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Optimal path of diffusion over the saddle point and fusion of massive nuclei

Chun-Yang Wang,1 Ying Jia,2 and Jing-Dong Bao1,3,*

1Department of Physics, Beijing Normal University, Beijing 100875, People’s Republic of China
2College of Science, The Central University for Nationalities, Beijing 100081, People’s Republic of China

3Center of Theoretical Nuclear Physics, National Laboratory of Heavy-ion Accelerator, Lanzhou 730000, People’s Republic of China
(Received 23 May 2007; published 11 February 2008)

The diffusion of a particle passing over the saddle point of a two-dimensional quadratic potential is studied
via a set of coupled Langevin equations, and the expression for the passing probability is obtained exactly. The
passing probability is found to be strongly influenced by the off-diagonal components of inertia and friction
tensors. If the system undergoes the optimal path to pass over the saddle point by taking an appropriate direction
of initial velocity into account, which departs from the potential valley and has minimum dissipation, the passing
probability should be enhanced. Applying this to the fusion of massive nuclei, we show that there exists an
optimal injection choice for the deformable target and projectile nuclei, namely, the intermediate deformation
between spherical and extremely deformed nuclei, that maximizes the fusion probability.
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I. INTRODUCTION

The saddle-point passage problem is of great interest in
various fields of physics, such as those involving collisions
of molecular systems, atomic clusters, and biomolecules.
Previous studies on this issue mostly concentrated on simple
diffusive dynamics with a single degree of freedom, where the
Langevin equation with constant coefficients can be easily
solved in the case of a quadratic potential [1]. However,
because many processes obviously involve more than one
degree of freedom, for which the one-dimensional (1D) model
does not distinctly hold, dimensions of higher degree are
necessary. A case in point would be the fusion reaction of
massive nuclei, where the fusion is induced by diffusion [2,3]
and the asymmetrical or the neck degree of freedom of the
compound nuclei needs to be considered [4,5]. For such
systems where the contact point of two colliding nuclei are
very close to the conditional saddle point, the potential energy
surface (PES) around the saddle point can be approximated to
be a quadratic type. Under this approximation, Abe et al. [6]
obtained an analytical expression for the multidimensional
saddle-point passing probability. Some authors discussed the
quantum effect of the fusion probability by using the real-time
path integral [7] or the quantum transport equation [8,9],
respectively. Boilley et al. [10] studied the influence of initial
distribution upon the passing probability. Anomalous diffusion
passing over the saddle point of the 1D quadratic potential was
also discussed in Ref. [11]. Nevertheless, the dynamical role
of nontransport degrees of freedom is not completely clear.
This might be very important for the quasi-fission mechanism
in the fusion reaction, because the average path of the fusing
system in a multidimensional PES should be controlled by the
off-diagonal components of inertia and friction tensors before
the system first arrives at the conditional saddle point.

Recently, theoretical calculations for the fusion barrier
distribution, accounting for the surface curvature correction
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to the nuclear potential, have been presented by Hinde
and co-workers [12–14]. The geometrical effect significantly
changes the near-barrier fusion cross section and the shape of
the barrier distribution through an angle-dependent potential,
where the target nucleus bears quadrupole and bexadecapole
deformations and the projectile is of spherical shape. In
these calculations, the surface curvature correction to the
sphere-to-sphere nuclear potential influences the fusion prob-
ability through the height of the fusion barrier. However, the
dynamical coupling effect of various deformative degrees of
freedom needs to be added from the viewpoint of fusion by
diffusion [3].

The primary purpose of this paper is to study the influence
of coupling between two degrees of freedom upon the passing
probability. In Sec. II, we report the analytical expression
of the saddle-point passing probability by solving the two-
dimensional (2D) coupled Langevin equation with constant
coefficients. In Sec. III, we discuss the effects of off-diagonal
components of inertia, friction, and potential-curvature tensors
and then determine the optimal diffusive path. Section IV gives
an application of this study to the actual fusion process of
massive nuclei. A summary is written in Sec. V.

