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s-wave pion-nucleus optical potential
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We calculate the s-wave part of the pion-nucleus optical potential using a unitarized chiral approach that has
been previously used to simultaneously describe pionic hydrogen and deuterium data as well as low-energy
πN scattering in vacuum. This energy-dependent model allows for additional isoscalar parts in the potential
from multiple rescattering. We consider Pauli blocking and pion polarization in an asymmetric nuclear matter
environment. Also, higher order corrections of the πN amplitude are included. The model can accommodate
the repulsion required by phenomenological fits, though the theoretical uncertainties are bigger than previously
thought. We also find an enhancement of the isovector part compatible with empirical determinations.
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I. INTRODUCTION

The problem of the missing repulsion in pionic atoms has
attracted much attention in the past [1–10] and recently [11–
17] and was further motivated by the discovery of deeply bound
pionic atoms at GSI [18–21].

Because of the repulsion of the s-state pion in nuclear
matter, the π− wave function is strongly repelled and overlaps
only little with the nucleus. The wave function tests mainly the
peripheral zone of the nucleus and, thus, nuclear matter at less
than nuclear density. However, even at half the nuclear matter
density, difficulties in the theoretical description persist. From
phenomenological fits to pionic atoms reaching from C to Pb,
a strong repulsion is needed for a consistent description of the
combined data, but theoretical calculations consistently failed
to deliver this “missing repulsion” (see, e.g., Ref. [5]) although
there has been recent progress [14].

The s-wave pion-nucleus optical potential is the basic input
for a calculation of the s-levels of pionic atoms. Usually, the
optical potential is calculated for infinite nuclear matter as a
function of the Fermi momentum. Explicit calculations for
finite nuclei done in Refs. [22,23] provide a prescription to
pass from nuclear matter to finite nuclei: The s-wave part of
the potential is provided by the corresponding nuclear matter
results changing ρ to ρ(r) (local density approximation),
whereas for the p wave the prescription is slightly more
complicated.

The s-wave pion optical potential 2ωVopt(r) = �S(r) is
closely connected to the s-wave pion self-energy, which is
usually [1] parametrized as

�S(r) = −4π

[(
1 + mπ

mN

)
b0(ρp + ρn) +

(
1 + mπ

mN

)

× b1(ρn − ρp) +
(

1 + mπ

2mN

)
B0(ρ)(ρp + ρn)2

]
,

(1)
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where the density ρ is a function of the radial distance,
ρ ≡ ρ(r), given by the density profile of the nucleus. From
this expression the sensitivity of the self-energy to the isoscalar
b0 becomes visible, because in symmetric nuclear matter the
isovector term b1 vanishes. However, heavy nuclei such as
208

82Pb recently used in experiments [19–21] contain more
neutrons than protons; it is therefore interesting to study
asymmetric matter, in particular with respect to a possible
renormalization of the isovector b1 [15,24–26]. The last term
in Eq. (1) takes into account corrections from higher order
in density. This quantity also has an imaginary part owing to
pion absorption, which is mainly a two-body process, and the
imaginary part of the optical potential determines the width of
the pionic atom.

Traditional fits to pionic atoms [22,27,28] provide the set
of parameters displayed in Table I. Although the sets of
parameters are quite different from each other they result
in similar pion self-energies at ρ = ρ0/2, half the nuclear
density. Therefore these sets are not contradictory but tell us
that the pionic atom data require this magnitude of self-energy
at ρ0/2. This equivalence of pion optical potentials using the
concept of ρeff = ρ0/2 was established early in Refs. [29,30].
Furthermore, Table I suggests that the smaller value of |b0|
in Ref. [27] needs to be compensated by a large negative real
part of the ρ2 term B0; thus, corrections of higher order in the
density are important.

The model of Ref. [31] is of interest in this context because
a good part of the πN vacuum isoscalar is generated by the
multiple rescattering of the dominant Weinberg-Tomozawa
term of the πN interaction of isovector character. This real-
ization is important because rescattering terms are appreciably
modified in the nuclear medium. Indeed, the Pauli blocking
in the intermediate nucleon states is well known to generate
a repulsion, the Ericson-Ericson Pauli-corrected rescattering
term [1]. Moreover, the pion polarization from particle-hole
(ph) and �-hole (�h) excitation of the intermediate pions
also produces corrections and accounts for the imaginary part
of the potential from pion absorption [5,32].

Another point is the energy dependence of the πN

interaction [14]. Reference [31] focuses on the precise deter-
mination of the scattering lengths but also provides the energy
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TABLE I. Typical fits of pionic atom data.

Ref. b0[m−1
π ] b1[m−1

π ] B0[m−4
π ]

[27] −0.0045 −0.0873 −0.049 + i 0.046
[28] −0.0325 −0.0947 0.002 + i 0.047
[22] −0.0183 −0.105 i 0.0434

dependence close to threshold. For pionic atoms where the pion
is practically at rest with respect to the nucleus this remains
relevant because of the Fermi motion of the nucleons. Note
that, in this context, the vacuum model [31] already contains
certain information about the nucleon-nucleon correlations
as one of the fitted data points has been the π−-deuteron
scattering length. The deuteron wave function that enters
the theoretical description provides the NN momentum
distribution and allows for an inclusion of the Fermi motion
in the deuteron. The issue of energy dependence is a relevant
one and in the medium it induces corrections that, owing to
the smallness of the b0 parameter, have an effect similar to a
renormalization of b1 [14].

Furthermore, there are some medium corrections coming
from vertex corrections, off-shell effects, and wave function
renormalization that, if desired, can also be recast as renormal-
ization of b1 and b0. We shall also introduce novel terms in the
pion self-energy related to the N∗(1440) decay into Nππ , with
the two pions in a scalar isoscalar state. This mechanism has
already been used in Ref. [33] to estimate some uncertainties
in the study of the π -deuteron interaction.

Another novelty in the present work is that we shall start
from a free model for πN scattering that is constructed using
a chiral unitary approach, incorporating the lowest order (LO)
and the needed next-to-lowest order (NLO) chiral Lagrangians,
together with multiple scattering of the pions [31].

The vacuum model from Ref. [31] will be modified in
various steps in the medium: In Sec. II A Pauli blocking
of the intermediate nucleonic states, together with the ap-
propriate spectral function for the intermediate pions, will
lead to nonlinear corrections in the density with preliminary
numerical results given in Sec. III. Also presented in Sec. III is
a self-consistent calculation in which the overall pion s-wave
self-energy serves as an input for the intermediate pions in
the πN loops. In Secs. IV and V, the diagrammatic model
will be extended to the higher order vertex corrections. Final
numerical results are provided in Sec. VII.

II. LOW-ENERGY PION-NUCLEON INTERACTION IN
VACUUM AND MATTER

The vacuum πN isoscalar term b0 is around one-tenth that
of the vacuum isovector b1 term and its precise determination
is a complex task owing to large cancellations in the amplitude.
With the advent of new experimental data [34–38] for
the π−p → π−p, π−p → π0p, and π−d → π−d scattering
lengths from pionic hydrogen and deuterium, theoretical
efforts in several directions have been made to precisely
determine the parameters of low-energy πN scattering. In
this context, π−-deuteron scattering at threshold plays an

important role as the complex scattering length aπ−d puts tight
constraints on the size of b0.

Pion-deuteron scattering has been recently treated in chiral
perturbative approaches [33,39] in which corrections from
isospin breaking [40] and effects such as Fermi motion
[41] have also been included. These and other higher order
corrections have been taken into account in another theoretical
framework in Ref. [42]. In the extraction of the strong
scattering lengths from experiment, special attention has to
be paid to the Coulomb corrections in the extraction of the
scattering lengths from pionic hydrogen [43–45].

In the present study we rely upon a recent study on low-
energy πN scattering in s-waves [31] as is summarized in the
following. This model simultaneously describes the available
data at threshold from pionic hydrogen and deuterium and
also low-energy πN scattering. In a restriction to the coupled
channels π−p, π0n, and π−n the πN s-wave amplitude
T (

√
s) is unitarized by the use of the Bethe-Salpeter equation

T (
√

s) = [1 − V (
√

s)G(
√

s)]−1V (
√

s). (2)

Here, the kernel V is given by the elementary isovector
interaction from the Weinberg-Tomozawa term of the LO
chiral Lagrangian [46–48],

Vij (
√

s) = −Cij

1

4f 2
π

(2
√

s − Mi − Mj )

×
√

Mi + Ei(
√

s)

2Mi

√
Mj + Ej (

√
s)

2Mj

. (3)

The πN loop function G in Eq. (2) provides the unitarity cut
and is regularized in dimensional regularization with one free
parameter, the subtraction constant απN [31]. In Eq. (3) the
coefficients Cij provide the transition strength of the coupled
channels i, j [31] and Mi,j , Ei,j are the nucleon masses and
energies, respectively. In Fig. 1 we show a diagrammatic
representation of the Bethe-Salpeter equation (2), including
also the ππN channel, which is also incorporated in Ref. [31].

In the framework of the heavy-baryon approach the vertices
are factorized on-shell [see Eq. (3)], because the off-shell
part of the vertices in the loops can be absorbed, thereby
renormalizing the lowest order tree-level amplitude [49].
However, we will see in Sec. IV that in a nuclear matter
environment these renormalizations are modified and lead to
finite, density-dependent corrections of the amplitude.

The multiple rescattering provided by Eq. (2) generates
isoscalar pieces from the isovector interaction, providing a
large b0 term. However, it is known [50–52] that the NLO chiral
Lagrangian is a necessary ingredient in πN scattering at low

p,n

π−

p,n

π−

FIG. 1. Rescattering of the π−N system generated by the Bethe-
Salpeter equation.
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energies. To provide the necessary degrees of freedom in the
model, the isoscalar s-wave piece with the chiral coefficients
ci in the notation of Ref. [52],

Vij → Vij + δij

(
4c1 − 2c3

f 2
π

m2
π − 2c2

(q0)2e−β2 (q0)2

f 2
π

)

× Mi + Ei(
√

s)

2Mi

, (4)

is added to the kernel of Eq. (2). The term c3 q2 in Ref. [52]
has been taken as c3 m2

π , consistently with the approach of
Refs. [53,54], which uses the on-shell values for the vertices in
the scattering equations. The free fit parameters up to this point
are the subtraction constant απN and the two combinations of ci

from Eq. (4), as well as a damping factor parametrized with β

as discussed in Ref. [31], which is of no relevance here because
we stay close to threshold. There are further refinements of the
model, described in detail in Ref. [31], such as the inclusion of
the ππN two-loop diagram, which introduces one additional
fit parameter, γ , from the small real part of this loop.

To include the complex pion-deuteron scattering length
aπ−d in the data fit, one has to employ the elementary
πN scattering model described here in the framework of
a three-body process. In Ref. [31] this has been carried
out by using the πN amplitudes in a Faddeev multiple
scattering approach. The interesting point is that the impulse
approximation vanishes, making the double rescattering off
the two nucleons the dominant term. This term is sensitive
to the isoscalar amplitude so that the experimental scattering
length aπ−d provides valuable information on the vacuum b0

term and sets tight constraints on it.
Additional corrections of higher order in πd scattering

such as absorption, dispersion, the influence of the �(1232),
and Fermi motion have been treated in a separate Feynman
diagrammatic approach, together with other corrections from
the literature; see Ref. [42] and references therein. Once
these various corrections are included in aπd , the model
parameters are fixed from data, namely the scattering lengths
aπ−p→π−p, aπ−p→π0n, aπ−d , and low-energy πN data from
Ref. [55]. The parameter values are quoted in the left column
of Table II. The values of ci from Eq. (4) are in agreement
with other works [52]; furthermore, the isospin violations
found in the study qualitatively agree with Ref. [56]. In the
following, we concentrate on the in-medium modifications of
the approach.

A. The model in nuclear matter

The s-wave πN → πN vacuum model from Ref. [31],
summarized in Sec. II, provides the driving interaction of the
π− with the nucleus. To obtain the pion self-energy �S from
Eq. (1) of the π− in asymmetric nuclear matter with proton and
neutron densities ρp and ρn (with k

p

F , kn
F the respective Fermi

momenta), the π−N → π−N amplitude T is summed over
the nucleons in the Fermi sea, as schematically indicated in
Fig. 2. The s-wave self-energy for a π− at momentum (k0, k)

Ππ

h

T≡

FIG. 2. Diagrammatic representation of the π− self-energy from
the s-wave interaction with the nucleus.

with respect to the nuclear matter rest frame reads

�S(k0, k; ρp, ρn) = 2
∫ k

p

F d3pp

(2π )3
Tπ−p(P 0, P; ρp, ρn)

+ 2
∫ kn

F d3pn

(2π )3
Tπ−n(P 0, P; ρp, ρn), (5)

where pp,n are the nucleon momenta. Because of the breaking
of Lorentz invariance, the amplitudes Tπ−p,n depend indepen-
dently on the components of (P 0, P), the total four-momentum
of the πN system in the nuclear matter frame, namely
P 0 = k0 + Ep,n(pp,n) and P = k + pp,n. The factors of 2 in
Eq. (5) account for the sum over the nucleon spins. Note that
Eq. (5) allows for isospin breaking by using different masses
for particles of the same isospin multiplet. In analogy to the
vacuum case, Tπ−p and Tπ−n are given by the solutions of
Bethe-Salpeter equation (BSE)

T (P 0, P; ρ) = [1 − V (
√

s)G(P 0, P; ρ))]−1V (
√

s), (6)

where s = (P 0)2 − P2 and the loop function G is modified as
described in the following. In Sec. IV we will apply in-medium
changes also to the kernel V from off-shell parts of the vertices
and other sources. For the charge C = 0 sector, the BSE is
represented by (2 × 2) matrices, accounting for the coupled
channels π−p and π0n. For the π−n interaction there is only
one channel.

