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Pygmy dipole resonances in the tin region
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The evolution of the low-energy electromagnetic dipole response with the neutron excess is investigated
along the Sn isotopic chain within an approach incorporating Hartree-Fock-Bogoljubov (HFB) and multiphonon
quasiparticle-phonon model (QPM) theory. General aspects of the relationship of nuclear skins and dipole sum
rules are discussed. Neutron and proton transition densities serve to identify the pygmy dipole resonance (PDR)
as a generic mode of excitation. The PDR is distinct from the GDR by its own characteristic pattern given by
a mixture of isoscalar and isovector components. Results for the 100Sn-132Sn isotopes and the several N = 82
isotones are presented. In the heavy Sn isotopes the PDR excitations are closely related to the thickness of the
neutron skin. Approaching 100Sn a gradual change from a neutron to a proton skin is found and the character
of the PDR is changed correspondingly. A delicate balance between Coulomb and strong interaction effects
is found. The fragmentation of the PDR strength in 124Sn is investigated by multiphonon calculations. Recent
measurements of the dipole response in 130,132Sn are well reproduced.
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I. INTRODUCTION

The recent developments in experimental facilities of fast
radioactive beams allows the study of exotic nuclei far from
the valley of β stability toward the neutron and proton drip
lines. One of the most interesting results was the discovery
of a new dipole mode at low excitation energy. Typically,
one observes in nuclei with a neutron excess, N > Z, a
concentration of electric dipole states at or close to the
particle emission threshold. Because this bunching of 1− states
resembles spectral structures, otherwise known to indicate
resonance phenomena, these states have been named pygmy
dipole resonance (PDR). However, only a tiny fraction of
the Thomas-Reiche-Kuhn energy-weighted dipole sum rule
strength is found in the PDR region. Hence, these states will
not alter significantly the conclusions about the importance of
the giant dipole resonance (GDR) in photonuclear reactions,
as known for a long time [1].

Empirically, the low-energy PDR component increases
with the charge asymmetry of the nucleus. The experimental
situation from high-precision photon scattering experiments
performed in neutron-rich stable nuclei was reviewed recently
in Ref. [2]. Of special interest are as well the newly performed
experiments with radioactive beams in unstable oxygen [3,4]
and tin isotopes, where observation of pygmy dipole strength
has been reported [5].

In Refs. [6–8] we established the PDR as a mode directly
related to the size of the neutron skin. By theoretical reasons
the PDR mode should appear also in nuclei with a proton
excess [9]. Hence, the PDR phenomenon is closely related to
the presence of an excess of either kind of nucleons.

However, considering the measured dipole response func-
tions the identification of a PDR mode is by no means
unambiguous. Although in a nucleus like 208Pb most of the
dipole transition strength is found in the rather compact GDR
region, the picture becomes more complicated in neutron-rich
nuclei between the major shell closures. The dipole strength
shows a tendency to fragment into two or several groups once

the region of stable closed-shell nuclei is left although the GDR
still exhausts most of the (almost) model-independent Thomas-
Reiche-Kuhn sum rule. A distinction between different dipole
modes simply by inspection of the nuclear dipole spectra is
clearly insufficient. As we will discuss in later sections a
closer analysis of our theoretical results reveals a persistence
of the typical GDR pattern of an out-of-phase oscillation of
protons and neutrons in most of the low-energy satellites until
a sudden change happens in those parts of the spectra in the
vicinity of the particle emission threshold. As we pointed out
before [6,7,10] these states are special in the sense that they
are dominated by excitation of nucleons of one kind with
small admixtures of the other kind. In a nucleus with neutron
excess these excitations involve mainly neutron particle-hole
(ph) configurations.1

A clarification about the nature of the low-energy dipole
strength in exotic nuclei can be expected only by the help
of theory. With this article we intend to contribute to this
interesting problem by a systematic study of the evolution
of dipole modes in the Sn isotopes. As suitable quantities,
we consider the nondiagonal elements of the one-body density
matrix. These transition densities give a snapshot of the motion
of protons and neutrons during the process of an excitation.
In principle, they are observables, e.g., for selected cases as
the transition form factors in inelastic electron scattering [11].
In practice, however, experimental difficulties usually inhibit
such measurements.

Considering neutron-rich nuclei the character of the mean
field changes with increasing neutron excess, because of the
enhancement of the isovector interactions. This has important
consequences for the binding mechanism. In a neutron-rich
nucleus the neutron excess leads to a rather deep effective
proton potential but produces a very shallow neutron mean
field. This results in deeply bound proton orbits with separation

1A certain amount of proton excitations are required as a compen-
sation to suppress the motion of the nuclear center-of-mass.
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energies of the order of 20 MeV or even more as seen in
empirical mass tables [12]. The increase in proton binding
is accompanied by a decrease in neutron binding. The most
extreme cases are the spectacular halo states in light nuclei,
e.g., Refs. [13,14]. However, even for less extreme conditions
unusual nuclear shapes are expected. In neutron-rich medium-
and heavy-mass nuclei neutron skins of a size exceeding the
proton distribution by up to about 1 fm have been predicted.
Measurements in the Na [15] and Sn [16,17] regions indeed
confirm such conjectures, although the present data are not yet
fully extending into the regions of extreme asymmetry.

The manuscript is organized as follows. In Sec. II relations
between a neutron or proton skins and the total nuclear
dipole yield are discussed. In Sec. III the theoretical methods
applied in this article are explained. The mean-field part is
treated microscopically by using Hartree-Fock-Bogoljubov
(HFB) theory, but for the quasiparticle-phonon model (QPM)
calculations we allow empirical adjustments, which we in-
corporate by an phenomenological density functional theory
(DFT) approach. The description of response functions and
transition densities by quasiparticle random-phase approxima-
tion (QRPA) theory is discussed in Sec. IV. As an interesting
mass region we explore the unstable tin isotopes and present
results on the dipole response in Sec. V. Section VI is devoted
to comparisons to results of other calculations and data. The
article closes with a summary and an outlook in Sec. VII.

II. NUCLEAR SKINS AND THE DIPOLE RESPONSE

A. The dipole excitations in exotic nuclei

In this section we spend a few lines on discussing some
relations between a proton or neutron skin and PDM in exotic
nuclei. We begin with recalling the definition of the nuclear
electric dipole operator that in units of the electric charge and
in terms of the intrinsic coordinates ξi is given by Ref. [18]

�D = 1

2

∑
i

�ξi(1 − τ3i) = −1

2

∑
i

�ξiτ3i . (2.1)

However, in nuclear structure calculations like the present
one the particle coordinates �ri are used that are related to
the intrinsic coordinates by

�ξi = �ri − �R (2.2)

with the center-of-mass coordinate

�R = 1

A

∑
i

�ri . (2.3)

Be means of Eq. (2.2) we find

�D = −1

2

∑
i

(
τ3i − T3

A

)
�ri (2.4)

= qnN �Rn + qpZ �Rp (2.5)

= NZ

A
( �Rp − �Rn), (2.6)

where T3 is the three-component of the total nuclear isospin
operator that is a conserved quantity and can be replaced

by its eigenvalue N − Z. The neutron and proton recoil
corrected effective charges are denoted by qn = −Z/A and
qp = N/A, respectively. The partial sums over proton and
neutron coordinates, normalized to the respective particle
numbers, are denoted by �Rp,n. They describe the position of
the center-of-mass of the protons and neutrons, but neither of
the two quantities are conserved separately.

As is obvious from Eq. (2.1) only the protons participate
actively in the radiation process while the neutrons follow
their motion such that the position of the center-of-mass
remains unperturbed as is reflected by Eq. (2.6). This condition
implies that �R = N

A
�Rn + Z

A
�Rp is a stationary operator. In other

words, in any nucleus, whether stable or short-lived exotic, the

condition �̇R ≡ 0 must be fulfilled, leading to �̇Rn = − Z
N

�̇Rp.
Together with Eq. (2.6) this relation reflects the well-known
property of the GDR of an oscillation of the proton fluid against
the neutron fluid, also found in hydrodynamical models of the
nuclear dipole response [19].

However, already in Ref. [19] it was pointed out that in a
nucleus with a neutron excess Ne = A − 2Z > 0 additional
modes of excitation are possible. Such a system will also
develop modes in which the excess nucleons are oscillating
against the bulk, consisting of an equal amount of protons
and neutrons, Zb ∼ Nb. In that case we write �R = Ne

A
�Re +

N−Ne

A
�Rb + Z

A
�Rp and another mode conserving the total center-

of-mass is

�̇Re = −
(

Nb

Ne

�̇Rb + Z

Ne

�̇Rp

)
, (2.7)

where Rb denotes the position of the center-of-mass of the
remaining Nb = N − Ne bulk neutrons. Because of Nb =
Zb = Z we find the relation

�̇Re = − Z

Ne

( �̇Rb + �̇Rp), (2.8)

indicating the motion of the excess neutrons against the core
with an equal amount of neutrons and protons. Correspond-
ingly, in a proton-rich nucleus, Ze = A − 2N > 0, the excess
protons may oscillate against the charge-symmetric bulk. In
either case, watching that type of motion from the laboratory
frame the core neutrons and protons will be seen to move
in phase among themselves but oscillate against the excess
component, although the electric dipole operator �D will couple
directly only to the protons.

