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Description of nuclear octupole and quadrupole deformation close to axial symmetry:
Critical-point behavior of 224Ra and 224Th
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The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of
freedom in conditions close to axial symmetry, is applied to situations of shape phase transitions where the
quadrupole amplitude can reach zero. The transitional nuclei 224,226Ra and 224Th are discussed in the frame of
this model. Their level schemes can be reasonably accounted for by assuming a square-well potential in two
dimensions. Electromagnetic transition amplitudes are also evaluated and compared with existing experimental
data.
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I. INTRODUCTION

The phase transition between spherical and axially de-
formed quadrupole shapes of nuclei has been the object of
several theoretical and experimental works in recent years. In
particular, the properties of nuclei close to the critical point,
predicted by Iachello’s model of X(5) symmetry [1], have
been actually observed in several cases [2–7], and some other
nuclides showing the ratio E(4+)/E(2+) ≈ 2.91 expected for
X(5) symmetry are presently under investigation. Moreover,
in the Ra-Th region, it has been observed that the isotopes
224Ra and 224Th have a positive-parity ground-state band with
a sequence of level energies very close to the X(5) predictions
[8,9]. Here, however, the presence of a very low lying negative-
parity band, soon merging with the positive-parity one for
J > 5, proves that the octupole mode of deformation plays
an important role and should not be ignored in discussing the
behavior of the phase transition.

In a previous paper [10] (henceforth referred to as I) a simple
model has been introduced to describe the phase transitions in
nuclear shape involving the octupole mode.1 To this purpose,
a new parametrization of the collective coordinates describing
the nuclear quadrupole and octupole deformation has been
introduced and discussed. The nuclear shape is represented in
the intrinsic frame defined by the principal axes of the overall
tensor of inertia, in situations close to (but not necessarily
coincident with) the axial-symmetry limit. In the same paper,
a specific model is developed to describe the critical point of
the phase transition in the octupole mode, between harmonic
oscillations and permanent asymmetric deformation, in nuclei
that already possess a stable quadrupole deformation. The
thorium isotopic chain was investigated and the experimental
data concerning 226,228Th were compared with the model
predictions [10]. The former appears to be close to the critical
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1We have now the occasion to correct a few misprints that escaped

proofreading in paper I: Equation (23c) should read q3 = (L3 − pϕ −
2pχ − 3pϑ )/(4u2

0). In Table VII, the fourth element of the fifth line
should be sin θ2 sin θ3/J1. We apologize for these errors.

point, whereas the latter can be interpreted as an example of
harmonic oscillations in the axial octupole mode.

In the present paper, we extend the investigation to the
cases where the quadrupole deformation is not steady but
performs oscillations under the effect of a proper potential,
and in particular for situations close to the quadrupole critical
point described by X(5) symmetry, in the radium and thorium
isotopic chain.

As we shall see, the properties of the already mentioned
nuclei 224Th and 224Ra are reasonably described by our model
with a “critical” (flat) potential well, extending both in the β2

and β3 directions. Moreover, we observe that, as far as the
level scheme is concerned, the next isotope 226Ra can also be
accounted for with a proper critical-point potential, in spite of
the fact that the positive-parity part of the ground-state band
does not follow the X(5) predictions. As in the case of thorium,
heavier isotopes of radium have a permanent quadrupole
deformation and octupole excitations of vibrational character,
whereas the lighter ones are either noncollective or vibrational
in the quadrupole mode.

Some results of this work, at different phases of advance-
ment, have been reported at several conferences or schools
[9,11–13].

For convenience of the reader, we report in the next
section some evidence of the phase transitions in the radium
and thorium isotopic chain, and the definition of variables
introduced in I and a few results relevant to the present work
are briefly summarized in Sec. III A. In the remainder of
Sec. III, the model introduced in I is specialized to a form
suitable for a critical potential in two dimensions. Finally,
in Sec. IV the model results are reported and compared
with the existing experimental evidence for 224,226Ra and
224Th. Previous models of quadrupole-octupole deformation
are quoted in I. Since then, new relevant papers have appeared.
A new analytic quadrupole-octupole axially symmetric model
(AQOA) has been proposed by Bonatsos et al. [14] to discuss
the evolution of the quadrupole and octupole collectivity in
Ra and Th isotopes. A parameter-free model starting from a
similar approach has been developed by Lenis and Bonatsos
[15] and compared with the experimental results for 226Ra and
226Th. Moreover, a variant of the AQOA model, introducing
a renormalization of the nuclear moment of inertia [16], has
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been used to describe the lowest quadrupole and octupole
bands of the N = 90 isotones 150Nd, 152Sm, 154Gd, and 156Dy.
A discussion of the octupole bands of 150Nd and 152Sm can
be found in Refs. [9,12]. Finally, an extension of the extended
coherent state model [17] has been developed by Raduta and
co-workers [18–20], which also includes the lowest Kπ = 1+
and 1− bands in the model space, and the model predictions
have been compared with the experimental data for several
nuclei of the regions of the actinides and of the rare earths.

II. PHASE TRANSITIONS IN THE RA-TH REGION

We summarize here the existing evidence for the evolution
of nuclear shapes for radium and thorium isotopes in the
transitional region N = 130–140.

