rC = 0.9 fm considered here
is a bit lower than the usual value rC = 1.25 fm. We have seen
that it does not affect the results of the elastic-scattering cross
section in our calculation and this fact is corroborated by the
finding of the calculation in Ref. [32] with regard to Coulomb
potentials in heavy-ion interactions. To maintain consistency,
we have used this smaller value of rC to account for the fusion
cross-section data at low energy for this 12C+208Pb system
that will be discussed below.

Similar calculations are done for the 16O+208Pb system.
In this case also, we have considered a deep real potential
with depth VN = 125 MeV and small diffuseness parameter
aV = 0.285 fm. Values of other parameters are given in
Table I. The plot of the real part of nuclear plus Coulomb
potentials as a function of radial distance for the s-wave in
Fig. 3 shows a barrier falling sharply in the interior side
with height VB = 73.7 MeV and radius RB = 12.52 fm for

FIG. 2. Angular distribution of elastic-scattering cross sections
(ratios to Rutherford) of 12C+208Pb system at laboratory energies
58.9, 60.9, 62.9, 64.9, 69.9, 74.9, and 84.9 MeV. The full drawn
curves are theoretical results of the present optical model calculation.
The circles are experimental cross sections from Ref. [1].
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FIG. 3. Plot of real part of nuclear plus Coulomb potentials for
partial wave � = 0 as a function of radial distance with potential
parameters V0 = −125 MeV, rV = 1.339 fm, aV = 0.285 fm, and
rC = 1.02 fm for the 16O+208Pb system.

this system. In Fig. 4, we compare our calculated results
(solid curves) of differential scattering cross section with
the corresponding experimental data (solid dots) taken from
Ref. [2] at several laboratory energies, 80, 83, 88, 90, 96, and
102 MeV. It is clearly seen that the explanation of the data for
all energies is good. Here also we have used a single potential
for all energies and a smaller value rC = 1.02 fm. The finding
of such energy-independent OMP is an important outcome of
this analysis in view of the requirement that such potential is
crucial in the description of fusion data to be carried out below
for the above two systems.

FIG. 4. Same as Fig. 2 for 16O+208Pb system at laboratory
energies 80, 83, 88, 90, 96, and 102 MeV. The full drawn curves
are theoretical results of the present optical model calculation. The
circles are experimental cross sections from Ref. [2].

B. Fusion cross section

In the low-energy collision process, fusion of the two
nuclei is another important process actively associated with
the elastic-scattering event. In the simultaneous estimate of
cross sections for elastic scattering and fusion, it is trivial to
consider that fusion cross section σfus is a part of total reaction
cross section σr . But it is always a Herculean task to extract
the part from σr to exactly account for the measured results
of σfus at various incident energies over a wide range. We
consider here the DRM of Udagawa et al. [7] to calculate
σfus. In this model, the fusion cross section is defined as the
amount of absorption cross section within the interior region
0 < r < Rfus, where Rfus is a radial distance expected to be less
than RB , which is the radial position of the s-wave Coulomb
barrier in the case of a given nucleus-nucleus system. In the
formulation through Eq. (36), we calculated the values of σfus

as per the above principle of the DRM. The results are shown
in Figs. 5(a), 5(b), 6(a), and 6(b). Discussion of Figs. 5(b) and
6(b) is done in the next subsection.

Using Rfus = 9.9 fm, we obtain the results of σfus for
the 12C+208Pb system and compare it (solid curve) in
Fig. 5(a) with the corresponding experimental data (solid dots)
taken from Ref. [3]. It is clearly seen that the matching of
the data over the whole range of energy from Ec.m. = 50
to 75 MeV is quite good. In achieving this fitting we have
not changed the values of the parameters of the OMP that
explain the elastic-scattering data in Fig. 2. As demanded by
the acceptable physical situation, the value of Rfus = 9.9 fm
used in our calculation is less than the value of Coulomb
radius RB = 12.16 fm in this system. Further, the importance
of the present successful description of elastic scattering and