If we assume harmonic motion, �Rb,p,e(t) = �R(0)
b,p,ee

−iωt ,
Eq. (2.8) leads to a relation among the amplitudes

�R(0)
e = − Z

Ne

[ �R(0)
b + �R(0)

p

]
, (2.9)

showing that in a neutron-rich nucleus the skin components
will oscillate with an amplitude reduced by the factor Z/Ne

compared to the core.
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B. Skin thickness and dipole response

The skin thickness is defined usually by the difference of
proton and neutron rms radii

δr =
√〈

r2
n

〉 − √〈
r2
p

〉
, (2.10)

where 〈
r2
q

〉 = 1

Aq

∫
d3rr2ρq(�r) (2.11)

denotes the rms radius of the proton and (q = p) and neutron
(q = n) ground-state density distributions ρq , respectively,
normalized to the corresponding particle number Aq = N,Z.
For the present purpose a better-suited choice is to express the
differences in rms radii in terms of the intrinsic coordinates,
weighted by the three-component of the isospin operator with
eigenvalues ±1 for neutrons and protons, respectively,

�3ξ
2 = 〈0|

∑
i

ξ 2
i τ3i |0〉 = N

〈
ξ 2
n

〉 − Z
〈
ξ 2
p

〉
, (2.12)

which contains the same type of information as Eq. (2.10).
If we express �ξi in terms of the laboratory coordinates �ri ,

Eq. (2.2), the ground-state expectation value of Eq. (2.12)
leads to a corresponding expression in terms of the laboratory
coordinates {�ri},

�3r
2 =

∑
i

〈0|τ3i r
2
i |0〉

= A

A − 2

(
�3ξ

2 − N − Z

A
〈r2〉

)
. (2.13)

We have neglected contributions related to two-body correla-
tions.

In terms of the laboratory coordinates, the intrinsic nuclear
dipole transition operator could be expressed as

�D =
∑

i

�ri

[
qp

1

2
(1 − τ3i) + qn

1

2
(1 + τ3i)

]
. (2.14)

Defining the isoscalar (T = 0) and isovector (T = 1) charges
and space vectors, respectively,

qT = 1

2

(
qn + (−)T qp

)
; �xT =

∑
i

�ri(τ3i)
T (2.15)

we obtain the isospin representation

�D = q0 �x0 + q1 �x1. (2.16)

The reduced isovector/isoscalar dipole transition moments and
the dipole transition probabilities can be expressed as �M (T )

d =
〈0||(τ3)T �r||d〉;

Bd (E1) = ∣∣q0 �M (0)
d + q1 �M (1)

d

∣∣2
. (2.17)

For the present purpose we are interested in the isoscalar-
isovector interference term, in particular

�
∑

d

�M (0)
d · �M (1)∗

d = 1

2q0q1

[∑
d

Bd (E1) − q2
0

∑
d

∣∣M (0)
d

∣∣2

− q2
1

∑
d

∣∣M (1)
d

∣∣2

]
. (2.18)

Introducing a single particle basis {ϕ(�r)i} enables us to express
the nuclear dipole eigenstates |d〉 in terms of particle-hole
excitations |α〉.

In the concrete case considered here, we use a QRPA
description in terms of two-quasiparticle excitations |α〉 =
|(ij )JM〉 with the single quasiparticle states i and j , respec-
tively, coupled to total angular momentum JM . Neglecting
ground-state correlations, which are of at least 2p2h character,
the left-hand side of Eq. (2.18) can expressed in terms of
single-particle matrix elements

1

2

∑
d

�M (0)
d · �M (1)∗

d =
∑
i,j

�M (0)
ij · �M (1)∗

ij v2
i

−
∑
i,j

�M (0)
ij · �M (1)∗

ij v2
i v

2
j

+
∑
i,j

�M (0)
ij · �M (1)∗

ij uiviujvj (2.19)

where v2
i = 〈|a+

i ai |〉 and u2
i = 1 − v2

i are occupation numbers.
The last two terms in the above equation are of two-body
character and appear because of the pairing ground-state
correlations. For our purpose the first term on the right-hand
side is of special interest. It is seen to correspond to

�
∑
i,j

�M (0)
ij · �M (1)∗

ij v2
i =

∑
i,j

〈i|�r|j 〉 · 〈j |τ3�r|i〉v2
i

=
∑

i

〈i|�r · τ3�r|i〉v2
i

=
∑

i

〈i|τ3r
2|i〉v2

i , (2.20)

where we have used the completeness of the single particle
states. Hence, we have derived an important theoretical relation
between the non-energy-weighted dipole sum rule and the skin
measure defined before

�3r
2 = 1

4q0q1

[∑
d

Bd (E1) − q2
0

∑
d

∣∣M (0)
d

∣∣2

− q2
1

∑
d

∣∣M (1)
d

∣∣2

]
+ �

∑
i,j

�M (0)
ij · �M (1)∗

ij v2
i v

2
j

−�
∑
i,j

�M (0)
ij · �M (1)∗

ij uiviujvj . (2.21)

In the first term the pure isovector and isoscalar dipole sum
rule strengths are subtracted off the full dipole sum rule,
thus leaving the interference term. The isovector sum rule
will be dominated, if not exhausted, by the GDR. From
the Thomas-Reiche-Kuhn sum rule, i.e., the corresponding
energy-weighted dipole sum rule, we know that the GDR
strength varies little along an isotopic chain, namely as NZ/A.
With N = Nb + δN,A = Ab + δN , and Zb = Z we find
NZ/A ∼ (NbZb/Ab)(1 + δN

AbNb
). We emphasize again that the

isoscalar sum rule is a pure recoil effect, appearing only in the
neutron-rich nuclei and expressing the compensating motion
of the neutrons in the laboratory frame.

These relations reveal the intimate connection between
the neutron skin (which is a static property) and the dipole
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spectrum (which is a dynamical property): From the above
equations we find that the skin thickness is directly related
to the dipole response. By Eq. (2.21) another aspect is
emphasized, namely the fact that, seen from the laboratory,
apparent isoscalar and isovector moments seem to contribute
to the excitation of dipole states. As discussed above, modes
involving an isoscalar component are allowed provided that the
position �R of the total nuclear center-of-mass is left untouched.

C. Dipole excitations and spurious states

The problem posed by broken symmetries in effective nu-
clear Hamiltonians like ours is well known, e.g., Refs. [20,21].
For dipole excitations the most relevant effects are due to the
violation of translational and Galilean symmetry. A known
property of RPA is to restore the broken translational symmetry
by generating a states at zero excitation energy, corresponding
to a symmetry-restoring Goldstone mode, provided that a
complete configuration space was used. The transition strength
scales with the total particle number A = N + Z and exhaust
to a large extent the isoscalar sum rule. In practice, that is hardly
achieved. But numerically we can enforce the restoration by
a proper choice of the residual interaction in the isoscalar
dipole channel. An alternative are projection techniques that,
to our knowledge, have never been applied to a realistic
multiconfiguration QRPA calculation.

In this article, we are considering the following situation. In
a N � Z nucleus the conditions change insofar as new intrin-
sic excitations [see Eq. (2.8)] will appear, not encountered in
stable N 	 Z nuclei. As already pointed out some time ago by
Mohan et al. [19] in a neutron-rich nucleus the excess neutrons
may be excited into oscillations against the core, either in phase
or out of phase with the core protons. Especially the latter
mode is the one from which we can expect a sizable content of
isoscalar strength. That mode, however, will never appear as a
pure isoscalar mode because of a compensating motion of the
core neutrons required to keep fixed the center-of-mass of the
whole system. Obviously, this is an intrinsic mode that will
be strongly suppressed when approaching the N = Z line. In
fact, the isoscalar content of the PDR states is impressively
confirmed by a recent experiment in 140Ce [22], comparing
spectra from inelastic scattering of α particles to (γ, γ ′)
spectra. Because the α particle is a pure isospin T = 0 probe
it acts as an isospin filter and the spectra in Ref. [22] show
clearly the content of isoscalar transition strength in the PDR
region. The special character of these transitions becomes clear
from the shapes of the transition densities shown later that
obviously do not resemble any expectations from classical or
semiclassical models.