The diagonal matrix G from Eq. (6) contains the loop
functions GπN , which have been formulated in dimensional
regularization in Refs. [31,54] for the vacuum case. Al-
ternatively, one can use a cutoff scheme [54] with 
 the
three-momentum cutoff. The vacuum GπN is then given by

GπN (P 0, P) = aπN + i

∫
d4q

(2π )4)

MN

E(P − q)

× 1

P 0 − q0 − E(P − q) + iε

× 1

(q0)2 − q2 − m + iε
, (7)

with a cutoff for the three-momentum integration 
 = 1 GeV
and m (MN ) being the π−, π0 (p, n) masses. Over wide energy
ranges, a change in 
 can be written as an additive constant
to the real part of GπN . Therefore, we have denoted a separate
piece aπN in Eq. (7) in the same way as in Ref. [54]. For the
free case the propagator in the cutoff scheme agrees with the
propagator from dimensional regularization over a wide energy
range by choosing the appropriate subtraction constant. In the
nuclear medium with Lorentz covariance explicitly broken, a
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TABLE II. Global fits to pionic hydrogen, deuteron, and low-energy πN scattering data,
using dimensional regularization from Ref. [31] and cutoff scheme. Also, the resulting b0, b1

are shown.

Dimensional regularization Cutoff

Fitted data (
√

s) 1104–1253 MeV + threshold 1104–1253 MeV + threshold
χ 2

r 51/(2 × 10 + 3) � 2.2 48/(2 × 10 + 3) � 2.1
απN [-] −1.143 ± 0.109 –
aπN [MeV] – −2.025 ± 1.28
2c1 − c3 [GeV−1] −1.539 ± 0.20 −1.487 ± 0.20
c2 [GeV−1] −2.657 ± 0.22 −2.656 ± 0.22
β [MeV−2] 0.002741 ± 1.5 × 10−4 0.002752 ± 1.5 × 10−4

γ [10−5m5
π ] 5.53 ± 7.7 6.27–7.8

χ 2(aπ−p→π−p) 3 3
χ 2(aπ−p→π0n) <1 <1
χ 2(aπ−d ) 8 7

b0 [10−4m−1
π− ] −28 ± 40 −29

b1 [10−4m−1
π− ] −881 ± 48 −883

cutoff scheme is more convenient to implement the in-medium
dressing. Thus, we will employ the propagator from Eq. (7)
in this work. This requires a refit of the vacuum data. The
values of the model parameters with the cutoff propagator from
Eq. (7) instead of dimensional regularization are displayed in
Table II on the right-hand side. The new fit shows that the
model is insensitive to the regularization scheme used. Param-
eters, χ2, and predictions for isoscalar and isovector terms b0

and b1 are stable. For notation of the parameters, see Sec. II. In
Table II, απN is the subtraction constant of the loop in
dimensional regularization and aπN is the subtraction constant
from Eq. (7).

The more important parameters are the ci and απN (aπN ).
The real part of the ππN loop (γ ) is tiny at threshold. For
pionic atoms, the damping factor β of Ref. [31], which is more
important for the higher energy πN data, is of no relevance
because the c.m. energy of πN owing to Fermi motion in the
nucleus is small.

The two major medium modifications of GπN are the Pauli
blocking of the nucleon propagator and the polarization of
the pion. The corresponding diagram is displayed in Fig. 3.
For the amplitude of the in-medium πN loop function an
expression similar to that in Ref. [57] is obtained. Here, we
give the generalization to asymmetric nuclear matter for the

,

hole

FIG. 3. In-medium correction of s-wave πN scattering: Renor-
malization of the pion and Pauli blocking of the nucleon is symbolized
by a crossed propagator. The pion p-wave self-energy stands for
resummed ph,�h insertions and includes NN, N�, and �� short-
range correlations.

π−p, π0n, and π−n loops. With N = p, n and πi = π−, π0,

GπiN (P 0, P; ρp, ρn)

= aπN + i

∫
d4q

(2π )4
θ
(
qmax

c.m. − |qc.m.|
) MN

EN (P − q)

×
(

θ
(|P − q| − kN

F

)
P 0 − q0 − EN (P − q) + iε

+ θ
(
kN
F − |P − q|)

P 0 − q0 − EN (P − q) − iε

)

×
∫ ∞

0
dω

2ω

(q0)2 − ω2 + iε
Sπi

(ω, q; ρp, ρn). (8)

The cutoff in the vacuum model is applied in the πN c.m.
frame, as required by the vacuum model, whereas Eq. (8) is
defined in the nuclear matter rest frame. Since in the free case
qmax is given in the c.m. frame we boost q to this frame and
demand it to be smaller in modulus than qmax

c.m. . We have

qc.m. =
[(

P 0

√
s

− 1

)
P · q
|P|2 − q0

√
s

]
P + q, (9)

where s = (P 0)2 − P2. In Eq. (8) we have also taken into
account the hole part of the nucleon propagator as in Ref. [58],
which can play a role at the low pion energies we are studying.
This term has been neglected in Ref. [57], which is justified at
higher energies. The pion spectral function Sπi

is different for
π− and π0 for asymmetric nuclear matter. For S we include the
particle-hole (ph) excitation and NN short-range correlations
as described in the next section.

In the model from Ref. [31], the �(1232) has been explicitly
taken into account in pion-deuteron scattering, leading to
corrections in the πd scattering length that by themselves
set constraints on the vacuum isoscalar amplitude. In the
present situation we can take the corresponding effect into
account by also including the �-hole (�h) excitation in
the pion self-energy; in fact, closing the nucleon lines of

024602-4



s-WAVE PION-NUCLEUS OPTICAL POTENTIAL PHYSICAL REVIEW C 77, 024602 (2008)

the deuteron in the �-box and �-crossed-box diagrams of
Ref. [31] one obtains a pion self-energy corresponding to
Fig. 3 by substituting the ph by a �h excitation of the pion.
The N∗(1440) Roper-hole excitation can be in principle also
included in the pion self-energy but has been found to be small
in Ref. [57] for low-energy pions. However, in Sec. VII B the
Roper resonance will be included in a different context based
on the coupling of the Roper to a scalar-isoscalar pion pair.

In Ref. [57] Pauli blocking for the intermediate ππN loop
(see Fig. 1) has been included for the imaginary part. In the
present case the pion has very little momentum in the πN c.m.
frame and the system lies below the ππN threshold; hence,
even in vacuum the imaginary part of this term is zero and
thus no change is required. Thus, the imaginary part of the
amplitude from the ππN intermediate state is zero in our case
and the contribution to the real part of the amplitude is in any
case negligible.

Combining all the ingredients of the in-medium model, one
can symbolize the s-wave pion self-energy by the diagram in
Fig. 4: The in-medium propagator from Eq. (8) is used in the
Bethe-Salpeter equation (6), and the remaining integral over
the Fermi seas from Eq. (5) corresponds to closing the nucleon
line.

B. Pion polarization in asymmetric nuclear matter

The spectral function of the pion πi (π+, π−, π0) at
momentum (q0, q) from Eq. (8) is given by the imaginary
part of the propagator,

Sπi
(q0, q; ρp, ρn) = − 1

π
ImDπi

,

(10)
Dπi

= 1

(q0)2 − q2 − m2
πi

− �πi
(q0, q; ρp, ρn)

.

For the pion self-energy inside loops the p-wave part is
dominant because q is a running variable and �πi

∝ q2. The s-
wave part will be included in the self-consistent treatment at the
end of Sec. III. For the self-energy we take into consideration
the (ph)-(ph) short-range repulsion parametrized in terms of
the Migdal parameter, which is chosen as g′ = 0.7:

�πi
(q0, q; ρp, ρn)

=
(

D + F

2fπ

)2

F 2(q)q2

× Uπi
(q0, q; ρp, ρn)

1 −
(

D+F
2fπ

)2
F 2(q)g′Uπi

(q0, q; ρp, ρn)
. (11)

• • •

h

FIG. 4. Integration over the Fermi sea of the medium πN

amplitude. The crosses represent Pauli blocking of the nucleon
propagators and the large dots represent the p-wave pion self-energy.

For a diagrammatic representation of the pion self-energy,
see, for example, Ref. [9]. The Lindhard functions for
asymmetric matter for (ph) and (�h) excitations, evaluated
in the following, are added in Eq. (11): U = U (ph) + U (�h).
Note that we have here for simplicity assigned the same g′
to (ph) and (�h) excitations. For the form factor that takes
into account the off-shell pions coupling to ph or �h we have
chosen the same function F (q) = 
2/(
2 + q2) with 
 =
0.9 GeV.

The Lindhard function for symmetric nuclear matter,
U (q, kF ), can be found in the literature, (e.g., in Ref. [59]), and
here, we concentrate on an extension to asymmetric matter (see
also Ref. [60]). In the nonrelativistic reduction, the Lindhard
function for pions turns out to be

Uπi

(
q, k1

F , k2
F

) = 4
∫

d3k
(2π )3

[
�

(
k1
F − |k|)�(|k + q| − k2

F

)
q0 + ε(k) − ε(k + q) + iη

+ �
(
k2
F − |k|)�(|k − q| − k1

F

)
−q0 + ε(k) − ε(k − q) + iη

]
. (12)

The first term is the contribution of the forward-going ph

excitation (direct term) and the second term is the pion
crossed-term self-energy. The index 1 (2) labels the Fermi sea
corresponding to the hole (particle) part of the direct contribu-
tion and the particle (hole) part of the crossed contribution. For
example, for a π−, k1

F = k
p

F and k2
F = kn

F . For a π+, k1
F = kn

F

and k2
F = k

p

F . The integral (12) can be solved analytically. For
this, we split the ordinary Lindhard function from Ref. [59]
into direct and crossed parts: U (q0, q, kF ) = Ud (q0, q, kF ) +
Uc(q0, q, kF ) with Uc(q0, q, kF ) = Ud (−q0, q, kF ) and

Ud (q0, q, kF ) = 3

2

ρMN

|q|kF

[
z + 1

2

(
1 − z2

)
log

(
z + 1

z − 1

)]
,

(13)

z = MN

|q|kF

(
q0 − q2

2MN

)
,

where ρ = 2/(3π2)k3
F and MN is the proton or neutron mass.

Evaluating the integral in Eq. (12) one obtains for the ph

Lindhard function in asymmetric matter

U
(ph)
π+ (q0, q; ρp, ρn) = Ud

(
q0, q, kn

F

) + Uc

(
q0, q, k

p

F

)
,

U
(ph)
π− (q0, q; ρp, ρn) = Ud

(
q0, q, k

p

F

) + Uc

(
q0, q, kn

F

)
, (14)

U
(ph)
π0 (q0, q; ρp, ρn) = 1

2

[
U

(
q0, q, k

p

F

) + U
(
q0, q, kn

F

)]
.

These are the expressions to be used in Eq. (11). The result in
Eqs. (12) and (14) is in agreement with Ref. [61], correcting a
typographical error in their Eq. (A.5).

For the �h Lindhard function U (�h)(q, k
p

F , kn
F ), no new

calculation is required, as the � always plays the role of a
particle and is not affected by the Fermi sea. It is therefore
sufficient to split U�(kF ) from Ref. [59] into its charge states
and direct plus crossed parts and use as argument the kF that
corresponds to the hole part,

U
(�h)
π− (q0, q; ρp, ρn)

= 1
4U

(�h)
d

(
q0, q; kp

F

) + 3
4U (�h)

c

(
q0, q; kp

F

)
+ 1

4U (�h)
c

(
q0, q; kn

F

) + 3
4U

(�h)
d

(
q0, q; kn

F

)
,
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FIG. 5. (Color online) Real and imaginary parts of the pion propagator Dπ for symmetric and asymmetric nuclear matter at a pion
momentum of 500 MeV. The position of the quasielastic pion peak in vacuum, at q0 = 518 MeV, is indicated with the arrows. The asymmetric
matter corresponds to the ratio of n to p in 208

82Pb.

U
(�h)
π0 (q0, q; ρp, ρn)

= 1
2

[
U

(�h)
d

(
q0, q; kp

F

) + U (�h)
c

(
q0, q; kp

F

)
+U (�h)

c

(
q0, q; kn

F

) + U
(�h)
d

(
q0, q; kn

F

)]
. (15)

Analytic expressions for the direct and crossed parts of the �h

Lindhard function can be found in Ref. [59].
To see the effects of asymmetric nuclear matter we plot the

pion propagator for normal nuclear density ρ0 = 0.483 m3
π ,

which corresponds to kF = 268 MeV for symmetric matter.
For asymmetric matter we set kn

F = 1.154 k
p

F , which cor-
responds to the ratio of neutron-rich nuclei such as 208

82Pb.
Then, ρ0 = ρp + ρn is obtained with k

p

F = 247 MeV and kn
F =

286 MeV. In the plots in Fig. 5 the propagator from Eq. (10)
for pions at |q| = 500 MeV is shown.

The π0 in asymmetric matter is very similar to the case for
symmetric matter. The π− shows some minor deviations.