FIG. 5. (a) Variation of fusion cross section σfus as function of
energy Ec.m. for the 12C+208Pb system. (b) Variation of D(Ec.m.) =
d2(Ec.m.σfus)/dE2

c.m. as a function of energy Ec.m. corresponding to
results of σfus in upper panel. The full curves represent our calculated
results. The experimental data shown by solid dots are obtained from
Ref. [3].
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FIG. 6. (a) Variation of σfus as function of Ec.m. for the 16O+208Pb
system. (b) Variation of D(Ec.m.) = d2(Ec.m.σfus)/dE2

c.m. as a function
of energy Ec.m. corresponding to results of σfus in upper panel. The
full curves represent our calculated results. The experimental data
shown by solid dots are obtained from Ref. [4].

fusion cross sections increases due to the observation [3,19]
that there is systematic failure of the Woods-Saxon nuclear
potential describing these data, simultaneously.

Similar remarkable success is obtained in the case of the
16O+208Pb system in matching the experimental data (solid
dot) of σfus taken from Ref. [4] by our calculated results (full
curve) shown in Fig. 6(a) over the whole range of energy
from Ec.m. = 68 to 86 MeV. In this case, the fusion radius
used is Rfus = 8.8 fm, which is less than the Coulomb radius
RB = 12.52 fm. Unlike in the case of 12C+208Pb, in this
16O+208Pb system, we need to slightly modify the value of
the nuclear radius parameter rV = 1.35 fm (see Table I) used
in the analysis of scattering data and take rV = 1.339 fm
for the fitting of measured σfus data. However, in both these
systems, the values of fusion radius Rfus used in our calculation
are less than the respective values of Coulomb radius RB . This
clearly demonstrates that fusion is an interior phenomenon,
whereas the surface phenomenon is attributed to scattering
and other peripheral, less absorptive direct reaction processes.
We may mention here that there can be several sets of
potential parameters in Woods-Saxon form that give a similar
description of elastic-scattering data for a given system. Elastic
scattering being a surface phenomenon, it indicates that the
height VB and radial position RB of the Coulomb barriers
produced by all sets of potential parameters are same and fixed,
whereas the depth and slope of the effective potential in the
interior side r < RB are different for different sets. However,
fusion of two nuclei is an interior phenomenon described by
absorption in this region and the corresponding cross section
is accounted for by the values of radius parameter Rfus that lies
in the region 0 < r < RB . Depending on the set of potential
parameters used in the analysis of scattering, the value of

Rfus will be decided and hence it may have different values
for different sets of the potential. However, having selected a
single potential for the description of both elastic and fusion
cross sections, we need not change the value of Rfus as a
function of energy for the analysis of σfus at different incident
energies. This energy-independent nature of Rfus is crucial
because it does not complicate the energy derivative of the
product Ec.m.σfus in the results of d2(Ec.m.σfus)/dE2, which
is described in the next subsection. It may be pointed out
further that in our calculation, the value of Rfus (=9.9 fm) in
the case of 12C+208Pb is larger than that (8.8 fm) in the case
of 16O+208Pb. This can be ascribed to the fact that with a
larger imaginary strength W = 3.0 MeV (see Table I) in the
case of 12C+208Pb, the corresponding amplitude of the wave
function in the interior region is smaller and this requires
a larger radius in the summation [Eq. (36)] to account for
the experimental data of σfus. However, with comparatively
smaller W = 2.0 MeV (see Table I), the amplitude of the
wave function is larger and, hence, the value of Rfus =
8.8 fm is found to be comparatively less in matching the data
in the case of 16O+208Pb. In view of the above fact, we may
present the following reason behind the use of large value of
Rfus > RB for a given heavy-ion system in the calculation of
Udagawa et al. [7]. The magnitude of the imaginary part W

of the OMP (see Table I in Ref. [7]) used by this group is
very large (W = 8–62.9 MeV) in all the systems stated, in
particular it is 22 MeV in the case of 16O+208Pb. This large
value of W certainly makes the amplitude of the wave function
�(r) negligibly small resulting in a very small value of the
product ImU (r)|�|2 in the interior region and, hence, one has
to go beyond RB to account for the data of σfus for the given
system within the framework of the DRM of fusion.