Figure 1, taken from I, shows the behavior of some indi-
cators of quadrupole and octupole collectivity, as a function
of the neutron number N , in the isotopic chain of Ra and Th.
It has been noted in I that 226Th appears to be close to the
critical point in the octupole deformation, but it possesses a
stable quadrupole deformation β2. At larger values of N , Th
isotopes maintain a stable quadrupole deformation, whereas
the octupole mode evolves toward the vibrational behavior, as
indicated by the large excitation energies of all negative-parity
levels. At N = 130 or less, the quadrupole mode has a
vibrational (or noncollective) character. It turns out, therefore,
that the octupole phase transition proceeds in the direction
opposite to the quadrupole one. We also observe that the phase
transition only involves the axial octupole mode. In fact, the
energy of the Jπ = 1− bandhead of the Kπ = 0− octupole
band shows a sharp decrease, both in its absolute value and in
the ratio to E(2+), when the neutron number decreases below
N = 142. Other octupole bands (with K > 0) do not show a
similar trend [Fig. 1(c)], and one can conclude that nonaxial
octupole excitations maintain a vibrational character. A similar
trend is apparent also for Ra isotopes.

FIG. 1. (Color online) Indicators of the quadrupole collectivity
(left) and of the octupole collectivity (right), as a function of the
neutron number N in the isotopic chain of Ra (circles) and Th
(triangles). (a) Excitation energy of the first 2+ level. (b) Energy
ratio E(4+)/E(2+). (c) Excitation energy of the first level of the
Kπ = 0− band, J π

0 = 1− (open symbols), and of the lowest known
level of other negative-parity bands, J π

0 = 2− or 1−
2 (full symbols).

(d) Energy ratio E(1−)/E(2+). The horizontal line in (b) shows the
value (2.91) expected for the X(5) symmetry (from Ref. [10]).

To describe Th and Ra isotopes with A < 226, we must
also allow β2 to vary and perform (not necessarily harmonic)
oscillations. If we consider the value E(4+)/E(2+) = 2.91 as
a signature of the critical point with respect to the quadrupole
deformation, this would correspond approximately to 224Ra
and 224Th.

III. THE MODEL FOR QUADRUPOLE-OCTUPOLE
VIBRATIONS

A. Summary of the variable definitions

The dynamical variables a(λ)
µ (λ = 2, 3; µ = −λ, . . . , λ),

describing the quadrupole and octupole deformation in the
intrinsic reference frame, are parametrized as

a
(2)
0 = β2 cos γ2 ≈ β2,

a
(2)
1 = −

√
2β3√

β2
2 + 2β2

3

v(sin ϕ + i cos ϕ),

a
(2)
2 =

√
1/2β2 sin γ2 − i

√
5β3√

β2
2 + 2β2

3

u sin χ,

a
(3)
0 = β3 cos γ3 ≈ β3,

(1)

a
(3)
1 =

√
5β2√

β2
2 + 2β2

3

v(sin ϕ + i sin ϕ),

a
(3)
2 =

√
1/2β3 sin γ3 + i

β2√
β2

2 + 2β2
3

u sin χ,

a
(3)
3 = w sin ϑ

[
cos γ3 + (

√
15/2) sin γ3

]
+ iw cos ϑ

[
cos γ3 − (

√
15/2) sin γ3

]
≈ w(sin ϑ + i cos ϑ).

With this choice, valid in situations close to axial symmetry,
the tensor of inertia turns out to be diagonal up to first order
in the small quantities describing the nonaxial deformations.

In Eqs. (1) the variables γ2 and γ3 are still employed, to keep
some transparency with respect to the standard expressions
used to describe the quadrupole [21] or the octupole deforma-
tion alone [22]. However, it is more convenient to substitute
them with expressions involving the variables u, χ and a new
variable u0: Neglecting second-order and higher-order terms
gives

γ2 =
√

10β3

β2

√
β2

2 + 5β2
3

u cos χ + f (β2, β3)√
β2

2 + 5β2
3

u0,

(2)

γ3 = −
√

2β2

β3

√
β2

2 + 5β2
3

u cos χ +
√

5f (β2, β3)√
β2

2 + 5β2
3

u0.

It is possible to show that a definite value of the angular-
momentum component K along the intrinsic axis 3 and a
definite parity can be associated with the degrees of freedom
corresponding to the variables v, χ (or u, ϕ or w,ϑ or u0):
Kπ = 1− (or 2− or 3− or 2+, respectively). This result is
independent of the form of the function f (β2, β3) of Eq. (2)
(which, actually, was left undetermined in I).
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TABLE I. The matrix of inertia G after the introduction of
the variables u0, v, u, w, ϕ, χ , and ϑ (see text). Here, J1 = J2 =
3(β2

2 + 2β2
3 ) and J3 = 4f 2(β2, β3)u2

0 + 2v2 + 8u2 + 18w2. Only
the leading terms are shown. Neglected terms are small and
of the first order (or smaller) in the submatrix involving only
β̇2, β̇3, u̇0, v̇, u̇, ẇ, q1, and q2; of the third order (or smaller) in the
submatrix involving only ϕ̇ , χ̇ , ϑ̇, and q3; and of the second order
(or smaller) in the rest of the matrix.