III. NUMERICAL RESULTS

In Fig. 6, the real part of the s-wave pion self-energy from
the full model and from several approximations is plotted.
The solid lines show the results for the model from Sec. II A
in symmetric and asymmetric nuclear matter, with and
without the p-wave renormalization from Eq. (11) of the
pion propagator in the intermediate πN loops. For the cases
with asymmetric matter, the x-axis is given by k

p

F . The
neutron Fermi momentum is then chosen to be kn

F = 1.154 k
p

F .
This ratio corresponds to the ratio of neutron-rich nuclei
such as 208

82Pb with k
p

F = 241 MeV and kn
F = 278 MeV. The

self-energy in asymmetric nuclear matter is larger than in
symmetric matter, which can be easily understood from the
large and positive term (−4π )b1(ρn − ρp) from Eq. (1).

The effect of Pauli blocking in the intermediate loops of the
s-wave rescattering [see Eq. (8)] can be taken into account by

the Ericson approximation [1,5]

�b0(kF ) = − 6kF

πm2
π

mN

mπ + mN

(
λ2

1 + 2λ2
2

)
. (16)

As pointed out in Ref. [5] the quantities λ1,2 are related to the
vacuum isoscalar and isovector b0, b1 terms (generated from
rescattering, not the elementary ones) for which we take, from
Ref. [31],

b0,vac = −0.0028 m−1
π = − 1

1 + mπ

mN

2λ1

mπ

,

(17)
b1,vac = −0.0881 m−1

π = − 1

1 + mπ

mN

2λ2

mπ

.

With these values and B0 = 0 (no pion medium modification)
one obtains from Eq. (1) the dotted curve in the upper left
panel of Fig. 6. Adding the approximate medium change of b0

from Eq. (16) according to b0 = b0,vac + �b0, one obtains the
dashed curve. Thus, the tρ approximation is not sufficient,
whereas the inclusion of �b0 leads to a good agreement
with the rescattering model. This shows also that effects from
Pauli blocking in more than one loop in the πN rescattering
of the πN amplitude are small, because Eq. (16) corre-
sponds to exactly one Pauli-blocked loop in the rescattering
series [5].

Next, we compare to asymmetric nuclear matter but still
without pion modification. This is displayed in the upper right
panel of Fig. 6. Now, the isovector term contributes and we
can derive an approximation similar to Eq. (16) for the b1

renormalization in nuclear matter,

�b1(kF ) = − 6kF

πm2
π

mN

mπ + mN

(
2λ1λ2 − λ2

2

)
, (18)

by simply comparing the isospin structure of πN scattering at
one loop. The result from Eq. (1) using b0 = b0,vac + �b0 and
b1 = b1,vac is indicated as the dotted line. As the dashed line
we plot the result from Eq. (1) using b0 = b0,vac + �b0 and
b1 = b1,vac + �b1. Obviously, the correction from Eq. (18)
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FIG. 6. Real part of the s-wave pion self-energy for the pion at rest. Note that for asymmetric nuclear matter, kF of the proton is plotted on
the abscissa and we always take kn

F = 1.157 k
p

F . Fit results to pionic atom data from Refs. [22,27,28] are also plotted. The theoretical calculation
of Ref. [5] is indicated as “Garcia et al.” (dashed line).

is small. However, in Sec. IV we will find additional vertex
corrections that will modify appreciably the isovector strength
of πN scattering.

When including the pion renormalization in the model
according to Eqs. (8) and (10) the real part of the s-wave
pion self-energy for symmetric and asymmetric nuclear matter
decreases, as shown in the two lower plots of Fig. 6. We can
compare these results to those of Ref. [5]. For this, we take
the final values for B0 from there, B0 = 0.032 + i 0.040m−4

π .
Note that this is only qualitative because we do not take the
density dependence of B0 from Ref. [5] into account but
use a mean value. The values from Ref. [5] for b0 and b1

are −0.013 m−1
π and −0.092 m−1

π , respectively. With these
values and adding �b0 from Eq. (16) to b0, we calculate
the self-energy according to Eq. (1) and plot the results in
the lower left panel of Fig. 6 for symmetric nuclear matter.
In the same plot the s-wave self-energy from fits to the bulk
of pionic atom data from Refs. [22,27,28] with the values
given in Table I is shown. Both the present model and results

from Ref. [5] are systematically below the phenomenological
values. Neither the present model nor Ref. [5] reach the
required size for the real part of �S and thus the problem
of missing repulsion persists.

The imaginary part of the pion s-wave self-energy is
displayed in Fig. 7. The result from Ref. [5] (dashed line)
agrees well with the phenomenological values from Refs. [27]
and [28] (gray band) whereas the present model shows a 30%
discrepancy.

The differences between the results from Ref. [5] and the
present calculation (dashed versus solid line for the symmetric
matter case including the pion renormalization) should be
attributed to a different input used in Ref. [5], such as form
factors plus the fact that extra crossed terms of ρ2 character
(smaller than those incorporated here) were also evaluated
in Ref. [5]. The larger repulsion from Ref. [5] can be partly
explained by the large vacuum |b0|, |b1| used there, whereas
nowadays values for b0, compatible with zero as in Eq. (17),
are regarded as more realistic.
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FIG. 7. Imaginary part of the s-wave pion self-energy for the pion at rest. Th phenomenological fits are as in Fig. 6.

For the pion polarization in intermediate πN loops, so far
only the p-wave pion self-energy has been taken into account.
For the s-wave part we can include the self-energy determined
in the previous section in a self-consistent approach. For this,

the π− self-energy �S from Eq. (5) is included in the pion
propagator from Eq. (10). Additionally, the self-energy is
resummed so that it can be included in the same way as the
p-wave self-energy �p, π in the pion propagator,

Dπ = 1

(q0)2 − q2 − m2
πi

− �p, π (q0, q; ρp, ρn) − �S(q0 = mπ, q = 0; ρp, ρn)
. (19)

We have approximated here the energy and momentum de-
pendence of �S by the static case (q0 = mπ, q = 0). Solving
for �S by iteration one obtains the results in Table III for
asymmetric matter. As in Sec. III we set kn

F = 1.157 k
p

F and
show the results for k

p

F = 213 MeV and k
p

F = 241 MeV, which
corresponds to densities of around ρ0/2 and ρ0, respectively.

Three iteration steps are shown, with step 0 being the
self-energy without iteration. Comparing the size of �S from
Figs. 6 and 7 with m2

π from the propagator show that the result
is expected to change only little. Indeed, the iteration converges
rapidly and changes are small. At this point one can improve
the calculation by evaluating the s-wave pion self-energy not
in the approximation (q0 = mπ, q = 0) as in Eq. (19), but with
the full q0, q dependence: It is known, at least for the vacuum
case, that the isoscalar πN amplitude is small at threshold
but then grows rapidly at finite scattering energies. By taking

only the q0 dependence (since the q dependence is small) the
self-consistent calculation delivers indeed a larger change than
before, amounting to about 10% of the additional repulsion at
ρ = ρ0/2.

IV. HIGHER ORDER CORRECTIONS OF THE
ISOVECTOR INTERACTION

In this section additional corrections are introduced that
go beyond the medium modifications from Sec. II A, namely
medium corrections affecting the kernel of the Bethe-Salpeter
equation itself. In our model the kernel is given by the
Weinberg-Tomozawa isovector πN → πN transition and the
NLO isoscalar πN → πN transition. Considering vertex cor-
rections of the rescattering is advantageous because it allows
us to include higher order corrections to the Ericson-Ericson

TABLE III. Self-consistent treatment of the s-wave self-energy �S(q0 = mπ,

q = 0) in MeV2 for asymmetric matter for k
p

F = 213 MeV (left) and k
p

F = 241 MeV (right).
Three iteration steps are shown.

Re(�S)[213 MeV] Im(�S)[213 MeV] Re(�S)[241 MeV] Im(�S)[241 MeV]

Step 0 2470.4 −570.8 3423.6 −1233.8
Step 1 2503.9 −562.4 3491.3 −1207.4
Step 2 2504.3 −562.1 3492.2 −1205.8
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FIG. 8. The vertex tadpole at 1/f 4
π (diagram 1) and the corre-

sponding medium diagram at 1/f 6
π (diagram 1′).

rescattering piece, which is a large source of isoscalar strength.
The corresponding s-wave pion self-energy diagrams appear
at higher orders in density that are difficult to access through a
systematic expansion of the self-energy (see, e.g., Ref. [12]).
In this section we will consider the renormalization of the
Weinberg-Tomozawa interaction through vertex corrections.
In Sec. V similar changes to the NLO isoscalar piece will be
applied. From now on only symmetric nuclear matter will be
considered.

A. Tadpoles and off-shell contributions

In the vacuum the vertex renormalizations can be partly
absorbed in the coupling constant fπ . In the nuclear medium,
these diagrams should be explicitly taken into account.
Figure 8 (1) shows a tadpole diagram that involves a four-pion
nucleon vertex. In the free case, this term is accounted
for implicitly through a renormalization of the lowest order
Weinberg-Tomozawa term. However, in the medium the virtual
pion can be polarized by exciting ph or �h excitations and
this leads to diagram (1′) of Fig. 8. The difference between
these two terms should be considered a genuine many-body
correction.

A diagram with the same geometry but within a linear σ

model has been also proposed in Ref. [15]. The 4π2N vertex in
diagram (1) of Fig. 8 is obtained from the LO chiral Lagrangian
with two baryons,

L(2)
πN = i Tr [B̄γ µ[�µ,B]], (20)

with �µ expanded up to four meson fields,

�µ = 1

32f 4
π

[
1

3
∂µ��3 −�∂µ��2 +�2∂µ��− 1

3
�3∂µ�

]
,

(21)

where � is the standard SU(2) representation of the
pion field, �11 = 1/

√
2π0,�12 = π+,�21 = π−,�22 =

−1/
√

2π0. For the process π−n → π−n where the external
pions have on-shell momenta k, k′ diagrams (1) and (1′) are
given by

V
(1), (1′)
π−n→π−n = − 5

48

1

f 4
π

(k0 + k′0)

√
Ei + Mi

2Mi

√
Ej + Mj

2Mj

× i

∫
d4p

(2π )4
D(1), (1′)(p), (22)

which can be approximated by k0 + k′0 = 2
√

s − Mi − Mj ,
with Mi,Mj and Ei,Ej the masses and energies, respectively,

of the incoming and outgoing nucleons i and j . In Eq. (22)
we have made the same s-wave projection as for the ordinary
πN → πN amplitude [31,54]. The meson propagators for
diagrams (1) and (1′) are given by

D(1) = 1

p2 − m2
π + iε

, D(1′) =
∫ ∞

0
dω

2ωSπ (ω, p, ρ)

(p0)2 − ω2 + iε
,

(23)

where Sπ is the pion in-medium spectral function from
Eq. (10). The contribution of the vertex correction can then
be written as a correction to the kernel V → V + δV of
the Bethe-Salpeter Eq. (6), where δV = V (1′) − V (1). This is
because D(1′) also contains D(1) and the vacuum diagram has
to be subtracted explicitly.

One can see from Eq. (22) that δV has explicitly order 1/f 4
π .

However, in Eq. (23) D(1′) − D(1) is of order 1/f 2
π (and higher

from ph,�h iterations in the spectral function Sπ ) since the
ph excitation p-wave pion self-energy is of order 1/f 2

π . Thus,
the correction δV is of order 1/f 6

π and higher.
By looking at other transitions such as π−p → π−p or

π−p → π0n, we observe that the vertex contributions from
Eqs. (20) and (21) are of isovector nature. This means that
one can absorb the vertex correction as a common factor in
the definition of fπ , as it appears in the isovector amplitude,
resulting in an in-medium renormalized f 2

π,med for the isovector
term,

b∗
1(ρ)

b1,free
≡ f 2

π

f 2
π,med(ρ)

= 1 + r

f 2
π

∫ ∞

0

dp p2

2π2

×
[
− 1

2η
+

∫ ∞

0
dω Sπ (ω,p, ρ)

]
, (24)

with r = −5/12 and η2 = p2 + m2
π . In Eq. (24), b∗

1(ρ) and
b1,free are the density-dependent isovector term and vacuum
isovector term, respectively. Although diagrams (1) and (1′)
are linearly divergent, their difference, which gives the medium
correction, is not; thus, the p integration in Eq. (24) is well
defined. Note that casting the vertex correction as a correction
to the coupling fπ in Eq. (24) is just for convenience. For
example, for the πNN p-wave coupling, where fπ also
appears, such a procedure does not apply. Hence, the warning
here is that one should be careful not to talk about a universal
renormalization of fπ . It is worth noting that, for ρ = 0, the
vacuum spectral function is given by

Sπ (ω,p, ρ) → 1

2η
δ(ω − η). (25)

We observe that the integral in Eq. (24) indeed vanishes for
ρ = 0.

Next, we turn to another kind of contribution. In the on-
shell reduction scheme of the πN amplitude from Ref. [31]
the on-shell and off-shell parts of the πN loop are separated
and it can be shown that the off-shell part can be absorbed
in the coupling of the πN interaction [49]. However, in the
nuclear medium, this is no longer the case and one has to take
the off-shell part explicitly into account. In the free case, the
off-shell part in the vertices of the rescattering diagram (2)
and the crossed diagram (3) in Fig. 9 cancel the intermediate
nucleon propagator in the heavy-baryon limit, leading to a
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FIG. 9. Additional medium renormalizations at 1/f 6
π and higher.