The GDR mode as one of the most collective excitations
in nuclei is well understood, both quantum mechanically
and in semiclassical hydrodynamical approaches, whereas the
nature of the PDR is still waiting for full clarification. The
aforementioned early attempts to incorporate the low-energy
dipole modes into the hydrodynamical scenario [19] by a three-
fluid ansatz seemed to work reasonably well in 208Pb, but when
applied to the Ca isotopes [23] the model failed as pointed out
by Chambers et al.. [24]. Our more detailed microscopic QPM

studies of the PDR strength in 208Pb [10], including transition
densities and currents, gave strong indications, that the PDR
modes are of generic character, clearly distinguishable from
the established interpretation of the GDR by strong vorticity
components. The differences are also visible in the transition
densities, where they are showing up in terms of a nodal
structure, unknown from GDR excitations. Hence, we have the
surprising situation that a mode with a more complex spatial
pattern is seen at energies below the most collective state.
This (theoretical) observation indicates that PDR and GDR
states are indeed belonging to distinct parts of the nuclear
spectrum. The situation is less confusing if we take the view
that the PDR is related to a more complex excitation scenario
as indicated by the transition densities and velocity fields
discussed in Ref. [10]. The characteristic features of PDR
transition densities will be investigated in the following for
the whole chain of known Sn isotope, from 100Sn to 132Sn.

III. PHENOMENOLOGICAL DENSITY FUNCTIONAL
APPROACH FOR NUCLEAR GROUND STATES

A. The density functional

Our method is based on a fully microscopic HFB de-
scription of the nuclear ground states and the quasiparticle
spectra as the appropriate starting point for a single-phonon
QRPA or multiphonon QPM calculation of nuclear spectra.
However, being aware of the deficiencies of existing density
functionals, when leaving the region of stable nuclei we
accept slight adjustments and phenomenologically motivated
choices of parameters. We assure a good description of nuclear
ground-state properties by enforcing that measured separation
energies and nuclear radii are reproduced as close as possible.

We start by considering the ground state of an even-even
nucleus in an independent quasiparticle model for which
we use the microscopic HFB approach. The nucleons move
in a static mean field, which is generated self-consistently
by their mutual interactions, including a monopole pairing
interaction in the particle-particle (pp) channel. Following
the DME approach of Refs. [25,26], the interactions are
taken from a G matrix but renormalized such that nuclear
matter properties are reproduced, thus accounting effectively
for correlations missed by a static two-body interaction. In
local density approximation the problem is then reduced
essentially to the level of a Skyrme-HFB calculation as
discussed in Ref. [25]. An important difference, however,
is the use of a microscopically obtained density-dependent
pairing interaction. The HFB and BCS equations are solved
self-consistently with state-dependent gaps by iteration, until
convergence of the mean-field and single-particle energies,
gaps and densities is achieved.

The single-particle energies and ground-state properties
in general are critical quantities for extrapolations of QRPA
and QPM calculations into unknown mass regions. Here, we
put special emphasis on a reliable description of the mean-
field part, reproducing as close as possible the ground-state
properties of nuclei along an isotopic chain. This is achieved
by solving the ground-state problem in a semimicroscopic
approach. Following the arguments given in Ref. [6] we take
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advantage of the Hohenberg-Kohn [27] and Kohn-Sham [28]
theorems, respectively, of density functional theory, which
state that the total binding energy B(A) can always be
expressed as an integral over an energy-density functional with
a (quantal) kinetic energy-density τ and density-dependent
self-energy parts U (ρ), respectively,

B(A) =
∑

q=p,n

∫
d3r

[
τq(ρ) + 1

2
ρqUq(ρ)

]
+ Epair

q , (3.1)

where we have chosen a representation in terms of proton (q =
p) and neutron (q = n) densities ρq = ρq(�r), respectively,
as appropriate for nuclei far from the stability region with
exotic charge-to-mass ratios. The total isoscalar (T = 0) and
isovector (T = 1) densities are defined by ρT = ρn + (−)T ρp

and ρ0 is normalized to the total particle number A.
In addition to the kinetic and potential energy terms

Eq. (3.1) includes pairing contributions, which are indicated
separately by E

pair
q . In fact, this means that we use an extended

version of the Kohn-Sham theorem, including the proton- and
neutron-pairing densities κq , as dictated by HFB theory. Hence,
the density functional underlying in Eq. (3.1) is of the form
E(τ, ρ, κ), where each of the arguments are understood to
include proton and neutron parts, respectively.

In terms of the single-particle wave functions ϕjq(�r) and
the occupancies v2

jq the kinetic energy density is given by

τq =
∑

j

v2
jq

h̄2

2Mq

| �∇ϕjq(�r)|2 (3.2)

and the number and pairing densities are

ρq(�r) =
∑

j

v2
jq |ϕjq(�r)|2 (3.3)

κq(�r) = 1

2

∑
j

vjqujq |ϕjq(�r)|2, (3.4)

where vjq, ujq denote BCS amplitudes with u2
jq = 1 − v2

jq .
The summations over j includes the full set of quantum
numbers specifying the single-particle states ϕjq(�r).

Rather than using a conventional density functional like the
Skyrme functional we choose to express the interaction part in
terms of a superposition of central and spin-orbit potentials of
Wood-Saxon shape. This ansatz gives us the full flexibility to
describe nuclear ground-state properties like binding energies,
root-mean-square radii, and separation energies to the required
accuracy. The price to be paid is a lack of contact to a
fully microscopic picture like in Ref. [25]. However, for the
present purpose and in view of the persisting uncertainties
on the dynamics in strongly asymmetric nuclear matter, we
are convinced that a phenomenological approach allowing
a self-consistent description of nuclear ground states is an
eligible method.

Hence, to describe the bulk properties of the nuclear ground
states in the best possible manner, we decide to be satisfied by
using functionals optimized to a given mass region, in this case
the Sn isotopes. The parameters of the model are the strengths,
the radii, and the diffuseness parameters of the corresponding
parameters. A posteriori the collected information will allow

us to derive eventually a nuclear energy density functional of
general applicability. In other words, we try to avoid a biased
choice of operators by assuming a certain operator structure at
the level of a two-body interaction.

B. Single-particle states

From Eq. (3.1) we derive by variation a Schroedinger
equation [

− h̄2

2Mq

�∇2 + �q(�r) − ηjq

]
ϕ(�r) = 0 (3.5)

for the single-particle wave functions ϕjq and eigenenergies
ηjq . The self-energy �q appearing in Eq. (3.5) is obtained
variationally from the interaction energy density

Eint = 1

2

∑
q

ρqUq(ρ), (3.6)

where we have defined the single-particle occupation proba-
bilities ρq , which in the BCS approximation are given by v2

q .
By variation with respect to ρq we obtain

�q(ρ) = 1

2

∂

∂ρq |v2
q

∑
q ′

ρq ′Uq ′ (ρ). (3.7)

Because of the intrinsic density dependence of Uq(ρ) we
find, that �q differs from the proper interaction energy by
a rearrangement potential

�q(ρ) = Uq(ρ) + U (r)
q (ρ) (3.8)

given by

U (r)
q (ρ) = 1

2

∑
q ′

[
ρq ′

∂

∂ρq v2
q

Uq ′ (ρ) − δqq ′Uq(ρ)

]
. (3.9)

which is discussed in more detail in Appendix. In nuclei with
nonvanishing pairing additional contributions from the density
gradients of E

(pair)
q = E

(pair)
q (κ, ρ) will also contribute.

C. Pairing and quasiparticle states

From the density functional, Eq. (3.1), we obtain the proton
and neutron pairing fields �q(ρ, κ) by variation with respect
to the pairing (or anomalous) densities κq , Eq. (3.4)

�(ρ, κ) = δB(A)

δκq

= κqV
(pair)(ρ), (3.10)

which we decide to factorize into the anomalous density and a
local density-dependent pairing strength V (pair)(ρ), depending
on the local bulk density ρ = ρ(r). V (pair)(ρ) is discussed
below.

With the usual Bogolubov transformations we obtain
the quasiparticle states α+

jq = ujqa
+
jq − vjq ãjq [29]. To-

gether with the Schroedinger equation (3.5), we solve self-
consistently the BCS gap equation for the state-dependent
pairing gaps �jq = 〈jq|�q |jq〉 for protons and neutrons,
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respectively,

�jq =
∑

k

vkqukq〈j j̃ |V (pair)|kk̃〉

= 1

2

∑
k

�kq

Ekq

〈j j̃ |V (pair)|kk̃〉. (3.11)

Time-reversed states are denoted by a tilde. In a spherical
symmetric nucleus the BCS state amplitudes are

v2
jq = 1

2

(
1 − ηjq − λq

Ejq

)
(3.12)

with the quasiparticle energy

Ejq =
√

(ηjq − λq)2 + �2
jq . (3.13)

The pure mean-field single-particle energies ηjq are obtained
from Eq. (3.5). The proton and neutron chemical potentials are
denoted by λp,n, respectively.