II. THE PASSING PROBABILITY

We consider the directional diffusion of a particle in a
2D quadratic PES: U (x1, x2) = 1

2ωijxixj with i, j = 1, 2 and
det ωij < 0. The motion of the particle is described by the
Langevin equation

mij ẍj (t) + βij ẋj (t) + ωijxj (t) = ξi(t), (1)

with xj (0) = xj0 and ẋj (0) = vj0, where x10 < 0 and v10 > 0.
Here and in the following the Einstein summation convention
is used. The two components of the random force are
assumed to be Gaussian white noises and their correla-
tions obey the fluctuation-dissipation theorem 〈ξi(t)ξj (t ′)〉 =
k

B
T m−1

ik βkj δ(t − t ′), where kB is the Boltzmann constant and
T is the temperature.
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Assuming that x1 axis is the transport direction [ω11 < 0],
we write the reduced distribution function of the particle for
x1 while the variables x2(t), v1(t), and v2(t) are integrated out:

W (x1, t ; x10, x20, v10, v20)

= 1√
2πσx1 (t)

exp

(
− [x1(t) − 〈x1(t)〉]2

2σ 2
x1

(t)

)
. (2)

Integrating over x1 from zero to infinity, we determine the
passing probability over the saddle point [x1 = x2 = 0] as

P (t ; x10, x20, v10, v20) =
∫ ∞

0
W (x1, t ; x10, x20, v10, v20) dx1

= 1

2
erfc

(
− 〈x1(t)〉√

2σx1 (t)

)
. (3)

Applying the Laplace transform technique to Eq. (1), we
thus get x1(t) and its variance σ 2

x1
(t) at any time:

x1(t) = 〈x1(t)〉 +
2∑

i=1

∫ t

0
Hi(t − t ′)ξi(t

′)dt ′, (4)

σ 2
x1

(t) =
∫ t

0
dt1Hi(t − t1)

∫ t1

0
dt2〈ξi(t1)ξj (t2)〉Hj (t − t2),

(5)

where the mean position of the particle along the transport
direction is given by

〈x1(t)〉 =
2∑

i=1

[Ci(t)xi0 + Ci+2(t)vi0] , (6)

which relates to the initial position and velocity. The time-
dependent factors in Eq. (6) with exponential forms according
to the residual theorem are Ci(t) = L−1[Fi(s)/P(s)] (i =
1, . . . , 4), and the two response functions in Eqs. (4) and (5)
read H1(t) = L−1[F5(s)/P(s)] and H2(t) = L−1[F6(s)/P(s)],
where L−1 denotes the inverse Laplace transform. The ex-
pressions of P (s) and Fi(s) (i = 1, . . . , 6) are given in the
Appendix.

III. THE OPTIMAL DIFFUSIVE PATH

A. The coupling effect of two degrees of freedom

As is known in the 1D case, the passing probability
increases from 0 to 1 when the initial velocity of the particle
increases. The critical velocity is defined by the passing
probability being equal to 1/2. This leads to the following
condition: limt→∞〈x1(t)〉 = 0. If we ignore all the off-diagonal
components of the three coefficient tensors, and take x20

and v20 to be zero, the critical velocity is determined from
Eq. (6): vc

0 = [F1(a)/F3(a)]x10, where a is the largest positive
root of P(s) = 0. This is in fact identical to the 1D result: vc

10 =
−x10(

√
β2

11 + 4ω11 + β11)/(2m11) [6], which is proportional
to the friction strength.

We now consider all the off-diagonal components of the
three coefficient tensors; that is, we take the correlations of
two degrees of freedom into account. The critical velocity can

also be determined by limt→∞〈x1(t)〉 = 0, resulting in

vc

0
= − C1(∞)x10 + C2(∞)x20

C3(∞) cos θ + C4(∞) sin θ
, (7)

where θ denotes the incident angle between the initial velocity
and the x1 direction; hence v10 = v0cosθ and v20 = v0sinθ .

In Fig. 1, we plot the critical velocity and the stationary
passing probability as functions of the off-diagonal com-
ponents of the three coefficient tensors, where one of the
off-diagonal components varies and the other two are fixed to
be zero. Note that the quantities plotted in Figs. 1–7 are dimen-
sionless and k

B
= 1.0 except for the units having been included

in the figure caption. The stationary passing probability is
calculated by Ppass = limt→∞ 1

2 erfc{−〈x1(t)〉/[
√

2σx1 (t)]}. It
is seen that the critical velocity increases with increasing
absolute value of m12 or ω12 whereas it decreases with an
increase of |β12|. The larger the critical velocity a system needs,
the more difficult it is for the particle to arrive at the top of
the potential. This also implies that the passing probability is
small when the dissipation along the diffusive path is large
if the potential differences between the saddle point and the
initial positions are equivalent. As is shown in the figure,
the behavior of the passing probability is opposite to that of
the corresponding critical velocity.