It may be pointed out here that for the analysis of both
elastic and fusion cross sections, we have used smaller values
for diffuseness parameter aV (see Table I) in the OMP of both
the systems studied. The resulting sharply falling potential in
the interior side of the Coulomb barrier as depicted in Figs. 1
and 3 is found to be crucial in explaining the elastic-scattering
cross sections in an energy-independent way. If the value of
aV in a given system is increased to fit the fusion cross-section
σfus data, we have to decrease the value of fusion radius
parameter Rfus further. However, such a change in aV disturbs
the explanation of elastic-scattering cross sections at various
energies presented in Figs. 2 and 4. Hence, for simultaneous
fitting of elastic-scattering cross sections and σfus, we have
found a best optimization of the theoretical calculations of
these two results at incident energies around the Coulomb
barrier. In this calculation, the extraction of σfus through the
method of stepwise absorption with analytical representation
is believed to be a unique feature in the analysis of nucleus-
nucleus collision process.

We may mention that the use of the shallow imaginary
potential in the presence of strong attractive real nuclear
potential in our above calculations of cross sections for elastic
scattering and fusion gives us some information with regard
to structure of the projectile or target nuclei involved in the
reaction. The 16O is a doubly magic nucleus having a first
excited state 0+ at 6.049 MeV. 12C also is an even-even nucleus
having first excited 2+ state at 4.4387 MeV. The relatively
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small value of strength of the imaginary potential W in our
optical potential and the lesser value of W = 2 MeV for 16O as
compared to W = 3 MeV of 12C (see Table I) is consistent with
this. In our phenomenological optical potential where the target
is also the doubly magic 208Pb, we expect a comparatively
lesser role for the excited states of 12C and 16O. However,
if a theoretical potential, when 12C or 16O is projectile, is
constructed, it will be interesting to see the contribution of
low-lying excited states because it is well recognized that some
of these states, like the one 0+ state of 12C at 7.65 MeV, have
important significance in nucleosynthesis and astrophysics.

Sometimes, in the optical potential (OP) model description
of elastic scattering, both the imaginary and real parts of
OP are considered to be depending on the incident energy
to account for various reaction channels. The energy depen-
dence of the imaginary potential leads to development of an
energy-dependent real potential calculated by using dispersion
relation. In our calculation, we are using a very weak imaginary
potential. In this case, even if we consider energy dependence
in some form, the resulting real part would be weak and this
will not affect the results of elastic scattering and fusion as we
are using a very strong real part for the nuclear potential.

We may present here the total available experimental results
of σfus (solid dots) from sub-barrier energy to high energy
extending up to 90 MeV in the case of 12C+208Pb in Fig. 7
and up to 109 MeV for 16O+208Pb in Fig. 8. To explain these
results, including high-energy data by our calculated results
shown by solid curve in Fig. 7 for the 12C+208Pb system,
we have to use a larger value for Coulomb radius parameter
rC = 1.4 fm instead of rC = 0.9 fm used earlier for results of
σfus at low energy shown in Fig. 5(a) by solid curve. Similarly,
we use rC = 1.37 fm instead of rC = 1.02 fm to calculate
results of σfus (solid curve) to fit the high-energy data for the
16O+208Pb reaction in Fig. 8. We may mention that this need
to change rC to larger value to fit the higher energy data is
equivalent to incorporating indirectly the energy dependence
for the total potential. However, in our present calculation,

FIG. 7. Variation of fusion cross section σfus as function of
energy Ec.m. for the 12C+208Pb system. The full curve represents our
calculated results with rC = 1.4 fm. The experimental data shown by
solid dots are obtained from Ref. [3].