In the practical HFB calculation we use a pairing strength
of a simple form

V (pair)(ρ) =
[
Vext

(
1 −

(
ρ

ρ0

)β
)

+ Vint

(
ρ

ρ0

)β
]

, (3.14)

simulating the on-shell singlet-even NN interaction amplitude
and depending on the local nuclear density ρ = ρ(�r). The in-
teraction strength Vext = −9280 MeV fm3 is determined such
that asymptotically for ρ → 0 the nucleon-nucleon scattering
length app ∼ ann ∼ aSE = −17.3 fm in the singlet even chan-
nel for like particles is reproduced. Vint = −0.721 MeV fm3

is fixed by requiring that the pairing gap has a maximum
of �(ρc) = 2 MeV at ρc = 1/3ρ0 of the equilibrium density
of infinite nuclear matter, ρ0 = 0.16 fm−3. The best results
are obtained for a small value of the density exponent β =
1

85 ∼ 0.012. In the pairing calculations we include proton and
neutron single-particle states up to the respective continuum
thresholds. In this way, we avoid instabilities in the BCS
equations and the calculations of number and pairing densities
due to the possible admixture of unbound quasiparticle orbitals
into the bound-state region. Such an approach is permissible
because in all the considered nuclei the drip lines are not
reached. Hence, the more involved treatment by explicitly
solving the coupled Gorkov equations, discussed, e.g., in
Ref. [30], can be avoided without a significant loss of accuracy.

D. HFB results for Sn isotopes

As discussed above, we decide to express the full proton
and neutron self-energies �p,n in terms of (a superposition
of) Wood-Saxon potentials �(WS)

p,n by a least-squares fit of
the depth, radius, and diffusivity parameters to separation
energies and charge radii, taken either—if available—from
empirical mass compilations [12] or from our HFB calcula-
tions. Different to the usual HFB approach the single-particle
wave equations are solved with effective mass m∗ = m, thus
removing the known problem of unrealistically large HFB
level spacings at the Fermi surface.

The reproduction of the total binding energy B(N,Z),
calculated as indicated above, of the charge radius and the

FIG. 1. (Color online) Ground state properties of the Sn isotopes.
The nuclear binding energies per particle calculated with the DFT
approach, discussed in the text, are compared to data from the Audi-
Wapstra compilation [12].

(relative) differences of proton and neutron rms radii δr , taken
from our previous HFB calculations [25,26], are imposed as
additional constraints. The results of the represent approach
are displayed and compared to measured values in Fig. 1.

The ground-state neutron and proton densities are displyed
in Fig. 2 for several tin isotopes. The comparison between the
neutron and proton densities, obtained by HF calculations with
the D3Y G-matrix interaction (see Fig. 7 from Ref. [25]) and
the present ones is very reasonable.

Of special importance for our investigation are the surface
regions, where the formation of a skin takes place as is visible
in Fig. 2. For A � 106 the neutron distributions begin to extend
beyond the proton density and the effect continues to increase
with the neutron excess, up to 132Sn. Thus, these nuclei have a

FIG. 2. (Color online) BCS ground-state densities of Sn isotopes
obtained by the phenomenological DFT approach and used in the
QPM calculations.
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neutron skin. The situation reverses in 100−102Sn, where a tiny
proton skin appears.

IV. QPM DESCRIPTION OF NUCLEAR EXCITATIONS

A. The QPM Hamiltonian

The excitations are calculated in the framework of the QPM
with the model Hamiltonian [29]:

H = HMF + H
ph

M + H
ph

SM + H
pp

M . (4.1)

Here, HMF = Hsp + Hpair is the mean-field part, discussed
in the previous section. Hence, different from the standard
QPM scheme we use single-particle energies and wave func-
tions, obtained self-consistently, according to the procedure
described above. For the QPM calculations the pairing part is
simplified by using a constant matrix element. The method
we have applied for the determination of the ground-state
properties has been successfully applied for the investigation
of low-lying dipole modes in the tin isotopic chain before [6,7]
and more recently also in the N = 82 isotones [8].

H
ph

M ,H
ph

SM , and H
pp

M are residual interactions, taken as
a sum of isoscalar and isovector separable multipole and
spin-multipole interactions in the particle-hole and multipole
pairing interaction in the particle-particle channels. The latter
is included only for the quadrupole and octupole excitations.

Building blocks of the model space are the QRPA phonons:

Q+
λµi = 1

2

∑
j1j2

[
ψ

λµi

j1j2
A+

λµ(j1j2) − ϕ
λµi

j1j2
Ãλµ(j1j2)

]
(4.2)

defined as a linear combination of two-quasiparticle creation
A+

λµ and annihilation operators Ãλµ, respectively. The latter is
the time reversed operator Ãλµ = (−)λ−µAλ−µ.

Here j ≡ (nljmτ ) is a single-particle proton or neutron
state. The (bare) two-quasiparticle operators

A+
λµ(j1j2) = [

α+
j1
α+

j2

]
λµ

(4.3)

are defined by coupling the one-quasiparticle operators to total
angular momentum λ with projection µ

[
α+

j1
α+

j2

]
λµ

=
∑
m1m2

C
λµ

j1m1j2m2
α+

j1m1
α+

j2m2
(4.4)

by means of the Clebsch-Gordan coefficients C
λµ

j1m1j2m2
=

〈j1m1j2m2|λµ〉.
The QRPA states are normalized according to the condition

〈0|QλµiQ
+
λµi |0〉 = 1, (4.5)

which can be rewritten in terms of two-quasiparticle weight
factors ∑

j1>j2

wj1j2 (λµi) = 1

(4.6)
wj1j2 (λµi) = ∣∣ψλµi

j1j2

∣∣2 − ∣∣ϕλµi

j1j2

∣∣2
.

TABLE I. Energy, B(E1) values and wave functions of the first
QRPA 1− states in the 110÷132Sn isotopes. Only the dominant neutron
and proton components are given. Neutron and proton configurations
are denoted by the indices ν and π , respectively.

Nucleus State
J π

ν

Energy
[MeV]

Structure
wj1j2 , %

B(E1) ↑
[e2fm2]

〈E〉
[MeV]

110Sn 1−
1 7.834 99.9%[1g7/22f7/2]ν 0.001 7.8

112Sn 1−
1 7.509 99.8%[1g7/22f7/2]ν 0.001

1−
2 7.906 99.0%[3s1/23p3/2]ν 0.144 7.9

114Sn 1−
1 7.329 99.8%[1g7/22f7/2]ν 0.001

1−
2 7.665 99.2%[3s1/23p3/2]ν 0.159 7.7

1−
3 8.021 99.9%[2d3/23p3/2]ν 0.005

116Sn 1−
1 6.974 99.7%[2g7/23f7/2]ν 0.001

1−
2 7.188 99.%[3s1/23p3/2]ν 0.199 7.2

+0.1%[1g9/21h11/2]π
1−

3 7.391 99.9%[2d3/23p1/2]ν 0.009
118Sn 1−

1 6.904 99.6%[1g7/22f7/2]ν 0.001
1−

2 7.054 98.1%[3s1/23p3/2]ν 0.208 7.1
+0.1%[1g9/21h11/2]π

1−
3 7.098 99.1%[2d3/23p3/2]ν 0.02

120Sn 1−
1 6.795 99.6%[2d3/23p3/2]ν 0.009

1−
2 6.870 95.2%[1g7/22f7/2]ν 0.014 6.9

1−
3 6.910 94%[3s1/23p3/2]ν 0.238

+0.1%[1g9/21h11/2]π
122Sn 1−

1 6.469 99.8%[2d3/23p3/2]ν 0.014
1−

2 6.710 95.3%[3s1/23p3/2]ν 0.245 6.7
+0.1%[1g9/21h11/2]π

1−
3 6.754 95.8%[1g7/22f7/2]ν 0.009

+0.1%[1g9/21h11/2]π
124Sn 1−

1 6.359 99.8%[2d3/23p3/2]ν 0.017
1−

2 6.702 94.8%[3s1/23p3/2]ν 0.284 6.68
+0.1%[1g9/21h11/2]π

1−
3 6.749 95.6%[1g7/22f7/2]ν 0.009

+0.1%[1g9/21h11/2]ν
126Sn 1−

1 6.180 99.7%[2d3/23p3/2]ν 0.019
1−

2 6.621 51.4%[3s1/23p3/2]ν 0.163 6.6
+48.3%[1g7/22f7/2]ν

1−
3 6.642 51.5%[1g7/22f7/2]ν 0.137

+47.%[3s1/23p3/2]ν
+0.2%[1g9/21h11/2]π

128Sn 1−
1 5.611 99.7%[2d3/23p3/2]ν 0.023

1−
2 6.201 97.8%[3s1/23p3/2]ν 0.306 6.2

+0.2%[1g9/21h11/2]π
1−

3 6.352 99.1%[1g7/22f7/2]ν 0.001
130Sn 1−

1 5.172 99.7%[2d3/23p3/2]ν 0.028
1−

2 5.882 98.1%[3s1/23p3/2]ν 0.319 5.8
+0.2%[1g9/21h11/2]π

1−
3 6.114 99.4%[1g7/22f7/2]ν 0.0002

132Sn 1−
1 5.754 99.7%[1g7/22f7/2]ν 0.0001

1−
2 7.109 88.6%[2d5/22f7/2]ν 0.363 7.1

+10.8%[1h11/21i13/2]ν
+0.2%[1g9/21h11/2]π

The weight factors wj1j2 (λµi) are given for some states in
Tables I and II, respectively.