Figure 2 shows the stationary passing probability in
the presence of two off-diagonal components ω12 and β12,
simultaneously, for m12 = 0. It is seen that the maximum of
the passing probability does not appear in the vertical case
(ω12 = 0). In the 2D PES, the particle is usually supposed to
travel along the potential valley and then the steepest decedent
direction, because this is the direction that faces a smaller
potential barrier. However, it may not be a path with a weaker
damping. Under the effect of the off-diagonal component of
the friction tensor, the particle is forced to select a better path
with both low potential barrier and weak friction to surmount
the saddle point of the potential.

B. Determination of the optimal path

Where is the optimal incident direction that enables the
particle with given initial kinetic energy to have a larger
passing probability? To determine this direction, we need to
choose a special angle θm that enables the critical velocity to
reach its minimum, that is, from Eq. (7),

dvc
0

dθ

∣∣∣∣
θ=θm

= 0, θm = arctan

(
C4(∞)

C3(∞)

)
. (8)

In fact, the largest analytical root of P (s) = 0 dominantly
determines the passing probability. The optimal incident angle
θm can then be expressed by the Langevin coefficients as

θm = arctan

(
m12(β22a + ω22) − m22(β12a + ω12)

m11F5(a) + m12F6(a)

)
. (9)

Using the same parameters as those written in Figs. 1 and 3,
we obtain θm � 0.258 rad, as is explicitly shown in Fig. 3,
corresponding to the maximum of the stationary passing
probability.

We now define γ,ψ, and α to be the rotation angles of
the major axis of the potential-curvature, friction, and inertia
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FIG. 1. The critical velocity (left) and
the stationary passing probability (right) as
functions of various off-diagonal components
m12, β12, and ω12, respectively. The param-
eters used are m11 = 1.5, m22 = 2.0, β11 =
1.8, β22 = 1.2, ω11 = −2.0, ω22 = 1.5, and θ =
0. The initial velocities of the particle are
v0 = 4.0, 2.2, 1.9, and 1.6 from top to bottom
(right).

tensors, respectively. They are found to have the following
expressions:

tan2γ = 2ω12

ω22 − ω11
, tan2ψ = 2β12

β22 − β11
,

(10)
tan2α = 2m12

m22 − m11
.

FIG. 2. The stationary passing probability as a function of the
off-diagonal component ω12 for various β12 values. The parameters
used are the same as those in Fig. 1.

As an example, for the case we have studied in Figs. 1 and 3,
these angles are γ � −7.973◦, ψ � −34.722◦, and α �
33.690◦. For comparison, the optimal incident direction of
the particle we have obtained for the 2D calculation is
θm � 14.779◦ (0.258 rad).

In Fig. 4, we plot the two-dimensional quadratic potential
and the optimal path in the x1-x2 plane as a schematic
illustration. All the coefficient elements used here have been

FIG. 3. The stationary passing probability as a function of the
incident angle. Here m12 = 0.6, β12 = 0.8, and ω12 = −0.5; the other
parameters are the same as those in Fig. 1.
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FIG. 4. (Color online) (a) The 2D potential energy surface, where
the dotted curve is the saddle ridge line. (b) A schematic illustration
of the optimal diffusion path (OP), where rm, rβ , and rω denote the
major axes of the inertia, friction, and potential-curvature tensors,
respectively.

written in Figs. 1 and 3. The figure illustrates that the direction
of the optimal path departs from the x1 direction. The effect
of the off-diagonal component of the inertia tensor makes the
average path of the diffusive system turn toward the positive
x2 axis, whereas the off-diagonal component of friction leads
the mean path of the particle toward the negative x2 axis.
Finally, the competition of these two effects results in the
optimal diffusive path shown in Fig. 4(b). This phenomenon
is similar to the quasi-stationary flow passing over the barrier
in the fission case [15], where the magnitude of the current is
strongly influenced by the off-diagonal components of inertia
and friction tensors.

Figure 5 shows the dependence of the stationary passing
probability on the incident angle of the particle starting from
various initial positions but with fixed initial kinetic energy. It
is seen that the passing probability of the particle starting from
a large positive x20 position is larger than that starting from
both small and negative x20 positions. This difference occurs
because the energy difference between the top of the potential
and the initial position of the particle is small for the former.
Amusingly, we find that the difference between the passing
probabilities of two symmetrical positions (−1.0,−0.5) and
(−1.0, 0.5) is observably large.

FIG. 5. The stationary passing probability as a function of θ for
various x20 values. Here x10 = −1.0, v0 = 1.9, m12 = 0.6, β12 = 0.8,
and ω12 = −0.5; the other parameters are the same as in Fig. 1.