FIG. 8. Same as Fig. 7 for for the 16O+208Pb system. The full
curve represents our calculated results with rC = 1.37 fm. The
experimental data shown by solid dots are obtained from Ref. [4].

we focus on the unified description of an elastic-scattering
cross section, σfus and results of D(Ec.m.) = d2(Eσfus)/dE2 in
the low-energy region covering near and sub-barrier energy
around the Coulomb barrier. In this region of energy, the
process of fusion of two heavy nuclei is believed to be the
prominent reaction channel and other reaction channels, if
present, are considered weak and peripheral. This allows
one to consider an energy-independent potential to study
scattering and accompanying fusion in this low energy. The
energy-independent optical potential found for the successful
analysis of elastic scattering will help us in explaining the
peak structure of the quantity D(Ec.m.) = d2(Eσfus)/dE2,
which does not allow any extra energy dependence of σfus

in its process of derivation or formulation through the optical
potential and regionwise absorption.

C. Explanation of D(Ec.m.)

The above results of σfus both from experiment and theory
as a function of energy as presented in Figs. 5(a) and 6(a)
do not show any kind of structure. Hence, from this fitting
of the monotonically varying data, nothing more can be said
about the possible physical phenomena that might be playing
some role in the fusion process. To get some insight into these
processes, the same results of σfus is presented in a different
form as follows. One can extract values of a quantity that
is the second derivative of the product Ec.m.σfus denoted by
D(Ec.m.) = d2(Ec.m.σfus)/dE2

c.m. with respect to energy Ec.m..
For this, the following point difference formula can be used:

D(E) = [(E − �E)σ− − 2Eσ + (E + �E)σ+]/(�E)2,

(37)

where σ−, σ , and σ+ indicate fusion cross sections σfus

at center-of-mass energies E − �E, E and E + �E, re-
spectively, with energy step size �E. Function D(Ec.m.) is
generally referred to as barrier distribution [5,33,34]. By using
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formula (37), the extracted results obtained from the measured
values of σfus as a function of energy for the 12C+208Pb system
are obtained from Ref. [3] and are shown in Fig. 5(b) as solid
dots for analysis. The same results of 16O+208Pb obtained from
Ref. [4] are shown in Fig. 6(b) as solid dots. The data in the
latter system in Fig. 6(b) show large oscillation as compared
to the former in Fig. 5(b). We now explain these experimental
results by our calculation.

Using the same formula (37), we obtain the results of the
quantity D(Ec.m.) as a function of Ec.m. from our calculated
results of σfus. In Fig. 5(b), we show our results by solid curve
and compare them with the corresponding experimental data
(solid dots) for the 12C+208Pb system. It is seen that the main
peak along with some smaller peaks in the higher energy
region are well reproduced by our calculation. Similarly, in
Fig. 6(b), we obtain remarkable matching of the highly
oscillatory structure of the measured data of D(Ec.m.) in the
case of the 16O+208Pb system. More importantly the negative
nature of some of the dips in the higher-energy region are
accounted for quite well. The importance of this successful
explanation increases due to the observation [4] that the
more microscopic coupled-channels calculation [35] for fusion
has failed to explain the data of D(Ec.m.) in the 16O+208Pb
system [4,16]. We may point out here that the above oscillatory
structure both in 12C+208Pb and 16O+208Pb systems can be
destroyed by three ways: (i) by increasing the strength of
imaginary part W , (ii) by considering a larger value for the
Coulomb radius parameter rC , and (iii) by increasing the step
size �E for differentiation through formula (37). The values
of W and rC are fixed looking to the accurate explanation of the
elastic-scattering data along with the explanation of measured
results of σfus and D(Ec.m.). As recorded in Table I, the value
of W is 3 MeV for 12C+208Pb and 2 MeV for 16O+208Pb.
The value of rC is taken to be rC = 0.9 fm for 12C+208Pb
and rC = 1.02 fm for 16O+208Pb to fit the measured data of
D(Ec.m.) well along with the σfus data in Figs. 5(a) and 6(a),
respectively, in the lower-energy region around the Coulomb
barrier where the results of D(Ec.m.) are reported prominently
by experiments.