The QRPA operators obey the equation of motion

[H,Q+
α ] = EαQ+

α , (4.7)

024321-7



N. TSONEVA AND H. LENSKE PHYSICAL REVIEW C 77, 024321 (2008)

TABLE II. The same as Table I for 100÷104Sn isotopes.

Nucleus State
J π

ν

Energy
[MeV]

Structure
wj1j2 , %

B(E1)↑
[e2fm2]

〈E〉
[MeV]

100Sn 1−
1 8.032 99.5%[1f5/22d5/2]ν 0.001

1−
2 8.292 82.1%[2p3/22d5/2]π 0.028 8.29

102Sn 1−
1 8.174 82.6%[2p3/22d5/2]π 0.031

104Sn 1−
1 8.256 80.8%[2p3/22d5/2]π 0.016

which solves the eigenvalue problem, giving the excitation
energies Eα and the time-forward and time-backward ampli-
tudes [29] ψλi

j1j2
and ϕλi

j1j2
, respectively.

The QPM Hamiltonian (4.1) is rewritten in terms of
phonons [29]:

H = Hph + Hqph =
∑
λµi

EλiQ
+
λµiQλµi

+ 1

2

∑
λ1λ2λ3i1i2i3µ1µ2µ3

C
λ3−µ3
λ1µ1λ2µ2

U
λ2i2
λ1i1

(λ3i3)

× [Q+
λ1µ1i1

Q+
λ2µ2i2

Qλ3−µ3i3 + h.c.] (4.8)

The first term in Eq. (4.8) contains free phonon operators
and refers to the harmonic part of nuclear vibrations, whereas
the second one accounts for the interaction between quasipar-
ticles and phonons. The latter reflect in anharmonic effects and
fragmentation of the nuclear excitations.

The Hamiltonian (4.8) is diagonalized assuming a spherical
0+ ground state that leads to an orthonormal set of wave
functions with good total angular momentum JM . For even-
even nuclei these wave functions are a mixture of one-, two-,
and three-phonon components [31] in the following way:

�ν(JM) =




∑
i

Ri(Jν)Q+
JMi +

∑
λ1i1
λ2i2

P
λ1i1
λ2i2

(Jν)

× [
Q+

λ1µ1i1
× Q+

λ2µ2i2

]
JM

+
∑

λ1 i1λ2 i2
λ3 i3I

T
λ1i1λ2i2I
λ3i3

(Jν)

× [[
Q+

λ1µ1i1
⊗ Q+

λ2µ2i2

]
IK

⊗ Q+
λ3µ3i3

]
JM


�0 (4.9)

where R,P , and T are unknown amplitudes and ν labels the
number of the excited states.

The nuclear response on an external electromagnetic field is
described in terms of quasiparticles and phonons by a transition
operator composed of two parts:

M[E(M)λµ] = Mph[E(M)λµ] + Mqph[E(M)λµ], (4.10)

The first part is responsible for the transitions with one-
phonon exchange between the initial and final states. The
second one contains structures [α+

j ⊗ αj ′ ]λµ, including the
interaction between quasiparticles and phonons. It is important
for the description of the so-called boson forbidden transitions
between nuclear states with the same number of phonons

or differing by an even number of them. The corresponding
equations of each of the terms could be found in Ref. [32].

B. Transition densities

To understand the character of a nuclear excitation it is
useful to consider the spatial structure of the transition. This is
accomplished by analyzing the one-body transition densities
δρ(�r), which are the nondiagonal elements of the nuclear
one-body density matrix. Physically, δρ(�r) corresponds to the
density fluctuations induced by the action of an (external) one-
body operator on the nucleus. Hence, the transition densities
are directly related to the nuclear response functions and by
analyzing their spatial pattern we obtain a very detailed picture
of, e.g., the radial distribution and localization of the excitation
process. The particular usefulness of such an analysis for PDR
states was pointed out in Ref. [10].

Using the complete set of single-particle states ϕj (�r) from
HMF and a multipole expansion by means of the Wigner-
Eckardt theorem, we find the isoscalar (T = 0) and isovector
(T = 1) transition densities in second quantization:

δρT (�r) =
∑

j1j2;λµ

[iλYλµ(r̂)]†ρλT
j1j2

(r)
[
a+

j1
aj2

]
λµ

. (4.11)

For the present purpose we consider nonspin flip transitions
of isoscalar and isovector character. The radial parts are given
by binomials of radial single-particle wave functions and
reduced matrix elements

ρλT
j1j2

(r) = R∗
j1

(r)Rj2 (r)
1

λ̂
〈j1||iλYλ||j2〉〈q|τT

3 |q〉, (4.12)

with λ̂ = √
2λ + 1. The isospin matrix element 〈q|τT

3 |q〉
is unity for T = 0. For an isovector transition we have
〈q|τT

3 |q〉 = ±1 for neutrons and protons, respectively.
The transition densities are obtained by the matrix elements

between the ground state |�i〉 = |JiMi〉 and the excited states
|�f 〉 = |Jf Mf 〉,

ρT
if (�r) =

∑
j1j2;λµ

[iλYλµ(r̂)]†ρλT
j1j2

(r)〈JjMf |[a+
j1
aj2

]
λµ

|JiMi〉.

(4.13)

Here, we are interested only in the two-quasiparticle creation
and annihilation parts that are given by

�+
λµ(j1j2) = (uj1vj2 + vj1uj2 )[A+

λµ(j1j2) + Ãλµ(j1j2)].

(4.14)

Equation (4.14) can be rewritten in terms of QRPA phonons
defined by the relation (4.2):

�+
λµ(j1j2) =

∑
i

gλi
j1j2

(Q+
λµi + Q̃λµi), (4.15)

where

gλi
j1j2

= ψλi
j1j2

+ ϕλi
j1j2

1 + δj1j2

(uj1vj2 + uj2vj1 ) (4.16)
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accounts for the BCS and QRPA properties, respectively. Thus,
we find

ρT
if (�r) =

∑
j1j2;λµ

[iλYλµ(r̂)]†ρλT
j1j2

(r)〈Jf Mf |�+
λµ(j1j2)|JiMi〉.

(4.17)

We identify |JiMi〉 ≡ |0〉 with phonon vacuum and obtain the
excited states by means of the QRPA state operator, Eq. (4.2),
|Jf Mf 〉 ≡ Q+

λµi |0〉, which leads us to the commutator relation

ρT
if (�r) =

∑
j1j2;λµ

[iλYλµ(r̂)]†ρλT
j1j2

(r)〈0|[Qλµi, �
+
λµ(j1j2)]|0〉.

(4.18)

Hence, in QRPA theory the one-phonon transition density is
given by the coherent sum over two-quasiparticle transition
densities entering in the structure of a phonon by the relation:

ρT
λi(r) =

∑
j1 � j2

ρλT
j1j2

(r)gλi
j1j2

. (4.19)

The shape of the transition density defined by Eq. (4.19) is
rather strongly correlated with the collectivity of the phonon.
For example, the transition densities of the noncollective, two-
quasiparticle excitations typically have pronounced maxima
inside the nucleus. Those corresponding to the collective
transitions with a large number of coherently contributing
two-quasiparticle transitions have a maximum at the nuclear
surface.

The reduced transition probability B(Eλ) for the excitation
of a state Jf from the ground-state Ji is connected with the
transition density with the relation:

B(Eλ) = 2Jf + 1

2Ji + 1

[
1∑

T =0

eλ
T

∫ ∞

0
rλρT

λi(r)r2dr

]2

, (4.20)

where eλ
T denotes the effective isoscalar and isovector charges,

respectively, introduced previously.