Off-shell parts of direct and crossed terms are indicated in diagrams
(2) and (3), respectively, and renormalization of the pion propagator
and additional vertex correction with a loop in the t channel in
diagrams (4) and (5), respectively. The shaded circles indicate
resummed insertions of ph,�h pion p-wave self-energies in the pion
propagator, including NN,N�, and �� short-range correlations.

diagram with the same structure as (1) in Fig. 8. As an example
we consider π−n → π−n scattering via a π−n loop as shown
in diagram (2) in Fig. 9. The amplitude is then, with k = k′
(p) the momentum of the external π− (external neutron) and
q the momentum of the π− in the loop,

V
(2)
π−n→π−n = i

∫
d4q

(2π )4

MN

E(q)

(
k0 + q0

4f 2
π

)2

× 1

k0 + p0 − q0 − E(q) + iε

1

q2 − m2
π + iε

.

(26)

By using the heavy-baryon approach p0 − E(q) ∼ 0 and
expanding the numerator as (2k0 + q0 − k0)2 = 4(k0)2 +
4k0(q0 − k0) + (q0 − k0)2, the on-shell part is given by the
4(k0)2 term. For the other terms, the baryon propagator is
canceled and Eq. (26) reads

V
(2)
π−n→π−n ≈ VonGπNVon + (2k0)

( −3i

32f 4
π

)

×
∫

d4q

(2π )4

1

q2 − m2
π + iε

, (27)

with Von the usual on-shell transition π−n → π−n and GπN

the π−n loop function. In Sec. II A medium corrections have
been applied to the first term in Eq. (27), the on-shell one-loop
rescattering. The second term is the product of the usual πN

on-shell amplitude times a pion tadpole and has, thus, the
same structure as diagram (1) of Fig. 8. The remaining pion
tadpole is dressed in the way it is done for diagram (1′) of
Fig. 8 and the vacuum tadpole is subtracted; the result can
again be expressed in a renormalization of fπ in Eq. (24),
this time with r = −3/8. The crossed term in π−n → π−n

scattering via one loop is displayed in Fig. 9 (3). Note that the
intermediate states are in this case π+n and π0p. Evaluating

the off-shell parts as before, we again obtain the structure of
tadpole and on-shell scattering of diagram (1′). By summing
both off-shell parts from diagrams (2) and (3) the result can be
cast in a modification of fπ as in Eq. (24) with r = +3/4. The
calculation is repeated for the other coupled channels π−p →
π−p, π−p → π0n, and π0n → π0n and it is interesting to
note that the off-shell parts of the one-loop amplitude have
pure isovector character. This is in contrast to the on-shell
one-loop amplitude with two pure isovector scatterings that
results in a mixture of isovector and isoscalar contributions.

In addition we have to consider structures as in Fig. 9 (4),
(5) at the same order in fπ and density. For the tadpole pion
self-energy in diagram (4) of Fig. 9 we consider the process
π−n → π−n with the external pions at momentum k and the
ππ vertex given by the LO chiral Lagrangian. The vacuum
π− self-energy of this external pion line consists of charged
and neutral pion loops and can be written as

(−i�) = 1

6f 2
π

∫
d4p

(2π )4

[
4
(
p2 − m2

π

) + 4
(
k2 − m2

π

) + 5m2
π

]
× 1

p2 − m2
π

. (28)

We have written the momentum structure from the ππ vertex
in a form where it becomes visible that the first and third terms
contribute to the pion wave function renormalization. These
terms can be incorporated in the free pion mass. Continuing
with the free case, we see that the pion tadpole (4) can appear
attached to an intermediate pion in the rescattering scheme
(see Fig. 1). In this case, one of the two intermediate pion
propagators of momentum k cancels the k2 − m2

π structure
of the second term in Eq. (28). As a consequence, a tadpole
attached to the πN vertex results, with the structure of diagram
(1) in Fig. 8. The medium corrections arise then from the
dressing of the pion as displayed in diagram (1′).

However, the pion tadpole (4) from Fig. 9 can also appear in
an external pion line of the rescattering displayed in Fig. 1. In
this case, the first and third terms of Eq. (28) contribute to the
external pion wave function renormalization in the medium.
In other words, this is a reducible diagram, because two pieces
are separated by a pion propagator. In the search for pion
self-energy terms we must only look for irreducible diagrams.
However, the second term in the brackets is special because it
exactly cancels the pion propagator (k2 − m2

π )−1, leading to a
genuine irreducible diagram, that must be taken into account
and is of the tadpole type of Fig. 8 (1′).

Inserting the pion tadpole in this way in internal as well as
external pion lines gives the corresponding δV (4) from Fig. 9
(4) as

δV (4) = 1

k2 − m2
π

(
2k0

4f 2
π

) (
k2 − m2

π

) 2

3f 2
π

× i

∫
d4p

(2π )4
(D(1′) − D(1)), (29)

which, by analogy to the terms calculated before, can be recast
into a renormalization of fπ (for the purpose of the isovector
term) given in Eq. (24) with r = 2/3. In this case the isovector
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character is obvious as the pion self-energy is the same for all
charge states of the pion.

Note that there should be a symmetry factor of 2 as one can
insert the pion tadpole also at the other pion line in diagram (4).
However, if the pion self-energy is inserted in an intermediate
πN loop of the rescattering series, this symmetry factor is not
present—each intermediate pion has only one pion self-energy
insertion. Note that for the contribution from inserting the pion
tadpole in an external pion line of the rescattering scheme of
Fig. 1 there is a factor 1/2 to be taken into account in the
wave function renormalization when considering the adiabatic
introduction of the interaction [62]. In light of this, it is easy
to see that Eq. (29) already takes correctly into account all
multiplicity factors.

B. Loop corrections in the t channel

For the vertex correction (5) in Fig. 9 we consider the
process π−p → π−p. The loop of the vertex correction is
charged, because a neutral pion in the loop cannot couple to
the Weinberg-Tomozawa term. The diagram will be evaluated
for forward scattering k = q, which simplifies the calculation.
(This kind of approximation will be made several times and
is discussed further in the following.) Then, the vacuum
amplitude for π−p → π−p is given by

(−it)(5) = − 1

6 f 4
π

∫
d4p

(2π )4
D2(p) p0

× (
p2 + 6 pq + q2 − 2 m2

π

)
. (30)

The pion propagators D(p) are given by Eq. (23). The
term p0 comes from the Weinberg-Tomozawa vertex and the
momentum structure in parentheses is from the ππ vertex with
momentum q for the external pions. By symmetric integration,
the only nonvanishing structure is given by the combination
6(p0)2q0. As an explicit calculation shows, this one-loop
correction is again of isovector type.

For the vertex correction in the nuclear medium, one of
the propagators D in Eq. (30) is dressed according to D2 →
D(1) D(1′) with the definitions from Eq. (23). Then, a factor of
2 is supplied to account for the two possibilities of inserting
the medium dressing in either of the intermediate propagators.
We have checked this approximation by performing the full
calculation with medium dressings in both propagators, which
leads to negligible higher order corrections.

A straight evaluation of diagram (5) along the lines used
for the other diagrams gives a contribution of the same size
as the others. However, it is easy to see that this would
be a gross overestimation. The contribution from diagram
(5) can be disregarded as shown in the following. First, the
Weinberg-Tomozawa term, extrapolated to the high energies
p0 involved in the loop, is a gross overestimation of the
actual isovector πN amplitude. To quantify this, the isovector
amplitude from the unitary coupled channel model has been
evaluated, with the set of parameters given by the right column
of Table II. This provides a realistic amplitude up to the region
of the N∗(1535). Second, the (momentum-dependent) ratio of
the isovector amplitude of this model to the amplitude from
the Weinberg-Tomozawa interaction has been determined.

This ratio can be well approximated by a scale factor

FI (p) = 
1√

2

2 + p2
, (31)

with p the c.m. πN three-momentum, 
1 = 225 MeV, and

2 = 200 MeV. By including this scale factor, the medium
contribution from diagram (5) is given by

δV (5)

VWT
= 2

f 2
π

∫ ∞

0

dp p2

2π2
FI (p)

×
(

− 1

2η
+

∫ ∞

0
dω

2ω

η + ω
Sπ (ω,p, ρ)

)
, (32)

where we have additionally divided by the Weinberg-
Tomozawa term VWT.

We have calculated diagram (5) in the forward-scattering
limit, and furthermore assuming the external pions at rest.
This overestimates the contribution, as is easy to see: Consider
diagram (5) where one external pion line corresponds to the
pion at rest in the nuclear medium whereas the other pion line is
in a rescattering loop. Then, one pion is at momentum (mπ, 0)
whereas the pion in the loop can take high values of q0, q.
For a typical loop momentum of |q| = 1 GeV this momentum
mismatch leads to a reduction of a factor of around 2 for the
diagram. Together with the scale factor from Eq. (31), this
additional reduction renders the contribution from diagram (5)
small, smaller than the theoretical uncertainties (which will be
summarized in Sec. IV F). Thus, diagram (5) is neglected.

In Fig. 10 another in-medium diagram is shown with
a ph or �h directly coupling to three pions. The 3πNN

interaction is obtained from an expansion of the part with
D, F of the LO chiral πN Lagrangian up to three pion
fields [63,64]. This interaction provides terms of the form
σ · p and σ · q, with the three-momenta p, q of the loop and
the external pions, respectively. As the leading term of the
Weinberg-Tomozawa interaction is of the form p0, the diagram
vanishes by symmetric integration.

In the following we discuss another type of loop corrections
in the t channel, the diagrams of Fig. 11. The sum of the two di-
agrams involves the contribution Ud (q0 + k0) − Ud (q0 − k0),
with Ud the Lindhard function for only forward-going bubbles.
Terms involving this combination are found to be very small
in Appendix B of Ref. [65] and we do not consider them.

We do not consider self-energy insertions in the nucleon
lines. The reason is that summing over occupied states
in Eq. (5) corresponds to a ph excitation; a local self-energy
in the particle and the hole lines cancels in the ph propagator.
We will return to this question in Sec. VI.

n

π−k

n

p

π−q

FIG. 10. Loop in the t channel with a different ph insertion.
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,
n

π−k

n

π−qπ−q

hole

π−k

,
n

π−k

n

π+qπ+q

π−k

hole

FIG. 11. Additional vertex corrections. The two diagrams come
with a relative minus sign because of the isovector character of the
πN s-wave interaction.

C. Vertex corrections from π N N and π N� related terms

Another renormalization of the isovector amplitude is
shown in Fig. 12. The diagram exhibits two p-wave πNN

vertices; the same, important, short-range correlations between
ph and �h that are included in the dressed pion propagator [see
Eq. (11)] should also be taken into account between a p-wave
vertex of the diagram and the adjoint ph or �h insertion
in the pion propagator. The inclusion of these short-range
correlations (SRC) is most easily achieved by decomposing
the pion self-energy in longitudinal and transversal parts Vl

and Vt . The matter part of the diagram after the vacuum loop
is subtracted, divided by the tree-level Weinberg-Tomozawa
term VWT, is given by

δV
(12)

SRC

VWT
= −i

∫
d4p

(2π )4

(
MN

EN (p)

1

MN − p0 − EN (p) + iε

)2

×
(

− θ (kF − |p|) [
(Vl(p

0, p) − Vt (p
0, p)

]
+ θ (|p| − kF )

[
Vl(p0, p)

1 − U (p0, p)Vl(p0, p)

+ 2 Vt (p0, p)

1 − U (p0, p)Vt (p0, p)
− Vl(p

0, p)

− 2 Vt (p
0, p)

] )
, (33)

where

Vl(p
0,p) =

(
fπNN

mπ

)2

F 2(|p|)
(

p2

(p0)2 − p2 − m2
π + iε

+ g′
)

,

(34)

Vt (p
0, p) =

(
fπNN

mπ

)2

F 2(|p|)g′,

q

k

p

q − p q − p

k

q

FIG. 12. Additional vertex corection. Dressing the pion and
introducing Pauli blocking for the intermediate nucleans gives a
density-dependent correction of the isovector amplitude.

and U is the sum of ph and �h Lindhard functions, U =
UN + (fπN�/fπNN )2 U�. The monopole form factor F and the
Migdal parameter g′ have been already defined in Sec. II B.
The term with θ (kF − p) accounts for the small correction
from Pauli blocking of the intermediate nucleons without any
modification of the pion, whereas the term with θ (p − kF )
comes from diagrams with pion polarization through ph and
�h insertions.

The p0 integration is performed numerically. There is one
technical complication resulting from the nonanalyticity of
the � width in the �h Lindhard function (step function
�(

√
s − MN − mπ ); see the appendix of Ref. [59]). This leads

to unphysical imaginary parts in δV from the p0 integration;
the � width is, thus, set to zero for this diagram. The additional
short-range correlations reduce the contribution from the
diagram strongly. This is in agreement with findings from
Ref. [63] in the study of similar in-medium corrections for the
isoscalar NN interaction.

The intermediate nucleons shown in Fig. 12 can also be
excited. Close to threshold, even if it is off-shell, the �(1232) is
important, as we will see. The corresponding vertex correction
is shown in Fig. 13. For the π� → π� interaction we take
the Weinberg-Tomozawa interaction of isovector type from
Ref. [66] in the s-wave approximation of Ref. [67].