β̇2 β̇3 u̇0 v̇ u̇ ẇ ϕ̇ χ̇ ϑ̇ q1 q2 q3

β̇2 1 0 0 0 0 0 0 0 0 0 0 0
β̇3 0 1 0 0 0 0 0 0 0 0 0 0
u̇0 0 0 f 2(β2, β3) 0 0 0 0 0 0 0 0 0
v̇ 0 0 0 2 0 0 0 0 0 0 0 0
u̇ 0 0 0 0 2 0 0 0 0 0 0 0
ẇ 0 0 0 0 0 2 0 0 0 0 0 0
ϕ̇ 0 0 0 0 0 0 2v2 0 0 0 0 2v2

χ̇ 0 0 0 0 0 0 0 2u2 0 0 0 4u2

ϑ̇ 0 0 0 0 0 0 0 0 2w2 0 0 6w2

q1 0 0 0 0 0 0 0 0 0 J1 0 0
q2 0 0 0 0 0 0 0 0 0 0 J2 0
q3 0 0 0 0 0 0 2v2 4u2 6w2 0 0 J3

B. The kinetic energy operator

The classical expression of the kinetic energy has the form

T = 1

2

∑
Gµνξ̇µξ̇nu, (3)

where ξ̇ ≡ (β̇2, β̇3, u̇0, v̇, χ̇ , u̇, ϕ̇, ẇ, ϑ̇, q1, q2, q3) and q1,

q2, q3 are the components of the angular velocity along the
three axes of the intrinsic reference frame. As in I, we adopt
here the convention of including the inertial coefficient Bλ

in our amplitudes a(λ)
µ , which therefore would correspond to√

Bλa
(λ)
µ in the usual Bohr notation. The matrix elements of G,

approximated to the most relevant order, are shown in Table I.
The determinant of this matrix turns out to be

G ∝ (
β2

2 + 2β2
3

)2
f 4(β2, β3)u2

0v
2u2w2

≡ G0(β2, β3)u2
0v

2u2w2. (4)

The Pauli recipe for the quantization of the classical kinetic
energy gives the Schrödinger equation∑

µν

1

g

∂

∂ξµ

[
g

(
G−1

)
µν

∂�

∂ξν

]
+ 2

h̄2 [E − V (ξ )] � = 0, (5)

where g2 = G = DetG and ξ stays for the ensemble of the
variables ξκ .

For our present purpose, we must specialize this general
treatment [e.g., with a proper choice of the arbitrary function
f (β2, β3) in Eq. (2)], keeping in mind a necessary condition:
The Schrödinger equation for the quadrupole amplitude, when
the octupole amplitude is constrained to small values by a
proper restoring potential, must converge to that of Bohr and
therefore, at the critical point, to that of the X(5) model.2 As

2This choice is different from the one adopted in I to describe
the critical point in the octupole degree of freedom with a constant
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FIG. 2. (Color online) Potential-energy surfaces in the β2-β3

plane for several Th isotopes, as given by Nazarewicz et al. [24].

we shall see in Sec. IV A, this result is obtained with the choice

f (β2, β3) =
√(

β2
2 + β2

3

)(
β2

2 + 2β2
3

)
β2

2 + 5β2
3

, (6)

from which one obtains

G0(β2, β3) =
(
β2

2 + β2
3

)2(
β2

2 + 2β2
3

)4(
β2

2 + 5β2
3

)2 . (7)

C. The critical potential in two dimensions

Possible landscapes of axial quadrupole-octupole deforma-
tion in the thorium region are exemplified in Fig. 2, where the
potential energy is depicted as a function of the deformation
parameters β2 and β3. Reported values have been obtained
by Nazarewicz et al. [24] with a Wood-Saxon-Bogolyubov
cranking calculation. We notice that Fig. 2(e) shows a potential
minimum that is localized around a fixed value in the β2 direc-
tion, whereas a flat minimum extends over a sizable interval
in the β3 direction. This is just the “critical” potential for the
shape transition between octupole oscillation and permanent
octupole deformation (combined with a fixed quadrupole
deformation), corresponding to the Figs. 2(d) and 2(f), respec-
tively. Figures 2(a), 2(b), and 2(c), instead, show a different
kind of shape transition, proceeding directly from a fixed,
reflection-asymmetric deformation [Fig. 2(c)] to quadrupole-
octupole vibrations around a spherical shape [Fig. 2(a)].

The potential corresponding to the critical point is not
shown. It should be somewhere between those depicted in
Fig. 2(a) and Fig. 2(b). One can try to approximate the critical
potential, as usual, with a square well, but now the flat bottom
of the well should extend over a finite distance in β2 and β3, and
be symmetric in β3 around β3 = 0. The shape of the borders
is obviously relevant to the result. One could imagine shapes
like those shown in Fig. 3 with dashed or dotted lines, but their
description would involve at least two or three free parameters,
and the comparison with experimental data could be not very
significant. We have found, however, that good results are also

quadrupole deformation: In such a case, in fact, the proper limit for
small octupole amplitudes does not correspond to the X(5) model
but to the Frankfurt model [23], which is valid for small-amplitude
octupole vibrations of a well-deformed nucleus.
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FIG. 3. (Color online) Possible shapes for a potential well
simulating the critical-point potential. The potential-energy surface
of Fig. 2(b) is also shown for comparison.

obtained with a simple rectangular shape (solid line in Fig. 3),
implying only one free parameter, b = βw

3 /βw
2 (apart from a

common factor of scale).