C. The QPM parameters

Following Refs. [33,34] the ratio κ
(λ)
1 /κ

(λ)
0 of the isovector

and isoscalar multipole strength parameters, respectively, is
assumed to be a constant, independent of the multipolarity λ.
We can find this ratio from the dipole coupling constants by
projecting the spurious 1− state to zero excitation energy and
fitting the experimental energy of the GDR [5,35]. For those
nuclei where GDR data are not available the empirical EGDR

max =
76/A1/3 law is used. The E1 transition matrix elements are
calculated with recoil-corrected effective charges qn = −Z/A

for neutrons and qp = N/A for protons, respectively, as
discussed in Sec. II.2

2Note that in our previous work [6] the dipole response in 120−132Sn
was calculated with the bare charges, leading to systematically
smaller values of the total transition strength.

FIG. 3. (Color online) QPM results for the total PDR strengths
in the 100−132Sn isotopes (upper panel) are displayed for comparison
together with the nuclear skin thickness δr , Eq. (2.10) (lower panel).
Experimental data on the total PDR strengths in 116Sn and 124Sn
[36] and 112Sn [37] are also shown. In the lower panel, the skin
thickness derived from charge exchange reactions by Krasznahorkay
et al. [16,17] are indicated.

V. RESULTS FOR THE DIPOLE RESPONSE

A. General features of the dipole response

The dependence of the calculated total PDR strength
[
∑

B(E1) ↑] on the mass number for the whole chain of
isotopes 100−132Sn is shown in Fig. 3 and compared to the skin
thickness δr , Eq. (2.10), of these nuclides. Here the sum is
taken over the QRPA dipole states presented in Table I and
Table II, respectively. According to state vectors structure they
have been associated with PDR. These results illustrate and
confirm the conclusion drawn in Sec. II and, as already stated
in previous work [6], establish the close relationship of the
PDR strength and the skin thickness.

In the region between 110−132Sn the total PDR strength
increases smoothly with the neutron number. This establishes
a clear correlation of the total PDR strength and the thickness of
the neutron skin in these nuclei, thus confirming our previous
results [6–8] and the more recent investigations for several
N = 82 isotones [8]. The close relationship between δr and the
PDR modes is underlined by the result that the PDR becomes
negligibly small in the region 106−108Sn, where δr changes
sign (see Fig. 3). In these isotopes the lowest-lying states carry
the characteristics of the low-energy branch of the GDR as
indicated by the structure and shape of the transition densities.

From the QRPA calculations in 110−132Sn a sequence of
low-lying one-phonon 1− states at excitation energies E∗ =
6–7.5 MeV of almost pure neutron structure is obtained with
a minor fraction of protons less than 1%. The structure of
the state vectors is indicated in Table I. The most important
part of the total PDR strength comes from the excitations of
the least bound neutrons from the 3s, 2p, and 2d subshells.
Some other neutron orbitals of significance for the size of the
neutron skin are 1h11/2 and 1i13/2, which have an important

024321-9



N. TSONEVA AND H. LENSKE PHYSICAL REVIEW C 77, 024321 (2008)

contribution to the PDR transition matrix elements in 132Sn
nuclei, for example.

The dominant neutron structure and remarkable stability of
the wave functions of the low-lying one-phonon 1− states in
these nuclei is in agreement with our previous findings on the
PDR mode in 120−132Sn isotopes [6] and N = 82 [8] isotones.

Toward the lighter Sn isotopes the average energy of the
excited dipole states increases, whereas their total number de-
creases (see Table I). The dependence of the PDR energy on the
neutron excess is connected with the one-neutron separation
energy, decreasing gradually toward the heavier tin isotopes.
Such a tendency has been observed also experimentally in
N = 82 isotones (see Ref. [38]).

An exception is the double magic 132Sn nucleus, in which
the PDR centroid energy is E∗ = 7.1 MeV and is still below
the neutron emission threshold. The present result in 132Sn is
slightly different from our previous one [6,7] due to minor
readjustments in the single-particle spectrum.

In 100−104Sn the lowest dipole excitations, E∗ =
8.1–8.3 MeV, are dominated by proton excitations. The struc-
ture of the QRPA state vectors and B(E1) transition probability
are given in Table II. There it is seen, that configurations
involving quasibound 2p3/2 and 1g9/2 proton states confined
by the Coulomb barrier are the major components. This is a
remarkable Coulomb effect enlightening the delicate balance
among various effects as a prerequisite for a PDR and, by
comparison to Fig. 2, the existence of a nuclear skin. From
Fig. 3 it is seen, that this is the mass region, where the
neutron skin turns into a proton skin. In agreement with the
considerations in Sec. II the vanishing skin is accompanied
by a strong suppression of the dipole strength. The smallest
strength is found at A = 110–112, which is slightly above
the turnover point of δr at A = 106. This delay is caused
by Coulomb effects, which enhance the dipole response from
weakly bound proton orbitals in that mass region over the
values to be expected for full isospin symmetry.

Electromagnetic breaking of isospin symmetry is also the
main reason for the persisting of low-energy dipole strength
close to 100Sn. Already the quite different behavior is an
indication for another mechanism underlying these excitations.
There, at N = Z, the isoscalar dipole charge vanishes, hence
the electromagnetic operator by itself no longer supports
isoscalar transition. However, Coulomb effects in the single-
particle wave functions translate into an intrinsic isospin
symmetry breaking on the level of matrix elements. The
mechanism behind a neutron skins in the heavy Sn isotopes is
a strong interaction effect, namely the repulsive action of the
isovector self-energy to the neutron mean field. In neutron-
rich nuclei the isovector self-energy adds attractively to the
proton potential, which partially compensates the Coulomb
repulsion. Because for N → Z the isovector self-energy
becomes negligible the proton skins seen in the light Sn
isotopes must be of a different origin. In fact, they are due to the
Coulomb potential. Toward N = Z the Coulomb interaction
can act in full strength on the protons, pushing them apart and
leading to a rearrangement of a certain fraction of the nuclear
charge in the surface region.

The average energies in Table I and Table II have been
obtained by the relation 〈E〉 = ∑

i EiBi/
∑

i Bi , where Ei and
Bi are the QRPA energies and reduced transition probabilities,
respectively.

B. PDR and GDR transition densities

For a more detailed insight into the characteristic features
of the dipole excitations we consider the evolution of the
proton and neutron transition densities for in the various energy
regions. In Figs. 4 and 5 we display the QRPA transition
densities for several N = 82 isotones in and the Z = 50
isotopes 112,122,132Sn for three different regions of excitation
energies: the low-energy PDR region below the neutron
emission threshold, the transitional region up to the GDR,

FIG. 4. (Color online) QRPA results for the
one-phonon dipole transition densities in N = 82
nuclei.
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FIG. 5. (Color online) QRPA results for
the one-phonon dipole transition densities in
112,122,132Sn nuclei.

and in the GDR region and beyond.3 In Fig. 6, neutron and
proton transition densities in 100Sn for different regions of
excitations energies up to E∗ = 20 MeV are presented. The
transition densities displayed in Figs. 4, 5, and 6 were obtained
by summing over the transition densities of the individual
one-phonon states located in the energy intervals denoted at
the top of each column of the figures, i.e.,

ρT
λ (r) =

∑
i

ρT
λi(r). (5.1)

ρT
λi(r) is determined by Eq. (4.19), where the module and

the phases are unambiguously determined by our microscopic
approach. The neutron and proton transition densities are then
obtained by taking half the difference and the sum of the
isoscalar and isovector pieces, respectively.

A common features of the all cases presented in
Fig. 4 is that up to E∗ = 8.1 MeV the protons and neutrons

3For a detailed discussion of the dipole response of the N = 82
isotones we refer to Ref. [8].

oscillate in phase in the nuclear interior, whereas at the surface
only neutron transitions contribute. The same behavior of
the neutron and proton transition densities is observed below
8 MeV for tin isotopes (see Fig. 5). This pattern is generic to
the lowest dipole states, making it meaningful to distinguish
these excitations from the well-known GDR states. Hence, we
are allowed to identify the PDR states with a new mode of
nuclear excitation, not seen in stable N ∼ Z nuclei.

In the energy region E∗ = 8.1–8.6 MeV for N = 82
isotones and 8–8.5 MeV for Z = 50, respectively, the tran-
sition densities suddenly change. Rather abruptly, protons and
neutrons start to oscillate out of phase over the whole nuclear
volume as known from the GDR. Thus, we are encountering
the low-energy part of the GDR, although the strengths of these
two different type of excitations, the PDR and the low-energy
GDR tail are quite comparable. Also energetically they are
located very close to each other. This makes the task to
distinguish the two modes rather demanding. Theoretically,
we can always use the transition densities for a detailed
analysis and a precise identification of the mode although a
corresponding experimental measurement will not be feasible

FIG. 6. (Color online) QRPA results for the one-
phonon dipole transition densities in 100Sn.
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for the foreseeable future. Finally, we show in Figs. 4 and 5 the
one-phonon QRPA proton and neutron transition densities for
the states at E∗ > 8.1 MeV and E∗ > 8 MeV, respectively. A
pronounced isovector oscillation of protons against neutrons,
peculiar to the GDR, is observed. The latter, as a very collective
mode, has a strength one order of magnitude larger than the
PDR.