Having obtained this remarkable fitting of the peculiar peak
structure of the measured data of the quantity D(Ec.m.) =
d2(Ec.m.σfus)/dE2

c.m., we theorize the presence of the following
physical phenomenon that might be giving rise to such
structure in the process of fusion of the two heavy nuclei.

An ion-ion effective potential that possesses a deep pocket
followed by a thick barrier in a given partial wave trajectory
can support wave functions with the proper number of radial
nodes giving rise to discrete resonance states called shape
resonances that may not be observed experimentally [6]. In
the potential scattering theory, these resonances are manifested
clearly as maxima in the results of reaction cross section (σr )
at the respective resonance energies [36]. The interior pocket
of the effective potential is further controlled by the Coulomb
radius parameter rC . Smaller value of rC makes the pocket
“U” type that generates more oscillation in σr to manifest
resonances. The width of a resonance so generated by the real
part of the potential increases if the potential is made more
absorptive using larger imaginary part W . Consequently, larger
width leads to extinction of the corresponding resonance in the

collision process. In our analysis of 12C+208Pb and 16O+208Pb
collisions, we have considered a deep real potential associated
with a relatively weak imaginary strength W . This potential
can generate many resonances that can be clearly visible in the
form of peaks in the variation of partial wave reaction cross
section as a function of energy in different partial wave (�)
trajectories. Each partial wave gives rise to resonance structure.
It is the cumulative effect of all these resonance structures
that is primarily responsible for the oscillation in D(Ec.m.).
This is confirmed by noting that if W is increased, resonance
structures in different �s and the oscillations in D(Ec.m.)
vanish. Because precise experimental data of resonances for
12C+208Pb and 16O+208Pb systems are not available we refrain
from listing the energies of these resonances. Nevertheless,
based on our present calculation and also Ref. [37], we believe
that oscillations in D(Ec.m.) are indicator of critical role played
by the heavy-ion resonances in fusion cross sections. With this
it may be conjectured that the process of fusion of two nuclei at
low energy can be understood as an event passing through the
formation of compound nucleus that is represented by shape
resonances and, hence, these resonances might be acting as
doorway states for the fusion process.

IV. SUMMARY AND CONCLUSION

The Schroedinger equation with composite optical potential
of two interacting nuclei is solved analytically to give an
expression for the scattering matrix with a recursive mathemat-
ical structure. Using the same potential and the wave function,
an analytical formula for absorption cross section is derived
to account for the reaction cross section. The formulation
is applied to the 12C+208Pb and 16O+208Pb systems for the
analysis of the following experimental data in a consistent
manner.

(i) The angular variation of differential scattering cross
section at several energies around the Coulomb barrier.

(ii) Fusion cross-section σfus as function of energy over a
wide range covering the Coulomb barrier region.

(iii) The extracted result of the quantity D(Ec.m.) =
d2(Ec.m.σfus)/dE2

c.m..

The important features that emerge from this analysis can
be summarized as follows:

(a) A single but complex nuclear potential in Woods-
Saxon form without any energy dependence is found to
be successful in explaining the elastic-scattering data at
several energies. Large depth and small diffuseness in
the real part and weak strength (less absorption) in the
imaginary part are important features of the complex
optical potential used in the calculation.

(b) Estimation of the part of reaction cross section to
account for the fusion cross section through the method
of stepwise absorption is a significant feature in
the calculation. This process of partitioning the total
reaction cross section is natural in the sense that we
never use any extra energy dependence in the process
of extraction nor the imaginary part is partitioned
arbitrarily.
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(c) The results of σfus presented in another form, namely
D(Ec.m.) = d2(Ec.m.σfus)/dE2

c.m. by using point dif-
ference formula show peculiar peak structure in its
variation with Ec.m.. This result with peaks and dips is
explained with remarkable success by our calculated
results of σfus expressed in the above form.

(d) The weakly absorptive nature of the optical poten-
tial mentioned in item (a) above is found to allow
resonance states to occur in the collision of the two

nuclei. These resonances are then found to control the
oscillatory or peak structure of D(Ec.m.) stated in point
(c) above.
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