For a clearer understanding of these results, we plot in
Fig. 6 the mean diffusive path of a particle starting from
different initial positions with different incident angles. Here
〈x1(t)〉 has been obtained in Eq. (6) and

〈x2(t)〉 =
2∑

i=1

[Ci+4(t)xi0 + Ci+6(t)vi0] , (11)

where all the time-dependent quantities are given in the
Appendix. The critical velocities are calculated by using
Eq. (7): vc

0 = 1.5791 when x20 = 0.5; vc
0 = 2.2321 when

x20 = −0.5, for x10 = −1.0 and θ = 0. Hence the stationary
passing probability of the particle starting from x20 = 0.5
is larger than that of the particle starting from x20 = −0.5.
In particular, under the present circumstance, the diffusive
process of a particle with different incident angles shows
an interesting behavior. Because the initial velocity of the
particle along the x1 direction for θ = 0 is larger than that
for θ = 0.258 rad, the former can move to a position being

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−5.2667

−4.6833

−4.1

−3.5
16

7
−2

.9
33

3

x
1
 

x
2
 

FIG. 6. (Color online) The mean diffusion path of a particle
starting from two different initial positions at fixed v0 = 1.9, where
the solid and dashed lines correspond to θ = 0 rad and θ = 0.258 rad,
respectively. Here all the Langevin parameters are the same as in
Figs. 1 and 5.

024603-4



OPTIMAL PATH OF DIFFUSION OVER THE SADDLE . . . PHYSICAL REVIEW C 77, 024603 (2008)

(a) (b)

FIG. 7. (Color online) Time-dependent
passing probability for various x20 and θ . Here
x10 = −1.0, v0 = 1.9, and (a) x20 = −0.5 and
(b) x20 = 0.5; the Langevin parameters are the
same as in Figs. 1 and 5.

closer to the saddle point than the latter. Thus the passing
probability for θ = 0 is larger than that of θ = 0.258 rad at
the beginning. However, the width of the Gaussian distribution
is independent of the incident angle and increases with time.
Although the center position of the particle’s distribution with
θ = 0.258 rad is behind that of θ = 0, as time goes on, it will
have a lager share of its distribution past the saddle point.
Therefore, the passing probability for a particle with incident
angle θ = 0.258 rad is larger than that with θ = 0 for long
times.

The time-dependent passing probabilities shown in
Figs. 7(a) and 7(b) are also in complete agreement with this
theoretical analysis.

IV. APPLICATION TO FUSION OF MASSIVE NUCLEI

We now apply the present 2D simplified diffusive model to
investigate the fusion of two massive nuclei, which has been
described by directional diffusion over the saddle point [6].
As a particular example, we calculate the fusion probability of
the nearly symmetrical reaction system 100Mo + 110Pd [16],
which is plotted as a function of the center-of-mass energy
Ec.m. in Fig. 8. A schematic illustration of the deformation
of the compound nucleus is also shown in this figure. The
temperature of the fusing system is determined by aT 2 =
Ec.m. + Q − EB , where a = A/10 is the energy level constant
with A the nucleon number of the compound nucleus, Q

denotes the reaction Q value, and EB is the barrier height
of the fission potential.

FIG. 8. The fusion probability of the reaction 100Mo + 110Pd as a
function of the center-of-mass energy for various initial positions.
Schematically illustrated as well are the deformed shapes of the
compound nucleus.

The {c, h, α} shape parametrization [17] with elonga-
tion c (half the nuclear length) and neck variable h are
used (i.e., x1 = c, x2 = h), and the asymmetrical parame-
ter α is fixed to be zero. The inertia and friction ten-
sors are calculated by the Werner-Wheeler method and the
one-body dissipative mechanism [18], respectively; all the
Langevin coefficients are considered to be constants at
the saddle point. The three components of the potential-
curvature tensor are ω11 = −28.2304, ω22 = 275.4211, and
ω12 = 50.4551 in units of MeV; the components of friction ten-
sor are β11 = 701.9967, β22 = 621.4425, and β12 = 601.4934
in units of 10−21 MeV · s; the inertia elements are m11 =
102.4081,m22 = 134.4673, and m12 = 110.3783 in units of
10−42 MeV · s2.

We highlight an interesting result from Fig. 8: There exists
an optimal collision shape for projectile and target nuclei
that induces the maximum fusion probability under the same
center-of-mass energy. This can be easily understood from the
combining role of the off-diagonal components of the three
dynamical coefficient tensors. Thus the fusion probability of
massive nuclei can be enhanced if the two collision heavy
ions are polarized to be ellipsoidal and the collision direction
between the long and short axes of the ellipsoid is appropriately
selected. For the fusion of deformed massive nuclei, there
exists an optimal angle for the incident nucleus to collide with
the target one, which favors the fusion of heavy ions.