We have pointed out the special character of the low-
energy dipole excitations in the 100−104Sn isotopes. This is
reflected also in the transition densities. In 100Sn, Fig. 6,
proton oscillations prevail below E∗ < 8.4 MeV. In the nuclear
interior isoscalar mixed symmetry vibrations of protons and
neutrons are found, whereas at the surface only protons
contribute. Hence, this mode could be related to a proton
skin excitations. In the energy region E∗ = 8.4–9.2 MeV
oscillations of weakly bound neutrons from the surface region
take place. The behavior of the transition densities and the
structure of the 1− states at these energies is similar to the
neutron PDR mode identified in the more neutron-rich tin
isotopes (see Fig. 5 as well). At energies E∗ > 9.2 MeV the
low-energy tail of the GDR is encountered. The last plot in
Fig. 6 displays the neutron and proton transition densities
summed over the GDR region, E∗ = 9.2–20 MeV.

The QRPA calculations on the neutron and proton PDR
and the GDR strength distributions at excitation energies up
to 20 MeV in several thin isotopes in the mass region 100Sn ÷
132Sn are presented in Fig. 7. An interesting feature we have
observed is that between the N = 50 and N = 82 closed shells,
with the increase of the neutron number from 100Sn toward
132Sn, the PDR strength is shifted to lower excitation energies
relatively to the GDR mode, which is almost unchanged. This
can be explained with a strong correlation between the PDR
excitation energy and the energy of the neutron threshold,
which also decreases in the same direction.

C. Multiphonon effects in the low-energy dipole spectra of 124Sn

In the multiphonon QPM calculations the structure of
the excited states is described by wave functions as de-
fined in Eq. (4.9). We now investigate multiphonon ef-
fects using a model space with up to three-phonon com-
ponents, built from a basis of QRPA states with Jπ =
1±, 2+, 3−, 4+, 5−, 6+, 7−, 8+. Because the one-phonon con-
figurations up to E∗ = 20 MeV are considered the core
polarization contributions to the transitions of the low-lying
1− states are taken into account explicitly. Hence, we do not
need to introduce dynamical effective charges. In the excitation
energy interval up to E∗ = 9 MeV we use a total of about 250
multiphonon configurations.

The results for the dipole response below the neutron
threshold in 124Sn are presented in Fig. 8. By comparing
Figs. 8(a) and 8(c) it is seen that the pure two-quasiparticle
QRPA strengths is strongly fragmented once the coupling to
multiphonon configurations is allowed. As found previously
the lowest-lying 1− state without a QRPA counterpart is
predominantly given by a two-phonon quadrupole-octupole
excitation [2]. The [2+

1 ⊗ 3−
1 ] configuration accounts for

85% of the QPM wave function. The 1−
1 state is located

at E∗ = 3.50 MeV, carrying a reduced transition probability
B(E1; g.s. → 1−

1 ) = 6.06 10−3 e2 fm2. The values are in a
good agreement with the experiment E∗ = 3.49 MeV and
B(E1; g.s. → 1−

1 ) = 6.08 10−3 e2 fm2 [39] and previous QPM
calculations [6,39].

Here, our attention is especially focused on the 1− states
above the two-phonon dipole state and below the neutron
threshold. From the analysis of the QRPA calculations dis-
cussed above the 1− states presented in Fig. 8(a) are PDR
modes. Their fragmentation over the multiphonon 1− excited
states are shown in Fig. 8(b). From that plot we can determine
the energy region where the PDR is located. In the particular

FIG. 7. (Color online) QRPA results for
the PDR and GDR strength distributions in
100,116,122,124,132Sn isotopes.
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FIG. 8. (Color online) Electromagnetic dipole response in 124Sn
from (a) QRPA calculations; (b) Distributions of the PDR QRPA
phonons over the 1− excited states in terms of one-phonon amplitudes
R2 defined with Eq. (4.9); (c) QPM with up to three-phonon
configuration space, including 250 components; (d) experimental
data from Ref. [36] up to excitation energies E∗ = 7.5 MeV.

case of 124Sn in the interval E∗ � 7.5 MeV is exhausted about
80% of the total one-phonon PDR strength.

Comparing the fragmentation pattern of the theoretical
low-energy dipole strength in 124Sn to recent measurements
[36,39], displayed in Fig. 8(d), we find that the three-phonon
QPM results are still not fully accounting for the observed
distribution, although we have increased the number of the
multiphonon configurations twice in comparison with our
previous calculations from Ref. [6]. However, the calcu-
lated total QPM dipole strength in the PDR energy range
E∗ = 5.7–7.2 MeV is

∑
B(E1)QPM = 0.324 e2 fm2, which

is almost identical to the experimentally deduced strength,∑
Bexp(E1) = 0.345(43) e2 fm2.
The good overall agreement between the calculations and

the experiment [36] for the total PDR strength and centroid
energy in 124Sn indicates that in this particular case the main
PDR properties could already be determined on the level of the
one-phonon approximation. A similar conclusion was drawn
in our previous QPM calculations for several Sn isotopes
with A = 120–130 [6]. An important observation is that the
low-energy tail of the GDR can give a strong contribution to
the dipole strength around the particle threshold. This effect
appears because the GDR states may overlap with the PDR
region and can be fragmented due to coupling to multiphonon
states. The effect becomes increasingly important in nuclei

where the neutron threshold is higher, hence approaching the
GDR region, as in the lighter Sn isotopes or 132Sn, where the
PDR strength is situated very close to the neutron threshold.
Such a situation demands much larger model spaces.

VI. OTHER MODEL CALCULATIONS AND
EXPERIMENTAL DATA

A. PDR models

Overall, the present Sn results are in at least qualitative
agreement with the theoretical PDR investigations by density
functional theory (DFT) [24], relativistic RPA [40], relativistic
QRPA [41,42], extended theory of finite Fermi systems [43],
and QRPA-PC (quasiparticle random-phase approximation
plus phonon coupling) [44]. They confirm the conclusions
drawn from our former QPM calculations in 208Pb [10] and
for the N = 82 case, studied recently in Ref. [8]. All these
different approaches confirm the PDR mode as a universal
low-energy dipole mode of a character generic for isospin
asymmetric nuclei.

As an example we cite the studies of Ref. [24] investigating
low-lying dipole states in 40−48Ca in a density functional
theory approach. Similar to the much heavier nuclei considered
here the PDR is predicted to be located in the energy range
5–10 MeV. Also in that nucleus, the centroid energy of
the PDR strength is found to decrease with the number of
the neutrons, whereas the integrated PDR strength (below the
neutron particle emission threshold) increases. These results
agree with the present calculations and our findings in Refs.
[6–8] in the Sn isotopes. A common result of all model
calculations discussed here is a clear connection between
the existence of low-energy dipole strength and the presence
of isospin asymmetry or nuclear skin in the investigated
nuclei. However, we emphasize that arguments based on the
energy alone are likely to be insufficient for a unambiguous
identification of the dipole states as belonging to the PDR.
To our understanding, as an important conclusion from the
analysis of the transition densities, the PDR strength is
attached only to the states located below the neutron particle
emission threshold. Hence, the centroid of the PDR energy
has a tendency to be closely connected with the one-neutron
separation energy. At higher energies, the dipole spectrum
merges rapidly into the low energy tail of the GDR and the
transitions lose their characteristic PDR features.

A controversial question is the degree of the collectivity of
the PDR transitions. This issue has been discussed by several
authors [24,40,41,44,45]. In the nonrelativistic models like
ours [7,8,10] and QRPA-PC, for example, the PDR is referred
to as the excitation of two-quasiparticle states. In 132Sn the
relativistic QRPA [41] predicts a collective neutron state at
E∗ = 8.6 MeV that has been related to the PDR excitation.
This state contains particle-hole configurations accounting for
transitions into continuum states. We found the collectivity of
such excitations to depend strongly on the choice of the spin-
orbit potential affecting the energy gap between the bound hole
and unbound particle region by shifting the continuum states.
Our standard choice for the spin-orbit potential strength [46],
otherwise describing the spectra reasonably well, disfavors
such admixtures.