As in case of the corresponding diagram with nucleons
as just discussed, the introduction of additional SRC for the
two πN� vertices is important; using the same projection
technique as before gives the result

δV
(13)

SRC

VWT

= i
20

9

(
fπN�

fπNN

)2 ∫
d4p

(2π )4

(
1

MN − p0 − E� + iε

)2

×
[

Vl(p0, p)

1 − U (p0, p)Vl(p0, p)
+ 2 Vt (p0, p)

1 − U (p0, p)Vt (p0, p)

−Vl(p
0, p) − 2 Vt (p

0, p)

]
, (35)

with Vt , Vl from Eq. (34), where MN (M�) is the nucleon
(�) mass, F is the monopole form factor for the off-shell
pions at the πN� vertices, and fπN� = 2.13 is the strong
coupling of � to πN . An explicit evaluation of different charge
states shows that the corrections from the diagrams of Fig. 12
and 13 are of pure isovector nature.

q

k

p

q − p q − p

k

q

FIG. 13. The � as intermediate baryon in π−p → π−p scatter-
ing. The π� vertex is in the s-wave and is taken from Ref. [67].
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As before, the additional short-range correlations reduce
the contribution from this diagram. The ratio δV

(13)
SRC/VWT can

reach values up to 0.4 at ρ ∼ ρ0 (and still 20% at ρ ∼ ρ0/2).
A slight modification of Eq. (35) comes from the fact that the
πN� vertex, S · p, implicitly used in Eq. (35), is defined in
the � rest frame; one has to boost the pion momentum to this
frame. This leads to a reduction of the contribution by a factor
of 0.68; yet the correction is large.

In contrast to the case of the πN scattering where we
shall be able to also get many-body vertex corrections to
the isoscalar part from NLO terms (see Sec. V), we have
no control over the isoscalar π� interaction that accompanies
the isovector one. It is, thus, inconsistent to consider only
the isovector π� interaction as done here to see the effects
on the πN isoscalar part through rescattering. Thus, we shall
not include this corrections when evaluating the isoscalar part
coming from πN rescattering and shall bear in mind that we
have uncertainties from this source in the πA isoscalar optical
potential.

Additionally, there is a momentum mismatch if one of the
external pion lines of Fig. 13 corresponds to an external pion
at rest whereas the other pion line is inside a rescattering loop.
This mismatch affects the intermediate � propagators; for a
typical loop momentum of q = 1 GeV, the diagram is reduced
by another factor of about 2.5. Altogether, we attribute to this
source an increase of b1 from 10% to 20% at ρ = ρ0, accepting
this band as theoretical uncertainty.

D. Triangle diagrams

There is another family of diagrams displayed in Fig. 14.
As indicated in the figure, it is enough to calculate the diagram
on the right-hand side with the ππ vertex taken at its on-
shell value in the sense that, whenever p2 appears in the ππ

amplitude, it has to be replaced by m2
π . This is equivalent

to calculating the same diagram on-shell plus off-shell, plus
the set of other diagrams displayed on the left-hand side of
Fig. 14. This has has been shown in Refs. [63,64] and has
been verified again in the present study for the limit of zero-
momentum exchange, which is also the limit taken here for
all vertex corrections. Such cancellations were first shown by
Refs. [68,69] in the problem of ππ scattering in the nuclear
medium.

For the calculation, we consider first the reaction π−p →
π−p. For this configuration of external particles we can have
charged or neutral pions for the loop lines. By summing both

possibilities and inserting a factor of 2 from the medium
correction in either internal pion line, the medium amplitude
takes the form

T (14,d) = 2i(D + F )2

3f 4
π

∫
d4p

(2π )4
F 2(|p|) p2 MN

E(p)

×
∫ ∞

0
dω

2ω Sπ (ω,p, ρ)

(p0)2 − ω2 + iε

1

(p0)2 − η2 + iε

× 1

p0 + MN − E(p) + iε

(
3p0k0 + 3

4
m2

π

)
, (36)

where the momentum of the external (internal) pions is k (p),
respectively. Again, we take the limit of forward scattering
and, moreover, that the external pions and nucleons are at
rest. In Eq. (36), E(p) =

√
M2

N + |p|2 is the nucleon energy.
There is also a form factor F (|p|) for the off-shell pions in the
πNN vertex and the factor MN/E(p) from the nonrelativistic
reduction of the nucleon propagator.

A straightforward calculation reveals that the term 3p0k0

is of isovector nature, whereas the contribution with 3/4 m4
π is

isoscalar. In the heavy-baryon approximation we can neglect
MN -E(p) in the baryon propagator and in this limit the
isoscalar term cancels because of symmetric integration. We
are left with a purely isovector contribution in which the p0

from the numerator cancels the baryon propagator in the
heavy-baryon limit; the correction is given by

δV (14,d) = −(2k0)
(D + F )2

f 4
π

∫ ∞

0

dpp2

2π2
p2F 2(p)

MN

E(p)

1

η

×
(

−θ (kF − p)

8η2
+ θ (p − kF )

×
[
− 1

4η2
+

∫ ∞

0
dω

Sπ (ω,p, ρ)

η + ω

])
. (37)

The term with θ (kF − p) accounts for the small medium
correction from Pauli blocking of the intermediate nucleon
but without any modification of the pion, whereas the term
with θ (p-kF ) contains all diagrams with pion polarization.

In Fig. 15 we plot the analogous diagrams of Fig. 14 but
with a � intermediate state, instead of a nucleon. The same
type of off-shell cancellation found for the diagrams in Fig. 14
also holds here as has been shown in Refs. [63,64] for a
similar configuration. This means, with p (k) being the loop
momentum (external momentum), p2 → m2

π , k2 → m2
π , and

pk → p0k0 (i.e., the term pk is not affected by the off-shell

q

k

q + p q

k

p

(on-shell + off-shell)

q

k

q + p q

k

p

q

k

q + p

k

q

p
=++

(on-shell)

q

k

q + p q

k

p

(d)(c)(b)(a)

FIG. 14. Triangle diagrams. The labels “off-shell” and “on-shell” refer to the ππ vertex. Diagram (b) is complemented with a diagram
with the ph insertion in the other internal pion line. Diagram (c) is complemented with a diagram that has the loop on the other side of the πN

vertex.
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q

k

q + p q

k

p

(on-shell + off-shell)

q

k

q + p q

k

p

q

k

q + p

k

q

p
=++

(on-shell)

q

k

q + p q

k

p

(d)(c)(b)(a)

FIG. 15. Additional set of triangle diagrams with �(1232). The labels “off-shell” and “on-shell” refer to the ππ vertex. Diagram (b) is
complemented with a diagram with the ph insertion in the other internal pion line. Diagram (c) is complemented with a diagram that has the
loop on the other side of the πN vertex.

cancellation). In the last substitution, the integration over the
spatial part pk vanishes.

By including a factor of 2 from the medium correction in
either pion line, the correction for π−p → π−p is

δV (15,d) = − 4 f ∗2
πN�

9 f 2
π m2

π

∫ ∞

0

dpp2

2π2
F 2(p)

p2

η

×
(

−m2
π (MN − E� − 2η) − 2η2 k0

2η2 (MN − E� − η)2

+
∫ ∞

0
dω

Sπ (ω,p, ρ)

ω + η

× 2m2
π (MN − E� − ω − η) − 4 ωη k0

(MN − E� − η)(MN − E� − ω)

)
. (38)

Here, E� is the �(1232) energy. As an explicit calculation
shows, the term with 2m2

π inside the ω integral is of isoscalar
nature whereas the term with k0 is of isovector nature. This
means that the term with 2m2

π is the same for all channels
of our coupled channel approach whereas one has to multiply
[δV (15,d)] by −1,−√

2, and 0 for π−n → π−n, π−p → π0n,
and π0n → π0n, respectively. Because nucleon and � mass
are nondegenerate, the isoscalar part does not cancel, as had
been the case for the diagrams of Fig. 14.

In Eq. (33) we have already seen an example for additional
SRC: Between the nucleon emitting a pion and the ph or
�h medium insertions in the pion propagator, there are also
SRC. If this is the case for both ends of the pion propagator,
the substitution of the pion propagator Dπ is given by the
projection technique employed in Eq. (33). In the triangle
diagrams, there is only one side of the pion line affected and the
additional SRC can be cast in a substitution of the in-medium
pion propagator D(1′) from Eq. (23) according to

D(1′) → D(1′) × 1

1 − g′
(

D+F
2fπ

)2
F 2(p)U

, (39)

as an explicit calculation shows. This does not affect the off-
shell cancellation behavior discussed before. Remember that
we always use the same Migdal parameter for NN and N�

SRC. Although the contributions from Eqs. (37) and (38) are
sizable, they are suppressed by a factor of 5 by the additional
SRC from Eq. (39). In the final numerical results they introduce
a small correction.

E. Isovector correction from the NLO π N interaction

The Weinberg-Tomozawa term is also renormalized by
higher orders in the isoscalar πN interaction. A correction
of this type comes from the nucleon tadpole in the pion
propagator shown in Fig. 16. The πN interaction of the tadpole
is from the s-wave isoscalar interaction from the NLO chiral
Lagrangian whereas the other πN interaction is given by the
Weinberg-Tomozawa term. The nucleon tadpole with isovector
interaction vanishes in symmetric nuclear matter.

The isoscalar πN interaction in the NLO order is given
by [46]

tπN = 4 c1

f 2
π

m2
π − 2 c2

f 2
π

(k0)2 − 2 c3

f 2
π

k2

=
(

4 c1

f 2
π

m2
π − 2 c2

f 2
π

ω(k)2 − 2 c3

f 2
π

m2
π

)

− 2c2 + 2c3

f 2
π

(
k2 − m2

π

) = ton
πN + toff

πN . (40)

Here the interaction has been separated into on-shell and
off-shell parts [70] [the latter term with (k2 − m2

π )]. For the
nucleon tadpole in Fig. 16, the off-shell part of the self-energy
is given by � = −(2c2 + 2c3)(k2 − m2

π )ρ/f 2
π . The entire

diagram is then given by

V (16) = −tπN→πN

2c2 + 2c3

f 2
π

(
k2 − m2

π

)
D(k)ρ, (41)

where tπN→πN is the isovector interaction from the Weinberg-
Tomozawa term and D(k) is the intermediate pion propagator,
which cancels the term (k2 − m2

π ) from the isoscalar vertex.
This means a vertex renormalization by a similar mechanism
as we have already seen for diagram (4) in Fig. 9 and

δV (16)

VWT
= −2 c2 + 2 c3

f 2
π

ρ. (42)

n

π−k

n

k

p

π−k′

FIG. 16. Nucleon tadpole in the pion propagator with NLO chiral
πN interaction.
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For the numerical evaluation we use the values of the c

coefficients of the fit 2† from Ref. [52]:

c1 = −0.35 ± 0.1 GeV−1, c2 = −1.49 ± 0.67 GeV−1,

c3 = 0.93 ± 0.87 GeV−1. (43)

It would be more consistent to use the values of the present
fit in Table II instead. However, in the present model we have
only access to c2 and the combination 2c1 − c3. In Eq. (42) the
c coefficients are combined in a different way, and we have to
resort to the values of Ref. [52]. In any case the values from
Eq. (43) are compatible within errors with ours from Table II
(see also Ref. [31]). For an estimate of the theoretical error,
we can also use the c values from fit 2∗ instead of 2† [52].
This induces a theoretical error of the order of 20% for the
contribution, which by itself is smaller than other diagrams.

For the on-shell part of the interaction in Eq. (40) we notice
that the intermediate pion propagator, between the nucleon
tadpole and the Weinberg-Tomozawa vertex, does not cancel.
This means that the on-shell nucleon tadpole contributes to the
pion self-energy and not to the vertex renormalization and
hence, if it is an external pion line, it will be automatically
considered when solving the Klein-Gordon equation for pions
with the proper self-energy and must not be included as a
genuine new contribution. When this part of the tadpole occurs
in internal lines, compared to the p-wave pion self-energy, the
s-wave self-energy is small and can be neglected, as we have
also seen in the self-consistent calculation in Sec. III.

F. Results for the isovector renormalization

For all corrections evaluated in Sec. IV, the vertex
corrections can be recast as a correction to the isovector
interaction strength b∗

1(ρ) or, in other words, an in-medium
change of fπ . Note that we refer to the fπ that appears in
the Weinberg-Tomozawa term of Eq. (3); we do not claim a
universal change of fπ in the nuclear medium [see also the
caveat following Eq. (24)]. For example, Eq. (24) gives the
renormalization of b1 vac/b

∗
1(ρ) from diagrams (1) to (4) of

Figs. 8 and 9 with an overall value of r = 1. Including these
diagram as well as all other isovector corrections found gives
the plot of in-medium change of b1 in Fig. 17.

The result in Fig. 17 is given at 
 = 0.9 GeV for the
monopole form factor that appears in the ph and �h pion
self-energies of the vertex corrections [see Eqs. (11), (34), and
(39)]. The dependence on 
 is moderate and at 
 = 1 GeV
b∗

1(ρ)/b1,free is increased by another 10%. With the decrease
of fπ in the medium the isovector πN interaction effectively
increases, in quantitative agreement with a recent analysis of
deeply bound pionic atoms [26] and the phenomenological fit
from Ref. [22] and the analysis of πA scattering from Ref. [71].
There is also qualitative agreement with other theoretical
works [13,25], which are justified in a different way, without
the thorough many-body study done here.