IV. RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

A. The energy eigenvalues

Now, as a first step, we can evaluate, as a function of b,
the level energies in the ground-state band and deduce the best
value of the parameter from a comparison with experimental
results (Fig. 4). To proceed, we must make some assumptions
on the behavior of axial and nonaxial modes of deformation.
We will assume the following:

(i) Our choice of variables corresponds to independent
degrees of freedom.

(ii) Nonaxial vibrations are confined to their lowest station-
ary state.

(iii) An approximation similar to that of the X(5) model
is valid for the differential equations of all nonaxial
amplitudes; that is, the differential equation in β2, β3

can be approximately decoupled from those concerning
the other degrees of freedom.

Therefore, the complete wave function � of Eq. (8) can be
factored into three parts, as in Eq. (30) of I:

� = �0(β2, β3)�1YJM (�̂), (8)

E(J)
E(2+)

224Ra 226Ra 224Th

JJJ

FIG. 4. (Color online) Experimental excitation energies of the
positive-parity levels (circles) and of the negative-parity ones (trian-
gles), in units of E(2+), for 224,226Ra and 224Th, compared with the
results of the present model (full line) with the following values of
the parameter b = βw

3 /βw
2 : 0.81 for 224Ra, 0.68 for 226Ra, and 0.85 for

224Th. The predictions of the X(5) model (dotted lines) and for a rigid
reflection-asymmetric rotor (dashed-dotted lines) are also shown for
comparison.

where the function �1 depends on the deformation variables
different from β2, β3.

From Eq. (4) we also know that the determinant G is
factored in the same way. Then, the differential equation for
β2, β3 takes the form{

G
−1/2
0

[
∂

∂β2

(
G

1/2
0

∂

∂β2

)
+ ∂

∂β3

(
G

1/2
0

∂

∂β3

)]

+ ε − V (β2, β3) − J (J + 1)

3
(
β2

2 + 2β2
3

)
}

�(β2, β3) = 0. (9)

This equation can be somewhat simplified with the substitution

�0(β2, β3) = g−1/2�(β2, β3), (10)

where g ∝ G
1/2
0 , to obtain{

∂2

∂β2
2

+ ∂2

∂β2
3

+ ε − V (β2, β3) − J (J + 1)

3
(
β2

2 + 2β2
3

)
+ Vg(β2, β3)

}
�(β2, β3) = 0, (11)

with

Vg = 1

4g2

[ (
∂g

∂β2

)2

+
(

∂g

∂β3

)2 ]
− 1

2g

[
∂2g

∂β2
2

+ ∂2g

∂β2
3

]
. (12)

With the choice of f (β2, β3) given in the Eq. (6), from
Eq. (7) one obtains

g ∝
(
β2

2 + β2
3

)(
β2

2 + 2β2
3

)2(
β2

2 + 5β2
3

) (13)

and, for |β3| � β2, g ∝ β4
2 [1 + 4(β3/β2)4 + . . .]. Therefore,

the first and second derivative of g with respect to β3 tend to
zero when |β3| � β2 and, at the limit β3 → 0, Vg = −2 as in
the original Bohr model. With the substitution �0 = g−1/2�,
and the assumption that V (β2, β3) = 0 inside the potential well
and = +∞ outside, the differential equation to be solved takes
the form[

∂2

∂β2
2

+ ∂2

∂β2
3

+ ε + Vg(β2, β3)

]
�(β2, β3) = 0, (14)

with Vg given in Eq. (12) and � = 0 on the contour of the
potential well. The numerical integration has been performed
with the finite difference method. Namely, the space is
discretized on a rectangular lattice and values of � at the
lattice centers are taken as independent variables. In the place
of second derivatives, the ratios of finite differences are used:
For example,(

∂2�

∂β2
2

)
x,y

⇒ �(x + �x, y) − 2�(x, y) + �(x − �x, y)

�2
x

.

As �(β2, β3) = (−1)J �(β2,−β3), it is enough to consider
only the region β3 > 0. The lattice centers are chosen as
β2 = k2�x, β3 = (k3 − 1/2)�y with k2 = 1, . . . , n2, k3 =
1, . . . , n3, and �x = βw

2 /(n2 + 1),�y = 2βw
3 /(2n3 + 1). The

integration region is the upper rectangle with 0 < β2 <

βw
2 , 0 < β3 < βw

3 . At the upper and lateral borders of the
rectangle, the value of the eigenfunction must be zero.
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FIG. 5. (Color online) Calculated energies of excited levels of the
ground-state and first excited bands, in units of E(2+

1 ), as a function
of the ratio b = βw

3 /βw
2 .

The boundary conditions at β3 = 0 are not specified, but
to evaluate the approximate derivatives with respect to β3 it
is enough to consider the value of � at the line of centers
immediately below zero, where they are either equal or
opposite to the corresponding ones at β3 = �y/2 according
to the even or odd value of J .

The number of centers internal to the integration region—
and therefore the number of independent values of �—is
now N = n2 · n3, and we obtain a finite dimensional N × N

Hamiltonian matrix. This Hamiltonian has been diagonalized
with the implicitly restarted Arnoldi-Lanczos method by using
the ARPACK package [25].

In Fig. 5, calculated values of the excitation energies
[in units of E(2+

1 )] are depicted as a function of the ratio b =
βw

3 /βw
2 . At the limit for βw

3 → 0, the curves corresponding
to even J and π tend to the X(5) values, as expected. With
increasing b, at the beginning these curves deviate substantially
from the X(5) limit, but they come closer to the initial values
for b ≈ 1. In this region it is possible to find a good fit of the
ground-state band of 224Ra and of 224Th, for b = 0.81 and for
b = 0.85, respectively (Fig. 4).