Figure 9 shows the fusion probability of 100Mo + 110Pd as
a function of the center-of-mass energy when the off-diagonal
components are partly considered. Here the initial position

FIG. 9. The fusion probability of the reaction 100Mo + 110Pd as
a function of the center-of-mass energy for the situations with and
without off-diagonal components.
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of the fusing system is chosen as the optimal one (i.e.,
c0 = 1.75 and h0 = 0.2789) and the parameters used are the
same as in Fig. 8. This fusion reaction system serves as an
example with which to compare the results with and without
off-diagonal components in the potential surface, friction, and
mass parameters, which is reflected in the result presented
earlier. In fact, the case without any off-diagonal components is
equivalent to the the one-dimensional case or the case without
the neck variable [4].

It is seen from Fig. 9 that the increase of the 1D fusion
probability curve versus energy is greater than that of the
2D case. It has been known that the previous 1D diffusion
model without the neck variable gave a fusion probability
larger than that found from the experimental data, so the
present, completely coupled, 2D diffusion model might be
appropriate. Moreover, the results for the presence of only one
of three off-diagonal components can also be understood from
the critical velocity (kinetic energy; see Fig. 1). Namely, the
larger the critical kinetic energy of the system is, the less the
fusion probability is for the same center-of-mass energy. The
nonvanishing β12 allows the smallest critical kinetic energy and
the presence of m12 leads to the largest critical kinetic energy.
Therefore, we have a relation for the fusion probabilities:
Pfus(β12 	= 0) > Pfus(ω12 	= 0) > Pfus(m12 	= 0) at a fixed
center-of-mass energy.

V. SUMMARY

We have studied the diffusion process of a particle passing
over the saddle point of a two-dimensional nonorthogonal
quadratic potential. The expression of the passing probability
is obtained analytically, where the inertia and friction tensors
are not diagonal. The optimal incident angle of the particle’s
initial velocity is determined. Our results have shown that the
optimal diffusive path, which departs from the potential valley
in the two-dimensional potential energy surface, induces the
maximum saddle-point passing probability. This is due to the
competition among the off-diagonal components of inertia,
friction, and potential-curvature tensors. We have investigated
the fusion probability of massive nuclei and compared the
results with and without off-diagonal terms, for instance, for
the reaction of 100Mo + 110Pd. Because of the influences of off-
diagonal components of inertia and friction upon the diffusive
path, which are calculated by the {c, h, α} parametrization,
the fusion probability can be enhanced for an appropriate
choice of the collision direction of the deformable target and

projectile nuclei. The optimal configuration of colliding nuclei
is between spherical and extremely deformed ones. The present
study also provides useful information in connection with the
synthesis of superheavy elements.
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APPENDIX: THE EXPRESSIONS OF 〈x1(t)〉 AND 〈x2(t)〉
The quantities appearing in the expression of 〈x1(t)〉 are

P(s) = (detm)s4 + (m11β22 + m22β11 − 2m12β12)s3

+ (detβ + m11ω22 + m22ω11 − 2m12ω12)s2

+ (β11ω22 + β22ω11 − 2β12ω12)s + detω,

F1(s) = (detm)s3 + (m11β22 + m22β11 − 2m12β12)s2

+ (detβ + m11ω22 − m12ω12)s + β11ω22 − β12ω12,

F2(s) = (m12ω22 − m22ω12)s + β12ω22 − β22ω12, (A1)

F3(s) = (detm)s2 + (m11β22 − m12β12)s + m11ω22

−m12ω12,

F4(s) = (m12β22 − m22β12)s + m12ω22 − m22ω12,

F5(s) = m22s
2 + β22s + ω22,

F6(s) = −m12s
2 − β12s − ω12,

where det m = m11m12 − m2
12 and det β = β11β22 − β2

12.
The time-dependent factors in the expression of 〈x2(t)〉 in

Eq. (11) read Cj (t) = L−1[Fj+2(s)/P(s)] (j = 5, . . . , 8) from
the inverse Laplace transforms, where

F7(s) = (m12ω11 − m11ω12)s + β12ω11 − β11ω12,

F8(s) = (detm)s3 + (m11β22 + m22β11 − 2m12β12)s2

+ (m22ω11 − m12ω12 + detβ)s + β22ω11

−β12ω12,

F9(s) = (m12β11 − m11β12)s + m12ω11 − m11ω12,

F10(s) = (detm)s2 + (m22β11 − m12β12)s + m22ω11

−m12ω12. (A2)
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