In Fig. 17 we give a band of values for our results of b1,
including the uncertainties discussed earlier from the diagram
of Fig. 13, plus a 20% extra uncertainty from the dependence
on the form factor. We can see that the band overlaps with the
experimental band of Ref. [26].

0.25 0.5 0.75 1
ρ / ρ

0

0.5

0.6

0.7

0.8

0.9

1

b 1,
 f

re
e / 

 b
1* (ρ

)

Suzuki et al.
Nieves et al.
Friedman et al.
Meissner et al.

dark band: this study

FIG. 17. (Color online) In-medium isovector b∗
1(ρ) compared to

the vacuum isovector term b1,free. The gray band from Suzuki et al.
[26] is from a phenomenological fit as is the point from Nieves
et al. [22]. Also shown are chiral calculations from Meißner et al. [25]
and Friedman et al. [71] (including those of Weise [13]).

After studying vertex corrections of isovector type in this
section, next we turn to study vertex corrections of isoscalar
type and their effects in the isoscalar optical potential.

V. RENORMALIZATION OF THE NLO ISOSCALAR TERM
IN π N SCATTERING

The model from Ref. [31] for the πN interaction in vacuum
has two sources for isoscalar contributions, one from the
NLO, pointlike interaction from Eq. (4) and the other from
the isovector term in the rescattering of the pion generated in
the Bethe-Salpeter equation. In fact, the latter is quite large,
being bg = 442 × 10−4 m−1

π (see Table VII from Ref. [31]).
This large contribution is partly canceled by the NLO contact
term from Eq. (4), which is bc = −336 × 10−4 m−1

π , leading
to a final value of b0 = −28 × 10−4 m−1

π .
For the application of the model in nuclear matter this partial

cancellation has consequences. Renormalizing the isovector
strength changes the in-medium isoscalar term through the
rescattering piece. Then, the sum of this term and the pointlike
NLO interaction will no longer show the partial cancellation
of the vacuum case. It is therefore important to treat the
NLO isoscalar term on the same footing as the isovector
renormalization.

It is easy to see what the effects of the increase of b1 will be
in the isoscalar part of the potential. Indeed, if one cared only
about Pauli-blocking corrections in the intermediate nucleons,
the effect would be given by Eq. (16) with an increased b1,
thus leading to an increased isoscalar repulsion. However,
the πN rescattering term with no Pauli blocking, which is
larger, has opposite sign (see the sign of bg). Hence, the net
effect of increasing b1 in the medium, including Pauli-blocking
corrections, is a net attraction, with opposite results to a
naive implementation of the b1 changes in the Ericson-Ericson
formula of Eq. (16). In some analyses of data [71] the
needed repulsion is obtained by using the Ericson-Ericson
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Pauli-blocking correction, Eq. (16), with the increased b1. This
is one empirical way to implement repulsion, but from the
theoretical point of view one should evaluate the full πN t

matrix in the medium, not just the Pauli correction to it, and
this means that the problem of the missing repulsion becomes
more acute.

The diagrams from the previous section will serve as
guidelines for the renormalization of the NLO isoscalar. We
do not redraw these diagrams, but the πN → πN contact
interaction is now given by the NLO isoscalar term instead of
the LO Weinberg-Tomozawa isovector term.

A. Tadpole and off-shell contributions

We start with the pion tadpole (1) from Fig. 8. The NLO
isoscalar Lagrangian has to be expanded to four pion lines to
provide the 4π2N vertex needed in this diagram. As shown
in the following, to this end we can utilize the in-medium
Lagrangian derived in Refs. [72–75] (see also Refs. [70,76])
by taking the mean-field approximation for the nucleon field.
The terms with a medium correction ρ of the nuclear density
read

〈L〉 = 1
2 ρ(c3 Tr [∂U∂U †] + c2 Tr [∂0U∂0U

†]

+ c1 Tr [U †χ + χ †U ]) (44)

by keeping only the isoscalar terms, which are parametrized in
terms of c1, c2, and c3. Expanding this term up to four external
pion lines leads to a ππ vertex with a nucleon tadpole, as
displayed in Fig. 18 to the left. Contracting two of the pion
fields leads to a diagram that appears as a pion self-energy
with a pion tadpole and a nucleon tadpole, as displayed in the
center of Fig. 18.

For a π− this self-energy is given by

�(18) = 2ρ

3f 4
π

i

∫
d4p

(2π )4
D(p)

×
(

2c3(k2 + p2) + 2c2[(k0)2 + (p0)2] − 5

2
c1 m2

π

)
,

(45)

with the pion propagator D(p) and the momenta as assigned
in Fig. 18 (center). The Lagrangian of Eq. (44), as well as
its related one of Eq. (4), are meant to be used at very low
pion energies and their extrapolation to high momenta is not
justified. Actually, in the study of πN of Ref. [31], where an
extrapolation to energies about 400 MeV above πN threshold

was done, the exponential damping factor of Eq. (4) was
demanded by a fit to the data. Hence, we make here the sensible
choice of setting p2 = (p0)2 = m2

π in Eq. (45). Although this
certainly introduces some uncertainties, these are still small
compared with larger sources of uncertainties that we shall
discuss in the following.

Note the appearance of the nuclear density ρ in Eq. (45):
The self-energy is of the type tρ with a matrix element t

that can be extracted by opening the nucleon line of the
nucleon tadpole, meaning the division of Eq. (45) by ρ. This
is displayed to the right in Fig. 18. The resulting diagram is a
πN vertex correction with the same geometry as diagram (1)
in Fig. 8 but using the NLO isoscalar interaction for the 4π2N

vertex.
Next, we proceed as in the diagrams of Fig. 8, including

ph,�h, and short-range correlations in the pion propagator
of the third diagram of Fig. 18 and subtracting the free part of
this πN t matrix. This gives a genuine many-body correction,
along the lines of Eq. (24) but of isoscalar character. As a
result, the isoscalar vertex correction for the coupled channels
i, j reads

δV
(18)
ij = δij

3f 4
π

∫ ∞

0

dpp2

2π2

∫ ∞

0
dω

(
Sπ (ω,p, ρ) − δ(η − ω)

2η

)
× [

m2
π (8c3 + 4c2 − 5c1) + c2(2k0)2

]
. (46)

The in-medium correction from Eq. (46) has to be added to the
kernel of the Bethe-Salpeter equation (6). The term with Sπ

corresponds to the dressed pion propagator as in diagram (1′)
of Fig. 8 and the term with δ(η − ω) to the vacuum diagram
(1), which is subtracted.

For diagrams (2) and (3) from Fig. 9, one or two of the
πN vertices can be given by the NLO isoscalar interaction:
The Bethe-Salpeter equation (6) iterates the kernel and allows
for any combination of isoscalar [see Eq. (4)] and isovector
vertices [see Eq. (3)] in the rescattering series. For two iterated
Weinberg-Tomozawa vertices we have already determined the
off-shell contributions from the direct and crossed terms;
for iterated isoscalar interactions we should do in principle
the same. However, the contributions are smaller and we
neglect them. The validity of this can be seen as follows: The
strength of the isoscalar interaction is bc = −336 × 10−4 m−1

π

[31], which is around one-third of the isovector strength.
A combination of two isoscalar vertices in πN rescattering
would, thus, approximately lead to an off-shell contribution
one-ninth that of the off-shell effect from the combination
of two isovector vertices studied before, and we can safely

k

p

k

p

k k

p

k k

p

FIG. 18. Pion-pion interaction with a nucleon tadpole from the NLO πN interaction (left). Closing one pion line produces a pion self-energy
of the tρ type (center). This t is a πN vertex correction (right), with the same geometry as diagram (1) in Fig. 8.
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neglect it. A combination of one isoscalar vertex and one
isovector vertex results in an overall isovector interaction and
is of no interest in the present case where only symmetric
nuclear matter is considered.

Diagram (4) from Fig. 9 renormalizes the NLO isoscalar
interaction in the same way as it affected the isovector
interaction studied before. This means δV

(4)
NLO/VNLO is given

by the right-hand side of Eq. (24), with r = 2/3 as before,
where VNLO is given by the second term in Eq. (4).

B. Loop corrections in the t channel

In diagram (5) of Fig. 9 the Weinberg-Tomozawa term can
be replaced by the NLO isoscalar interaction. We will consider
on-shell and off-shell parts of this interaction, given in Eq. (40),
separately.

1. On-shell part of the π N → π N vertex

We consider the process π−p → π−p and a charged pion
running in the loop. Then, the contribution from the on-shell
part of the NLO Lagrangian reads [see first term of the right-
hand side of Eq. (40)]

− iT
(5),on

NLO =
∫

d4p

(2π )4
(−itπN ) iD(p) iD(p)(−itππ )

= 1

3f 2
π

∫
d4p

(2π )4

4c1m
2
π − 2c3m

2
π − 2c2η

2

f 2
π

× 1

(p2 − m2
π + iε)2

(
p2 + 6pq + q2 − 2m2

π

)
,

(47)

with η2 = m2
π + p2 and D being the pion propagator as before.

We have taken here already the limit of forward scattering. The
last term comes from the ππ vertex with q the momentum of
the external pions. As we did before, we take the on-shell value
for the external pions q2 = m2

π and can substitute the last term
in Eq. (47) by (p2 − m2

π ), taking into account that the mixed
term 6pq vanishes because of the symmetric integration. As in
Sec. IV B we dress only one of the propagators to stay in line
with the other corrections evaluated (then, a multiplicity factor
of 2 appears according to the two possibilities of inserting the
in-medium correction in either pion propagator of the loop).
The propagators in Eq. (47) are then given by D2 → D(1) D(1′)
in Eq. (47) for the medium part and D2 → D2

(1) for the vacuum
part with D(1), D(1′) from Eq. (23).

The NLO πN amplitude in Eq. (47) has a term 2c2η
2 that

introduces additional powers of p in the integration. Although
the integral is still convergent, the value of the c2 coefficient is
only valid for small momenta, where it has been determined
in fits to low-energy πN scattering data [see Eq. (43)]. Once
more, in analogy to what was done following Eq. (45), we
replace 2c2η

2 → 2c2m
2
π in Eq. (47), taking thus the threshold

value of the NLO isoscalar interaction.
Furthermore, there is another off-shell cancellation, the one

of the ππ vertex. This is due to the additional diagram shown
in Fig. 10. In a similar way as in Refs. [63,64] (see also the

diagrams in Fig. 14), the diagram cancels the off-shell part of
the ππ interaction appearing in Eq. (47).

For the process π−p → π−p, the pion in the loop can
also be a π0. It is easy to see that the overall correction,
including all the intermediate pions with different charge, is
of isoscalar type by explicitly calculating other πN channels.
Taking all this into account, integrating the p0 component, and
subtracting the vacuum part from the medium part results in

δV
(5),on

NLO = −m4
π

f 4
π

(4c1 − 2c3 − 2c2)
∫ ∞

0

dpp2

2π2

1

η

×
[
− 1

4η2
+

∫ ∞

0
dω

Sπ (ω,p, ρ)

η + ω

]
. (48)

This is a tiny correction to the isoscalar renormalization, which
is neglected in the final numerical results.

2. Off-shell part of the π N → π N vertex

The off-shell part of the NLO isoscalar interaction is
renormalized in a way similar to before. By taking the
term with k2 − m2

π of Eq. (40), the vacuum amplitude for
π−p → π−p is in this case given by

− iT
(5),off

NLO = −2
2c2 + 2c3

f 2
π

1

3f 2
π

∫
d4p

(2π )4

1(
p2 − m2

π + iε
)2

× (
p2 − m2

π

) [(
p2 + 6pq + q2 − 2m2

π

)
+

(
p2 + q2 − 1

2
m2

π

)]
, (49)

where the external pions are again at momentum q and (p2 −
m2

π ) is the off-shell part of the NLO isoscalar vertex, which
cancels one of the propagators. In the square brackets, the
contributions from having a charged pion or a neutral one are
denoted separately. It is easy to see that the overall contribution
is again of isoscalar nature.