Moreover, a rather good fit of the ground-state band of
226Ra is obtained with b = 0.68 (i.e., close to the maximum of
the curves for even parity and spin).

We can observe that, with our choice of the parameter b,
the calculated 1− level is always somewhat lower than the
experimental one (Fig. 4). This fact can be related to the
inclusion, in the potential well, of a region where β3 remains
large while β2 tends to zero. Actually, the wave function of
the first 1− level extends appreciably in this region, at variance
with other levels of the ground-state band.

It would be of great interest, of course, to extend the
comparison to the lowest excited band with K = 0 [the s =
2 band in the X(5) model notation]. Unfortunately, in 224Th
no excited 0+ level is known. The nonyrast level schemes of
224,226Ra will be discussed in Sec. IV D.

B. Electromagnetic transition probabilities

Another important test for the model is provided by
the E2 transition probabilities. The available experimental

information on B(E2) values is scarce (with only two
transitions in 224Ra and 226Ra and one in 224Th), but we
hope our work can stimulate interest for new experimental
investigations. The reduced matrix element of the quadrupole
transition operator M(E2) between the states |s,K = 0, J 〉
and |s ′,K = 0, J ′〉 can be evaluated as

(sJ‖M(E2)‖s ′J ′) = C2〈sJ |β2|s ′J ′〉(J‖Y2‖J ′), (15)

with 〈s, J |β2|s ′, J ′〉 = ∫
�sJ β2�s ′,J ′dτ and C2 constant. The

volume element dτ , in our non-Cartesian coordinates, is
the product of the differentials of the coordinate variables
multiplied by g = G1/2, with G the determinant of the matrix
of inertia G. In our assumptions, the integrals over all variables
apart from β2 ad β3 are independent from one another and
from the integral over dβ2dβ3, and their result is 1 (if the
corresponding wave functions are properly normalized). As
the electric dipole and quadrupole operators do not contain
derivatives, we can exploit the substitution defined in Eq. (10)
to express the remaining integral as∫

�sJ β2�s ′J ′dτ =
∫ βw

2

0
dβ2

∫ βw
3

−βw
3

dβ3�sJ β2�s ′J ′ . (16)

This integral has been evaluated numerically, for values of
J � 18, with J ′ = J − 2 (and also with J ′ = J − 1). The
reduced matrix element over the angular coordinates has the
form

(J‖YL‖J ′) = (−1)J (4π )−1/2
√

(2J + 1)(2L + 1)(2J ′ + 1)

×
(

J L J ′

0 0 0

)
. (17)

Finally, the reduced transition probabilities from J to J ′ are
obtained as

B(E2, sJ → s ′J ′) = (2J + 1)−1(sJ‖M(E2)‖s ′J ′)2.

The absolute values of the ratios of E2 reduced matrix ele-
ments, RJ (E2) = (J‖M(E2)‖J − 2)/(2+‖M(E2)‖0+), for
transitions within the positive- and the negative-parity parts
of the ground-state band, are depicted, as a function of b =
βw

3 /βw
2 , in Fig. 6(a). Their limit at βw

3 /βw
2 → 0 corresponds,

as expected, to the X(5) value.
In addition to the in-band E2 transition, we have to consider

the E1 transitions between levels of opposite parity. How to
treat E1 transitions in the frame of the geometrical model is a
big problem, as all E1 transition moments should vanish for
a homogeneous fluid of constant charge density. In this sense,
E1 transitions are outside the Bohr geometrical model. It is
usual to assume a constant electric polarizability of the nuclear
matter [27,28] to obtain the E1 operator in the form

M(E1) = C1β2β3Y1. (18)

This ansatz should be validated by proper microscopic calcu-
lations.

Actually, such a calculation has been performed by
Tsvenkov et al. [29] for a number of radium, thorium, and
uranium isotopes, in the frame of the Skyrme-Hartree-Foch
model. The electric dipole moment turns out to be almost
independent of the angular frequency in a given isotope, but
it can change drastically (even in the sign) along the isotopic
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FIG. 6. (Color online) Absolute values of the ratios of reduced matrix elements of the electromagnetic transition operators,
R(EL, Ji) = M(EL, Ji → Jf )/M(EL, L → 0), with Jf = Ji − L, as a function of the parameter b = βw

3 /βw
2 . (a) E2 transitions;

solid lines: even J +
i → J +

f , starting with 2+ → 0+ (from the bottom); dashed lines: odd J −
i → J −

f , starting with 3− → 1−.
(b) E1 transitions; solid lines: odd J −

i → J +
f , starting with 1− → 0+ (from the bottom); dashed lines: even J +

i → J −
f , starting with 2+ → 1−.

The vertical lines correspond to the adopted values of the parameter for 226Ra, 224Ra, and 224Th (b = 0.68, 0.81, and 0.85, respectively).

chain. The small value of the electric dipole moments in 224Ra
is correctly predicted by these calculations.