024321-13



N. TSONEVA AND H. LENSKE PHYSICAL REVIEW C 77, 024321 (2008)

10

20

30

0 5 10 15 20 25

E* [ MeV ]

dB
(E

1)
/d

E
 [e

2 fm
2 /1

00
 k

eV
]

5 10 15 20 25

2

4

6

E* [ MeV ]

dB
(E

1)/dE
 [e

2fm
2/M

eV
]

FIG. 9. (Color online) Electromagnetic QRPA dipole response function and LAND-FRS data [5] for 130Sn. The QRPA results (left) were
obtained by solving the Dyson equation and include the decay widths from particle emission. In the right panel the theoretical response function
has been folded with the experimental acceptance filter [47] (dashed line) and is compared to the data (symbols).

Experimental data for low-energy dipole states below the
particle emission threshold are available for a number of Sn
isotopes, 116Sn and 124Sn [36] and recent measurements in
112Sn [37], and for several N = 82 isotones [8]. Altogether,
our calculations describe these data quite satisfactory.

B. Dipole response in 130,132Sn

We pay special attention to the region around 132Sn, because
of the expected closure of the N = 82 neutron shell as
indicated, e.g., by the energy of the first 2+ state. The HFB
calculations predict a double shell closure for protons and
neutrons, respectively. However, the HFB calculations show
that the N = 82 neutron shell closure depends to some extent
on the balance between spin-orbit splitting and the effective
pairing strength.

The LAND-FRS Collaboration at GSI has recently
measured in a pioneering Coulomb dissociation experiment the
dipole response above neutron threshold in 130,132Sn [5]. These
measurements provide the first data on the dipole response in
the these exotic nuclei. However, we have to be aware that
any dipole strength below the particle emission threshold—if
existing—cannot be accessed by this type of measurement.
In addition to the GDR a prominent feature of the data is a
resonance-like structure around E∗ ∼ 10 MeV exhausting a
few percentages of the EWSR in 130,132Sn nuclei. In Ref. [5]
this part of the response function was interpreted as a PDR.
In Table III we compare our calculated integrated dipole

photoabsorption cross sections σ in the Sn isotopes to the
LAND-FRS data [5]).

A different conclusion is obtained by analyzing our QRPA
wave functions and the dipole transition densities. In 130,132Sn,
we find dipole excitations, carrying the characteristic features
of PDR transitions, below the neutron particle emission
threshold, as indicated in the first three columns of Table III
and in Fig. 7. In the energy domain E∗ = 8–12 MeV, assigned
in Ref. [5] as PDR region, we obtain in both nuclei another
concentration of E1 strength (see also Fig. 7). However,
because the transition densities show the GDR-type behavior,
we consider this part of the dipole response as the low-energy
tail (LET) of the GDR. Although the LET evolves in close
relation to the neutron excess, it does not seem to be related to
excitations of the neutron skin.

In fact, there is a simple proportionality between the
dipole photoabsorption cross section, integrated over an energy
interval around E∗, and reduced transition strength,

∫
dEσγ ∼

E∗B(E1, E∗), up to a numerical factor [34]. Exploiting this
relation, we have calculated the integrated dipole photoabsorp-
tion cross sections in the LET regions of 130,132Sn. In Table III
it is seen that the theoretical results agree rather well with those
determined experimentally in Ref. [5]. Within the experimental
error bars, also the full strengths, including excitations up to
20 MeV, are reasonably well described.

For the purpose of a realistic description of the measured
spectra, we have applied a slightly different numerical method
by solving the QRPA Dyson equation similar to the approach

TABLE III. Dipole response in 130,132Sn. Calculated energies and integrated cross sections (columns denoted by QPM) in one-phonon
approximation are compared with recent measurements (columns denoted by Exp.) [5] of PDR and GDR in Sn isotopes. The calculated
integrated PDR and low-energy GDR cross sections are denoted by

∫
σ PDR and

∫
σ GDR

LET , respectively. The total photoabsorption cross section
up to 20 MeV is denoted by

∫
σ GDR.

Nucl. PDR 〈E〉PDR

∫
σ PDR EPDR

max

∫
σ PDR EGDR

LET

∫
σ GDR

LET Emax
GDR Emax

GDR

∫
σ GDR

∫
σ GDR

(Energy
region ) (MeV) (mb MeV) (MeV) (mb MeV) (MeV) (mb MeV) (MeV) (MeV) (mb MeV) QPM
QPM QPM QPM Exp. Exp. QPM QPM Exp. QPM Exp.

130Sn 0–7.4 5.8 8.2 10.1(7) 130(55) 8–11 137.3 15.9(5) 16. 1930(300)a 1616
132Sn 0–8 7.1 10.4 9.8(7) 75(57) 8–11 97.6 16.1(7) 16.1 1670(420)a 1518

aData of Ref. [5] integrated up to 20 MeV [47].
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FIG. 10. (Color online) Electromagnetic QRPA dipole response function and LAND-FRS data [5] for 132Sn. As in Fig. 9 the QRPA results
(left) include the decay widths from particle emission. In the right panel the theoretical response function has been folded with the experimental
acceptance filter [47] (dashed line) and is compared to the data (symbols).

used in Ref. [48] allowing to take into account explicitly
the continuum decay width �↑ of the states above particle
threshold, ranging from a few keV up to about 100 keV.
Still, a comparison to the LAND-FRS spectra is possible
only after folding the theory with the experimental acceptance
filters [47]. The results of such calculations are shown in
Figs. 9 and 10 with a quite remarkable agreement to the
data.

VII. SUMMARY AND CONCLUSIONS

Low-energy dipole excitations in 100−132Sn isotopes were
studied by a theoretical approach based on HFB and QPM
theory. From our calculations in 112Sn ÷132 Sn we obtained
low-energy dipole strength in the energy region below 8 MeV,
close but below the neutron emission threshold. These states
are of a special character. Their structure is dominated by
neutron components and their transition strength is directly
related to the presence of a neutron skin. Their generic
character is further confirmed by the shape and structure of
the related transition densities, showing that these PDR are
clearly distinguishable from the conventional GDR mode.
Our calculations show a rather abrupt transition from PDR-
to the GDR-type excitations, typically occurring at energies
slightly above the particle threshold. An important finding in
our calculations is that an accurate description of the PDR
part of the dipole spectrum requires a single-particle spectrum
corresponding to a total effective mass m∗/m = 1. From that
observation we conclude that nonlocalities and dynamical
effects form core polarizations are important for a proper
description of the PDR spectrum. Pure HF and HFB models,
whether nonrelativistic or relativistic, typically use effective
masses considerably less then unity. Hence, such approaches
might miss important effects.

In the most proton-rich exotic nuclei 100−104Sn the lowest
dipole states are almost pure proton excitations. They are
related to oscillations of weakly bound protons, indicating
a proton PDR. The interesting point is that we found these
states in heavy nuclei with N slightly larger or equal to
Z. We suggest that the effect is due to Coulomb repulsion

that pushes out weakly bound protons orbitals to the nuclear
surface. Coulomb effects also induce a considerable amount
of isospin breaking at the level of single-particle wave
functions.

Because similar observation have been made in the nearby
N = 82 isotonic nuclei, we may conclude that the features
discussed here indicate a new universal mode of excitation.
It is worthwhile to extent the investigations also into other
mass regions. Promising candidates are not only the Ni and
Ca isotopes but also the light mass region, where a mixing
between halo and skin degrees of freedom can be expected,
which may lead to still other modes of excitations.
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APPENDIX: THE REARRANGEMENT POTENTIALS

Once the proton and neutron self-energies �p,n(ρ), respec-
tively, are known the rearrangements parts are determined and
properly subtracted by exploiting relations found in infinite
nuclear matter. In symmetric nuclear matter with ρp = ρn

we find for the isoscalar self-energy �0 = (�n + �p)/2 the
relation

�0(ρ) = 1

2

∂

∂ρ
ρU0(ρ), (A1)

which we integrate to give

U0(ρ) = 2

ρ

∫ ρ

0
dρ ′�0(ρ ′), (A2)

024321-15



N. TSONEVA AND H. LENSKE PHYSICAL REVIEW C 77, 024321 (2008)

providing us with U0(ρ) = [Un(ρ) + Up(ρ)]/2. In pure neu-
tron matter we have ρ = ρ3 = ρn and

Un(ρ) = 2

ρ

∫ ρ

0
dρ ′�n(ρ ′). (A3)

This allows us to determine

Up(ρ) = 2U0(ρ) − Un(ρ). (A4)

For a finite nucleus the densities are given parametrically
as functions of the radius r . Hence, we can replace the

integrations over density by radial integrals

ρ(r)Uα(r) = −2
∫ ∞

r

ds
∂ρ(s)

∂s
�α(s), (A5)

where ρ(r) is the density calculated self-consistently according
to Eq. (3.3) with wave functions from the effective potential
�α(r). Obviously, the above equation is applicable to any
potential given as a function of the radius. Hence, by means
of these defolding relations we are able to calculate B(A) for
arbitrary phenomenological single-particle potentials, which
otherwise we could not.
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