In the term (p2 + 6pq + q2 − 2m2
π ) from the ππ vertex,

the mixed product pq vanishes because of the symmetric
integration. The p0 integration is straightforward for both
vacuum and medium loops. The resulting medium correction
reads

δV
(5),off

NLO = −4
2c2 + 2c3

3f 4
π

∫ ∞

0

dpp2

2π2

[
−3m2

π

8η

+
∫ ∞

0
dω Sπ(ω,p,ρ)

(
ω2 − p2 − 1

4
m2

π

)]
. (50)

The factor (ω2 − p2 − m2
π/4) comes from on- and off-shell

parts of the ππ -vertex. As before, the off-shell part cancels
with the diagram from Fig. 10. Keeping only the on-shell part
of the ππ interaction, we can easily obtain the final result,
which is given in Eq. (50) with the replacement(

ω2 − p2 − 1

4
m2

π

)
→ 3

4
m2

π . (51)
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C. Further renormalizations of the isoscalar π N interaction

Next, we consider the diagram from Fig. 12, which is now
given by two πNN vertices and one π−N → π−N transition
from the NLO isoscalar interaction. The only change with
respect to the previous result from Eq. (33) is a change in
isospin factors. Indeed, consider the π−p → π−p amplitude
and the loops with π0p or π+n (see Fig. 12), implying
the πN → πN vertex to be π−p → π−p or π−n → π−n,
respectively. The isovector πN vertex has opposite sign in
these two cases, whereas the sign is the same for the isoscalar
amplitude. Hence, the contributions of the two loops add in the
case of the isoscalar correction but get subtracted in the case
of the isovector correction. Thus we obtain δV

(12)
NLO/VNLO =

−3 δV
(12)

SRC/VWT with δV
(12)

SRC/VWT given by Eq. (33).
Considering the nucleon tadpole in Fig. 16 makes it clear

that this correction renormalizes the isoscalar in the same way
as the isovector interaction because the tadpole factorizes with
the πN amplitude. Thus, the renormalization of the isoscalar
amplitude δV

(16)
NLO/VNLO is again given by the right-hand side

of Eq. (42).
When renormalizing the Weinberg-Tomozawa interaction,

we have also considered the diagrams in Fig. 11. They have
been found to be small as argued at the end of Sec. IV A
owing to the occurrence of the difference of Lindhard functions
Ū (q0 + k0) − Ū (q0 − k0). The minus sign was a consequence
of the isovector nature of the Weinberg-Tomozawa vertex.
However, if one replaces the Weinberg-Tomozawa vertices
at the bottom of the diagrams in Fig. 11 with isoscalar
ones, one obtains the combination Ū (q0 + k0) + Ū (q0 − k0).
This might result in a significant contribution. However,
as the following argument shows, we should not consider
this contribution as it would mean double counting: We
consider the diagrams in Fig. 11 with the nucleon line
closed. This corresponds to a contribution to the s-wave pion
self-energy. However, the resulting self-energy, let it be �(11,
is already generated in a different piece: Imagine the one-loop
rescattering of two isovector interactions. Now insert a nucleon
tadpole in the intermediate pion line, as displayed in Fig. 16.
Joining the external nucleon lines in this rescattering diagram

generates again the pion self-energy �(11). For similar reasons
of double counting we also discard vertex corrections that
occur when one replaces the vertices at the bottom of Fig. 11
with the NLO isoscalar interaction and, additionally, also the
other πN vertices.

Finally, let us remember that there is a small vertex correc-
tion to the isoscalar interaction from the triangle diagrams with
intermediate � of Fig. 15, which we have already discussed
and evaluated in Sec. IV D, Eqs. (38) and (39).

The sum of the isoscalar corrections calculated in this
section results in an increase of the NLO interaction, as shown
in Fig. 19. The right-hand side shows the δbNLO

0 , obtained
from the various corrections δVNLO of this section, divided
by b0 from the vacuum NLO isoscalar term given by the
second term of Eq. (4). The ratio is of similar size to that
of the isovector case shown in Fig. 17. On the left-hand side of
Fig. 19 we show again the NLO isoscalar b0 term for vacuum
and medium. Additionally, we plot the vacuum isoscalar term
from the rescattering of isovector interactions, indicated with
“b0 rescattering (vacuum).” This illustrates how these two
sources of isoscalar contribution almost cancel in vacuum.
When the full πN vertices are used in the rescattering, the
small “final b0 (vacuum)” appears, as required by the vacuum
data [31]. Figure 19 also shows that the isoscalar in-medium
vertex corrections, evaluated in this section, provide a large
source of repulsion (negative b0), even larger than the Ericson-
Ericson correction from Eq. (16), which is also shown in the
figure. In Sec. VII A we will test the final results of the medium
calculation for changes of the vacuum model. In particular,
we will perform refits requiring a smaller NLO isoscalar
vacuum term, which then also reduces the size of the isoscalar
contribution from rescattering (see Fig. 19). However, as will
be seen in Sec. VII A, the final results are stable under these
variations.

VI. METHODOLOGY OF THE EXPANSION

The diagrams introduced follow the standard approach of
field theory in which self-energy corrections as well as vertex
corrections are introduced in a perturbative expansion. Here,
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FIG. 19. In-medium isoscalar interaction showing different sources of isoscalar contributions (left; see text) and the fraction δbNLO
0 /bNLO

0 ,
actually calculated here, plotted as a function of kF (right).
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we want to discuss the methodology behind the expansion
done. Let us proceed step by step. The first step consisted
in developing an accurate model for the free πN scattering
amplitude in Sec. II. There, we have followed the standard
procedure of the chiral unitary approach. The Bethe-Salpeter
(BS) equation is used to ensure unitarity with a kernel derived
from chiral Lagrangians in which the lowest order and next-
to-lowest oder Lagrangians are considered. An expansion in
powers of momenta of the pion is done in the kernel of the BS
equation, and the BS equation resums the higher order terms,
just like in the Schrödinger equation starting with a potential,
ensuring the unitarity of the amplitude.

When this is done, the many-body expansion comes into
action. Attempts to perform a systematic many-body expan-
sion along standard lines of chiral perturbation theory have
been made in Ref. [25], but one automatically faces problems
ultimately tied to the fact that the many-body corrections
come from ph excitations, which have small energy (starting
from zero in our Fermi sea). This is in contrast with chiral
perturbation theory where the success, for instance in ππ

scattering, is tied to the large energy gap between the π and
the next meson mass excitation, the one of the ρ. Even in
π -deuteron scattering many options of expansion parameters
are suggested [41] with quite different results among them.

Our guiding line for the many-body expansion follows
the traditional many-body approach in nuclear physics where
one relies upon an expansion in powers of the density. The
density is assumed to be a small quantity and this is based in
phenomenological facts. Let us illustrate this in our case of
π -nucleus scattering. Let us take Fig. 4, where the self-energy
of the pion is obtained by summing the πN T matrix over
the occupied states of the Fermi sea. Technically, we have
introduced a hole line in the diagram, which induces a power
of ρ upon integration over the occupied states. Let us now
cut the diagram by a vertical line, cutting the pion and the
hole line. Restricting ourselves to one meson-baryon loop for
simplicity, we have the result of Fig. 20.

The whole sum of loops would replace the ππNN vertex by
the full πN T matrix. Placing on-shell the intermediate states,
cut by the vertical line in Fig. 20, as would be implemented
using Cutkowsky rules [77], one accounts for π transitions to
a π + (ph) channel. In other words, the diagram accounts for
πN → πN , which is quasielastic scattering. Let us now dress
the intermediate pion by letting it excite a ph, as in Fig. 21, and
let us now cut the two ph excitations by a vertical line placing
them on-shell. The process that this cut accounts for is what is
called genuine two-body absorption. One has πNN → NN

FIG. 20. Pion self-energy for one πN loop.

FIG. 21. Two-nucleon pion absorption.

and the pion disappears. Experimentally one has, for energies
not close to threshold, bigger quasielastic cross sections than
absorption ones. Close to threshold, Pauli blocking makes the
quasielastic scattering small, which means that the imaginary
part of the diagram of Fig. 20 becomes small, but this is
not the case for the real part, which is not subjected to the
Pauli exclusion principle [78] and which has the size of the
imaginary part when Pauli blocking does not restrict it. Much
work has been done in the past on three-body absorption, both
experimentally [79] and theoretically [80], yielding smaller
rates than for two-body absorption, particularly at energies
close to threshold. Thus, an expansion in the number of ph

lines, or in general terms, a hole line expansion, is the guiding
principle for our many-body approach, the justification for it
coming from phenomenology.

Let us see what a strict bookkeeping along the lines just
described would give us when we introduce an extra ph in
the basic diagrams. Start from the loop diagram of Fig. 22(a)
and introduce a new ph. Figure 22(b) is accounted for by
our diagram of Fig. 3. Figures 3(c) plus 3(g), external line
renormalizations, introduce a self-energy in the nucleon line
when folded and converted into a hole line, as in Fig. 23.
This has to be considered together with diagram (e) in the
sense that both particle and hole have to be renormalized
simultaneously to account for the self-energy in the medium.
Yet, this self-energy, for which nonlocalities are ignored, as
done in our approach, gets canceled in the ph propagator
[Eπ + Eh − Ep]−1. Diagrams (d) and (f) have already been
accounted for in the diagram of Fig. 12. Diagrams (h), (i),
(j), an (k) have already been considered before in Fig. 14.
Similarly, diagrams (m) and (n) are taken into account by
the vertex correction from Fig. 8. We are left with the novel
diagram of Fig. 3(l), which involves the ππN intermediate
states that were considered in Ref. [54] and found to be relevant
for I = 3/2 at energies around s1/2 = 1.5 GeV, very small for
I = 1/2 at these energies, and negligible at πN threshold that
we study here, as we noted at the end of Sec. II A. We use this
fact here to neglect the medium modifications to this negligible
term in free space.

The discussion presented before clarifies further the proce-
dure followed in former sections, where following a traditional
approach in field theory one studies self-energy and vertex
corrections.

In addition to this, our approach introduced further ph

excitations following again traditional lines in field theory
and many-body theory. For the self-energy corrections (see
Fig. 3), the ph excitation is induced as a self-energy of the

024602-19
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

FIG. 22. Systematical ph insertions in the basic rescattering loop.

pion and thus iterated ph excitations in the Dyson sense are
automatically accounted for. This is done technically with no
extra effort and produces the coupled branches (π and ph, or
�h) of the pion in the medium [81].

The self-consistency that we have implemented, introduc-
ing the full calculated π self-energy into the intermediate π of
Fig. 3, also accounts for the s-wave self-energy of higher order
and is always desirable in many-body calculations, although
its effects here are moderate. This is unlike the case found
in the K−-nucleus interaction [58] where the presence of a
resonance close below threshold renders this procedure rather
important.

The discussion in this section has clarified further the
principles followed in the many-body expansion, which are
ultimately based on phenomenological facts and not a formal
expansion based on one single parameter, as one has in some
theories for elementary particle interactions.

VII. NUMERICAL RESULTS

In Secs. IV and V, vertex corrections for both the isovector
and the isoscalar interaction have been evaluated. Together
with the in-medium πN loops GπN , shown in Eq. (8), we
obtain a new πN → πN transition T in Eq. (6). Integrating
over the nucleons of the Fermi seas according to Eq. (5)
evaluates the s-wave pion self-energy. The results are for
symmetric nuclear matter as the calculations from Secs. IV
and V are performed in this limit.

The contributions to the s-wave pion self-energy can be
ordered in powers of the density. In the following, we discuss
the contributions up to order ρ2ρ1/3 for the external pion
s-wave self-energy �S . In Sec. VII A, we compare this to the
result up to all orders in ρ. In the πN rescattering loops, the
pion p-wave polarization accounts for one power of ρ whereas
the closing of the external nucleon line, as indicated in Fig. 4,
corresponds to another power of ρ. The Pauli blocking of the

FIG. 23. Hole self-energy.

intermediate nucleon in the πN rescattering generates an extra
power of ρ1/3, as can be seen in Eq. (16). Of course, higher
powers are also contained: from the multiple rescattering
generated by the BS equation (6) and from the resummation
of ph,�h pion self-energies from Eq. (11); however, these
higher order corrections are small.

Another contribution to �S comes from the vertex diagrams
from Secs. IV and V, which are of order ρ through the p-
wave pion polarization. By closing the nucleon line (order
ρ) for these diagrams, corrections of order ρ2 are obtained.
The vertex diagrams also induce corrections at ρ2ρ1/3: Those
consist of the Ericson-Ericson rescattering piece from Fig. 3
without pion polarization of the rescattered pion, but with
vertex corrections from Secs. IV and V for exactly one of the
Weinberg-Tomozawa πN interactions. Some examples can be
seen in Fig. 22. These contributions are most easily included by
multiplying the rescattering term by [b∗

1(ρ)/b1, free − 1], with
b∗

1(ρ)/b1, free from Fig. 17.
Summing all contributions, we plot the pion s-wave self-

energy up to order ρ2ρ1/3 in Fig. 24 with the black solid
lines. For the pion three-momentum, we have taken a typical
value of |p| = 50 MeV, although �S depends only weakly
on p. The gray band shows the area of the experimental fits
to pionic atoms from Refs. [27,28] (see also Fig. 6) whereas
the dark band represents the phenomenological fit from [22].
The present result for the external pion energy k0 = mπ stays
some 30% below the phenomenological fit. Note that at the
order ρ2ρ1/3 considered here, the imaginary part Im�S is the
same as in Fig. 7.

In Refs. [14,17], and [82], it has been claimed that a
possible way of understanding the repulsion in pionic atoms
comes from the energy dependence of the pion self-energy; a
consistent treatment of the Coulomb potential in the Klein-
Gordon equation requires that the argument of the pion
self-energy be �S(ω − Vc) [14] rather than �S(ω = mπ ).
Furthermore, the small isoscalar πN potential at threshold
rises rapidly with increasing energy and, thus, large effects
from the energy dependence of �S can be expected.

To see this effect in the present calculation we have plotted
�S also for p0 = mπ + 10 MeV and p0 = mπ + 20 MeV
(dashed and dotted lines, respectively). The Coulomb potential
for a nucleus with A = 100, Z = 50 can reach Vc ∼ 16 MeV
at an effective density of ρ = ρ0/2, and even more for
heavier nuclei. As Fig. 24 shows, the energy dependence
leads indeed to an extra repulsion, which agrees well with
the phenomenological fits. However, theoretical uncertainties
are larger than thought, as will be discussed in Secs. VII A and
VII B.
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FIG. 24. (Color online) The s-wave pion self-energy in nuclear matter up to order ρ2ρ1/3, for three pion energies (k0 = mπ, k0 =
mπ + 10 MeV, and k0 = mπ + 20 MeV). The gray band shows the area of the phenomenological fits from Refs. [27,28] and the dark (red)
band the fit from Ref. [22]. For Im�S all phenomenological fits lie in the gray shaded area.