Values of the ratios of the E1 matrix elements, RJ (E1) =
(J‖M(E1)‖J − 1)/(1−‖M(E1)‖0+), obtained with the
standard form [Eq. (18)] of the E1 operator, are shown in
Fig. 6(b). They reach a maximum for βw

3 /βw
2 somewhat

below 1, that is, just in a region including the values assumed
for 224Ra and 224Th (0.81 and 0.85, respectively). The calcu-
lated values of (Ji‖M(EL)‖Jf ) for E2 and E1 transitions in
the ground-state bands of 224Ra (b = 0.81), 226Ra (b = 0.68),
and 224Th (b = 0.85) are given in the upper part of Table II. Val-
ues for the corresponding intraband transitions are very similar

TABLE II. Calculated values of the reduced matrix elements of E1 and E2 transitions
in 224,226Ra and 224Th, normalized to those of the lowest lying transition of the same
multipolarity.

(J‖M(E1)‖J ′) (J‖M(E2)‖J ′)

Transition 224Ra 226Ra 224Th Transition 224Ra 226Ra 224Th

1− ↔ 0+ 100 100 100 2+ ↔ 0+ 100 100 100
2+ ↔ 1− 149 147 150 3− ↔ 1− 127 129 127
3− ↔ 2+ 187 184 187 4+ ↔ 2+ 164 166 163
4+ ↔ 3− 238 228 241 5− ↔ 3− 179 182 178
5− ↔ 4+ 273 262 276 6+ ↔ 4+ 211 217 209
6+ ↔ 5− 333 311 338 7− ↔ 5− 223 230 221
7− ↔ 6+ 371 346 376 8+ ↔ 6+ 252 264 248
8+ ↔ 7− 435 402 439 9− ↔ 7− 264 274 261
9− ↔ 8+ 476 438 480 10+ ↔ 8+ 289 304 284

10+ ↔ 9− 538 500 539 11− ↔ 9− 303 315 299
11− ↔ 10+ 582 538 582 12+ ↔ 10+ 325 342 320
12+ ↔ 11− 640 604 635 13− ↔ 11− 340 354 336
13− ↔ 12+ 685 644 680 14+ ↔ 12+ 360 377 354
14+ ↔ 13− 738 709 730 15− ↔ 13− 376 390 371
15− ↔ 14+ 783 750 775 16+ ↔ 14+ 393 411 388
16+ ↔ 15− 833 812 822 17− ↔ 15− 410 424 405
17− ↔ 16+ 878 854 867 18+ ↔ 16+ 426 443 421
18+ ↔ 17− 925 912 912 19− ↔ 17− 442 457 437

0+
2 ↔ 1−

1 84 42 150 0−
2 ↔ 2+

1 8 24 6

1−
2 ↔ 0+

1 31 31 31 1−
2 ↔ 1−

1 38 37 38

1−
2 ↔ 2+

1 49 50 47 1−
2 ↔ 3−

1 42 43 43

1−
2 ↔ 0+

2 22 63 21 2+
2 ↔ 0+

1 15 17 16

2+
2 ↔ 1−

1 113 86 111 2+
2 ↔ 2+

1 18 25 17

2+
2 ↔ 3−

1 143 103 142 2+
2 ↔ 4+

1 8 32 4

2+
2 ↔ 1−

2 33 71 34 2+
2 ↔ 0+

2 91 82 92
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TABLE III. Experimental and calculated values of the ratios of reduced amplitudes of two E1 or two E2
transitions.

Transitions (JA‖M(EL)‖J ′
A)/(JB‖M(EL)‖J ′

B )

224Ra 226Ra 224Th

JA → J ′
A JB → J ′

B Exp. Crit. Exp. Crit. Exp. Crit. Rot.
E1 1−

1 → 2+
1 1−

1 → 0+
1 1.52 ± 0.14 1.50 1.36 ± 0.12 1.47 1.49 ± 0.26 1.50 1.42

E1 3−
1 → 4+

1 3−
1 → 2+

1 1.11 ± 0.18 1.24 1.15

E2 4+
1 → 2+

1 2+
1 → 0+

1 1.60 ± 0.05 1.63 ≈ 1.76 1.66 1.60

E2 1−
2 → 3−

1 1−
2 → 1−

1 0.71 ± 0.10 1.10 –

E1 1−
2 → 2+

1 1−
2 → 0+

1 1.49 ± 0.16 1.57 1.24 ± 0.09 1.62 –

E1 2+
2 → 3−

1 2+
2 → 1−

1 1.29 ± 0.08 1.20 –

in the three cases, whereas the difference can be larger for the
weak interband transitions, as shown in the lower part of the
table.

C. Comparison with experimental transition probabilities

The Table III shows a few values of the ratio of reduced
matrix elements for transitions of the same multipolarity that
can be deduced from the available experimental information.
In the same table, the corresponding values calculated with
the present model are also shown (columns “Crit.”), together
with the ones expected for a reflection-asymmetric rigid rotor
(“Rot.”).

The most direct check of the model predictions would come
from the ratios of B(E2) values in the ground-state band. This
is possible only in 224Ra, and only for the decays of the lowest
2+ and 4+ levels. With the experimental values reported in the
NNDC tabulation [26], B(E2, 2+ → 0+) = 97 ± 3 W.u. and
B(E2, 4+ → 2+) = 138 ± 8 W.u., the experimental value of
the ratio is 1.42 ± 0.09, which compares with the value 1.41
obtained from the calculated matrix elements of Tables II and
III (for b = 0.81). Recall that, in the X(5) model [1], this
ratio would be 1.59. For 226Ra, the lifetime of the 4+ state is
known, but for the first excited state only an approximate
value (without error estimate) is reported. Also in this
case, the deduced ratio is consistent with the theoretical
estimate (see Table III). These results are encouraging, but
would obviously need to be validated by a more extensive
check, involving higher lying levels, which, at the moment, is
not possible.

A comparison of the two E1 transitions from the lowest
level 1− to the 0+ and to the 2+ states is possible for the
three isotopes, as well as for the E1 branches from the 3−
in 226Ra. All these amplitude ratios for transitions within the
ground-state band, shown in the upper part of Table III, are
in very good agreement with the calculated values. However,
they are not significantly different from those expected for
a rigid asymmetric rotor (as shown in the last column of
Table III) nor from those reported by Lenis and Bonatsos [15]
on the basis of a rather different model. We note that, when
the transitions to be compared have the same multipolarity, the
model predictions are parameter free, or—more exactly—only
involve the model parameter βw

3 /βw
2 .

Instead, when the comparison concerns the ratios of the
reduced matrix elements for E1 and E2 transitions de-exciting
the same level, the model predictions include a further
normalization factor [the ratio of constants C1 and C2 of
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FIG. 7. (Color online) Level scheme of 224Th, compared with
the model predictions for b = 0.85. Calculated and experimental
branching ratios are reported for each level. Experimental data are
taken from the NNDC tabulation [26]. Experimental branching ratios
from the 7− and 9− levels are not known. Theoretical values of the
level energies (in keV) are normalized to that of the 2+

1 level; those
of the branching ratios are deduced from the matrix elements of
Table II with the experimental values of the transition energies.
Calculated branches lower than 1% are not shown.
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TABLE IV. Experimental and calculated values of the ratios of reduced amplitudes of E1 and E2 transitions from the same
level (in units of their Weisskopf estimates). The columns of calculated values are normalized to obtain the best fit to the
experimental values for the transitions within the ground-state band.

[(M(E1)/MW (E1))/(M(E2)/MW (E2))] × 103

Transitions 224Ra 226Ra 224Th

E1 E2 Exp. Crit. Rot. Exp. Crit. Rot. Exp. Crit. Rot.

3−
1 → 2+

1 3−
1 → 1−

1 0.69 ± 0.14 0.55 0.57

5−
1 → 4+

1 5−
1 → 3−

1 0.98 ± 0.26a 0.63 0.60 1.36 ± 0.23b 2.13 2.42

6+
1 → 5−

1 6+
1 → 4+

1 7.98 ± 1.17 7.18 8.21

7−
1 → 6+

1 7−
1 → 5−

1 0.56 ± 0.09 0.66 0.65 2.51 ± 0.15 2.23 2.56

8+
1 → 7−

1 8+
1 → 6+

1 <1.22 0.68 0.66 7.19 ± 0.72 7.86 8.50

9−
1 → 8+

1 9−
1 → 7−

1 <1.71 0.71 0.67 2.82 ± 0.34 2.38 2.67

10+
1 → 9−

1 10+
1 → 8+

1 7.78 ± 0.43 8.41 8.67

11−
1 → 10+

1 11−
1 → 9−

1 2.76 ± 0.27 2.53 2.67 9.35 ± 0.62 8.64 8.73

12+
1 → 11−

1 12+
1 → 10+

1 2.85 ± 0.25 2.62 2.68 9.06 ± 0.47 8.83 8.78

13−
1 → 12+

1 13−
1 → 11−

1 2.15 ± 0.29 2.70 2.70 8.45 ± 0.42 9.01 8.82

14+
1 → 13−

1 14+
1 → 12+

1 2.58 ± 0.17 2.79 2.71 9.84 ± 0.51 9.15 8.86

15−
1 → 14+

1 15−
1 → 13−

1 2.53 ± 0.17 2.94 2.73 9.69 ± 0.65 9.29 8.89

17−
1 → 16+

1 17−
1 → 15−

1 2.78 ± 0.43 2.98 2.74 10.47 ± 1.34 9.52 8.92

18+
1 → 17−

1 18+
1 → 18+

1 3.22 ± 0.21 3.05 2.74

χ 2/n (with n = 8) 2.13 1.34 1.17 2.03
Confidence level (%) <5 18 31 <5

aFrom NNDC [26] only. The 5− → 3− (142-keV) γ ray observed in the reaction data [30] appears to be contaminated by a
close-lying transition from a different reaction, as it results from the intensity mismatch in the 5− → 3− → 2+(→ 1−) cascade.
bFrom Ref. [31]. These data were not included in the fit.

Eqs. (15) and (18)], which needs to be determined from the
experimental data. This comparison is therefore less direct,
but it is perhaps more significant, as we shall see in the
following.

Results concerning the E1/E2 branches in the ground-state
band are shown in Table IV (and also depicted in Fig. 8).
Experimental values of E1/E2 branching ratios in 224,226Ra
and 224Th include those given in the NNDC tabulation [26,31]
and later results from Ref. [30]. From these branching
ratios we have deduced the absolute ratios—given in the
“Exp.” columns of Table IV—of the reduced matrix elements
of E1 and E2 transitions, each of which is expressed in
units of the corresponding Weisskopf estimate, MW (EL) =
(4π )−1/2[3/(L + 3)](1.2A1/3)Le fmL. In the same table are
also shown the results of the model calculation at the critical
point (Crit.), which have been normalized to obtain the best
fit with the experimental values within the ground-state band
of each nucleus. Values expected for a rigid asymmetric
rotor (Rot.), normalized in the same way, are also shown.
The 226Ra point at Ji = 5, which, according to the authors
themselves [31], could be considered as a lower limit, has not
been included in the fits.