A. Theoretical uncertainties

Certain higher order corrections in density play an impor-
tant role but at densities higher than felt by pionic atoms.
For example, at order ρ3ρ1/3, diagrams appear where both
isovector vertices of the large rescattering piece contain the
corrections from Sec. IV. These corrections reduce Re �S

from Fig. 24. Dressing all vertices with the corrections found
and using the πN loop function with Pauli blocking and
pion polarization, that is, including all corrections found to
all orders, gives the result indicated in Fig. 25. Changes with
respect to Fig. 24 are mainly caused by the vertex corrections
occurring quadratically and higher, whereas before, at order
ρ2ρ1/3, only one vertex correction enters the rescattering
series.

The imaginary part on the right-hand side in Fig. 25 is more
negative and closer to the values from phenomenological fits:
The imaginary part comes from the ph insertions in the πN

loop function. The imaginary part of this rescattering loop is
enhanced by the larger strength in both πN vertices because
of the vertex corrections.

The decrease of the real part can be understood as follows:
In the vacuum model the rescattering piece introduces an
attraction, which is compensated by a repulsion bc from the
NLO isoscalar interaction at tree level [31]. The isovector
interaction in the medium is increased from vertex corrections,
as we have seen in Fig. 17; this leads to an increase of the
attraction from the rescattering piece. The Pauli blocking of
the intermediate nucleon, namely the Ericson-Ericson effect
from Eq. (16), which is repulsive, cannot fully compensate
this effect; as a result, the net repulsion is smaller than without
vertex corrections. However, for arguments of external pion
energies of k0 = mπ + 10 MeV, k0 = mπ + 20 MeV owing
to Coulomb shift, the results are in the region of the required
repulsion at kF ∼ 210 MeV (ρ = ρ0/2). It should be noted
that the net attraction of the increased b1 in the medium,
through rescattering, is a rather large effect, which more
than compensates for the enhanced isoscalar amplitude in the
medium found in Sec. V and shown in Fig. 19.

We have tested the stability of our results. The correc-
tions discussed stemming from rescattering are tied to our
elementary vacuum model of Ref. [31]. For instance, the size
of the isoscalar contribution bc from the NLO Lagrangian is
correlated with the subtraction constant of the πN vacuum
loop, aπN , in the fit. We have performed a refit of the
vacuum amplitude, requiring a smaller value of bc. Close
to threshold, a sufficiently good fit can be obtained with
bc = −46 × 10−4 m−1

π , which is around one-tenth the value
of bc from the fit of Table II. It is interesting to note
that the resulting parameter values 2c1 − c3 = −1.43 GeV−1

and c2 = −1.54 GeV−1 are quite close to the values from
Ref. [52] of 2c1 − c3 = −1.63 ± 0.9 GeV−1 and c2 =
−1.49 ± 0.67 GeV−1. However, even with this drastic change
of the vacuum model, Re �S hardly changes and the results
are stable in this respect.

Further theoretical uncertainties come from the regulariza-
tion scale 
 that appears in the monopole form factors of the
pion p-wave polarization. The result depends on 
; a smaller
value than the one used of 
 = 0.9 GeV would provide slightly
larger repulsion as we noted before. Nevertheless, the good
agreement with the phenomenological analysis on the b1 renor-
malization from Ref. [26], which has been noted in Sec. IV F,
provides support for this value of 
.

We have also treated the pion self-energy self-consistently
as in Sec. III, including the k0 energy dependence of the s-wave
potential. This leads to only a 10% increase of Re �S at
ρ = ρ0/2.

B. Uncertainties from the Roper resonance

There is another type of medium effect that has not been
considered so far and will introduce additional uncertainties.
This is related to the Roper excitation and its decay into a
nucleon and two pions. The Roper is the lightest resonance
with the same quantum numbers as the nucleon and allows
for a decay into a nucleon and two pions, which have isospin
zero and s waves relative to each other and also relative to the
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FIG. 25. (Color online) s-wave pion self-energy to all orders in ρ, for different pion energies (k0 = mπ, k0 = mπ + 10 MeV, and k0 =
mπ + 20 MeV). Phenomenological fits are as in Fig. 24.

nucleon. In Ref. [83] the mechanism of Roper excitation from
an isoscalar source and subsequent decay into two pions has
been found dominant at low energies in the NN → NNππ

production for pions with I = 0. The isoscalar source can
be described by an effective σ exchange σNN∗ between the
nucleons, whose strength has been fitted independently for
the (α, α′) reaction on a proton target [84]. Based on that
finding, the relevance of this mechanism in πd scattering at
low energies was also stressed in Ref. [40]. We shall also
consider it here in connection with the s-wave pion-nucleus
optical potential.

For the present purposes the mechanism just described can
be adapted by having the two pions, one in the initial state
and the other in the final state, as indicated in Fig. 26 on
the left-hand side. As the two pions are in a relative I = 0
state, we obtain an isoscalar contribution to the πN amplitude.
The second nucleon line to which the isoscalar σ couples is
closed and gives a medium contribution to πN scattering.
In the heavy-baryon limit the diagram reduces to a pointlike
interaction of a pion with two nucleons, as indicated in Fig. 26
on the right-hand side.

For N∗Nππ coupling an effective Lagrangian from
Ref. [85] is used. This leads to the effective vertex [83]

−iδH̃N∗Nππ = −2i
m2

π

f 2
π

(
c∗

1 − c∗
2

ω1ω2

m2
π

)
(52)

for π+π+, π−π−, and π0π0 and zero otherwise (note a minus
sign in c∗

2 with respect to the Ref. [83] result because now one

of the pions is incoming). Here ω1, ω2 are the energies of the
pions. The values for the couplings are obtained in Ref. [83]
from a fit to the experimental width of the N∗ decay into
Nπ+π− and Nπ0π0: c∗

1 = −7.27 GeV−1 and c∗
2 = 0 GeV−1.

For the N∗σN coupling the effective vertex is −i�H̃σNN∗ =
iF (q)gσNN∗ where g2

σNN∗/(4π ) = 1.33 and F is a form factor
of the monopole type for the off-shell σ with 
σ = 1.7 GeV,
mσ = 550 MeV.

In the heavy-baryon approximation we can put the external
nucleons at rest and, thus, obtain for the elastic scattering of a
pion of any charge with a nucleon of any charge

(−it) = 2

(
−2i

m2
π

f 2
π

(c∗
1 − c∗

2)

)
i

mN − mN∗
(iFσ (qσ )gσNN∗)

× i

−m2
σ

(iFσ (qσ )gσNN )(ρp + ρn), (53)

where the σNN coupling is the same as in the Bonn model [86]
with g2

σNN/(4π ) = 5.69 and gσNN and gσNN∗ have the same
sign [84]. The contribution in Eq. (53) already contains the
sum of the two diagrams on the left-hand side of Fig. 26. The
isoscalar modification is thus

δb0 = 2
(c∗

1 − c∗
2)m2

πgσNN∗gσNNmN

2πf 2
π m2

σ (mN − mN∗ )(mπ + mN )
(54)

ρ � 0.184 m−1
π

ρ

ρ0
.

N

π−

N∗(1440)

π−

Nσ

N

N

π−

N

N

π−

N

+ →

FIG. 26. The Roper resonance in isoscalar s-wave πN scattering in the medium. The interaction in the heavy-baryon limit is shown on the
right-hand side.
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FIG. 27. (Color online) Uncertainties of the present study (hatched area). Phenomenological fits to pionic atom data are as in Fig. 24.

At normal nuclear matter density ρ = ρ0 this leads to an
isoscalar of δb0 = 0.188 m−1

π , which implies attraction. The
result from Eq. (54) is huge compared to the isoscalar from the
model of πN interaction from Ref. [31] of bc = −0.0336 m−1

π

(see Table III). We can use the δb0 from Eq. (54) and calculate
�S from Eq. (1). Then, already at tree level, one obtains the
unrealistically large attraction of Re �S = −2.5 × 104 MeV2.

However, by turning the pion line around in the diagram of
Fig. 26, we have implicitly changed the kinematics at which
these couplings, such as gσNN∗ , have been determined. The
N∗(1440) is now off-shell by around 500 MeV (E = mN ),
which induces unknown theoretical errors in the calculation.

Instead of the set (c∗
1 = −7.27 GeV−1, c∗

2 = 0 GeV−1)
one can consider the results from Ref. [33], which use
the combination c∗

1 + c∗
2 = (−1.56 ± 3.35) GeV−1 from

Ref. [85], and then apply a resonance saturation hypothesis
for the c∗ to be saturated by scalar meson exchange. Then
the combination c∗

1 − c∗
2 can be disentangled by the relation

c∗
1/c

∗
2 = 4.2/3.2 and our result with these values would change

from Re �S = −2.5 × 104 MeV2 to −710 ± 1600 MeV2 at
ρ = ρ0 (compare to Figs. 24 and 25).

For ρ = ρ0/2, the effective density felt by pionic atoms,
the contribution is Re �S = −177 ± 400 MeV2, which, added
to the results calculated before and shown in Fig. 25,
leads to Re �S = 1030 ± 400 MeV2 for k0 = mπ + 10 MeV
(for the Coulomb shift) or Re �S = 1430 ± 400 MeV2 for
k0 = mπ + 20 MeV. In both cases this band overlaps with
the phenomenological fits, but the amount of theoretical
uncertainty is indeed large. To account for all the uncertainties,
we have taken the results for k0 = 16 MeV of Coulomb shift,
corresponding to an average nucleus with Z = 56, A = 100,
and have summed in quadrature the uncertainties from the
Roper contribution and those of Figs. 17 and 19. This leads
to the hatched band of theoretical values plotted in Fig. 27.
We can see that the band is relatively broad, broader than
for Im �S , since, as we have seen, there are more sources of
uncertainty for Re �S . Altogether, with the realistic theoretical
uncertainties accounted for, we find two bands for Re �S

and Im �S that overlap with the empirical values needed to
describe pionic atoms for the effective density ρ ∼ ρ0/2 felt
by pionic atoms.

VIII. SUMMARY AND CONCLUSIONS

The s-wave pion-nucleus optical potential has been cal-
culated in a microscopical many-body approach by looking
simultaneously at vertex and self-energy corrections. We
have, thus, taken a chiral unitarized rescattering approach that
delivers a good description of vacuum data in the vicinity of
the threshold and above. Subsequently, the medium corrections
have been added to the vacuum model. Whereas Pauli blocking
in rescattering generates repulsion, the pion polarization
for intermediate pions, including ph,�h, and short-range
correlations, is responsible for a moderate attraction. The
model has been formulated for asymmetric nuclear matter,
although vertex renormalizations and other corrections have
only been evaluated for symmetric nuclear matter.

For the Weinberg-Tomozawa term and the isoscalar contri-
bution from the NLO chiral Lagrangian, in-medium vertex cor-
rections, some of them novel, have been included. For example,
the Weinberg-Tomozawa term is increased, in agreement with
recent analyses that also include data on deeply bound pionic
atoms.

We have also investigated vertex corrections for the NLO
isoscalar πN amplitude and have found them to be relevant
and of the same relative size as the renormalization of the
isovector vertex.

When these corrections are taken into account within
the multiple scattering series of the Bethe-Salpeter equation,
together with self-energy insertions in the intermediate states
and Pauli blocking of the nucleons, we obtain an s-wave
pion self-energy, �S , in good agreement with empirical
determinations for the imaginary part and only qualitative for
the real part.

An important ingredient, already exploited in former works,
has been the effect of the Coulomb shift in the argument of
�S , which appears in the Klein-Gordon equation. This effect
leads to an increase of the repulsion in Re �S , which brings
the pion nucleus optical potential into better agreement with
empirical determinations.

We noticed that an increased b1 in the medium led through
rescattering to an attraction in Re �S , in spite of the fact that the
Pauli correction to these terms, given by the Ericson-Ericson
formula, produces an increased repulsion. The rescattering
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term with the non-Pauli-blocked part is larger than with the
Pauli-blocked one and of opposite sign; thus, rescattering
with an increased b1 produces a net attraction. We also noted
that the vacuum model for πN has a certain freedom in the
choice of parameters that induce changes in the real part of
the rescattering amplitude, but this is compensated by the
NLO isoscalar terms in vacuum. We have tested that, with
the simultaneous change in the medium of the isovector vertex
and the NLO isoscalar term, the results for �S are stable with
respect to these changes of the vacuum model.

Another source of contribution to Re �S was a genuine
ρ2 term related to the Roper coupling to two isoscalar pions.
This two-nucleon term was determined, within uncertainties,
in former studies of the πd interaction and we have used this
information to evaluate the contribution to Re �S , resulting in

a band of values with relatively large uncertainties that one
must accept.

Altogether, we determine a band of results for Re �S that
overlaps with empirical determinations in the region of interest
of pionic atoms, ρ ∼ ρ0/2, and a much narrower band for
Im�S that agrees with the also narrower band of empirical
analyses in the same region.

Along the course of the work we have pointed out
sources of uncertainties, which we have quantified and
summed in quadrature at the end. This leads to larger
uncertainties in Re �S than were assumed in former studies
and that one must bear in mind. Yet, within these admit-
ted uncertainties, the results obtained represent a satisfac-
tory description of the s-wave pion self-energy for pionic
atoms.
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