For the ground-state band of 224Th (Figs. 7 and 8), we
find a satisfactory agreement between the experimental values
and the model predictions. In this case we have enough
data to perform a χ2 test of goodness of fit, and we obtain
χ2/N = 1.17 with N = 8 degrees of freedom, corresponding
to a confidence level of 31%. A fit with the rigid-rotor

values would give a much larger value of χ2/N = 2.03 and a
confidence level below 5%. Also for the ground-state band of

Rigid rotor

0.010

0.005

0
20151050

R
(E

1/
E
2)

Ji

224Th

226Ra
224Ra

FIG. 8. (Color online) Ratios of the absolute value of the transi-
tion matrix elements (normalized to the Weisskopf unit) for E1 and
E2 transitions in the ground-state bands of 224,226Ra and 224Th, from Ji

to Ji − 1 and Ji − 2, respectively: RJ (E1/E2) = (Ji‖[M(E1)‖Ji −
1)/MW (E1)]/[(Ji‖M(E2)‖Ji − 2)/MW (E2)]. The dotted lines
join the calculated values of the ratio (normalized to obtain the best fit
with the ensemble of experimental values). The dashed lines join the
values expected for a rigid rotor. The corresponding values deduced
from the parameter-free model of Ref. [15] are (apart for a possible
staggering between even and odd Ji) almost identical to the rotational
ones for large values of Ji (Ji > 7) and, for decreasing values of Ji ,
their trend reaches a minimum around Ji = 6 and then increases
slightly at lower values of Ji .
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FIG. 9. (Color online) Partial level schemes of 224Ra and 226Ra, with the experimentally observed γ transitions, compared with the results
of model calculations (with b = 0.81 and 0.68, respectively). Theoretical level energies (in keV) are normalized to that of the first excited
level. Experimental energies for the lower levels of 224Ra are taken from the NNDC tabulation [26]; those of the 10+, 12+, and higher levels
are deduced from the γ -ray energies given by Cocks et al. [30]. For 226Ra, those of levels up to 5− are taken from NNDC or Ref. [31] and
those of higher levels from Cocks et al. [30]. Gamma branches lower than 5% (or reported as upper limits) are shown as dotted lines, and those
between 5% and 25% as dashed lines. Calculated branches lower than 1% are not shown. For a comparison of experimental E1/E2 branches
with the model prediction at the critical point, see Table IV and Fig. 8.

224Ra, the few available experimental values (or limits) are not
far from the results of the model, but more experimental data
would be necessary for a significant comparison. Actually, as
was soon recognized [32–34], the E1 transitions in 224Ra are
rather weak compared to other nuclei in this region, and in
particular their strengths are two orders of magnitude smaller
than the corresponding ones in 224Th.

Instead, experimental values for 226Ra deviate significantly
from the model predictions and approach those expected for
a rigid rotor. This fact, combined with the slight upward
deviation of level energies from the calculated curve for
J > 14, suggests that the critical point of the phase transition
in the Ra isotopic chain can be situated somewhere below
A = 226, and probably close to A = 224.

D. The first excited K = 0 band

As anticipated in Sec. IV A, no experimental information is
available for nonyrast levels of 224Th. For 224,226Ra isotopes,
a few nonyrast levels are known from β− decay of 224,226Fr,
from α decay of 228,232Th, or from the 226Ra(t, p) reaction.
Unique assignments of the spin and parity have been reported
only for some of them. Some of these levels, which could be
considered as members of the excited K = 0 band [the s = 2
band in the X(5) expression], are reported, together with those
of the yrast band, in Fig. 9, where also the main decay branches
are indicated. In the same figure, the model-predicted levels,
and their expected γ branches, are also shown.

We can immediately observe that nonyrast levels predicted
by the model are always lower than the experimental ones
(but a comparably large discrepancy is observed also in the
s = 2 band of X(5) nuclei [2,3,7]). In the lower part of
Table III, the calculated amplitude ratios for transitions from
the excited K = 0 band are compared with the corresponding
experimental ones, if the levels 0+

2 and 1−
2 shown in Fig. 9 are

interpreted as belonging to it. Only the ratio of the two E1
transitions from the 1−

2 level of 224Ra and from the 2+
2 level of

226Ra are well consistent with the calculated value, whereas
the corresponding ratios for the two E1 transitions from the
1−

2 level of 224Ra and for the two E2 transitions from the 1−
2

level of 224Ra seem to be significantly different from the model
predictions (although the latter is subject to a large uncertainty,
owing to the presence of a competing M1 component in the
1−

2 → 1−
1 transition).

As for the E1/E2 ratios for interband transitions, it is not
obvious that the value of the parameter C1/C2 ought to be the
same as for transitions within the ground-state band, but if we
assume it to be so, the E1/E2 ratios in the decay of the 1−

2 level
of 226Ra differ by a factor of 2 from the calculated values: The
ratios to the E2 amplitude 1−

2 → 3−
1 , with the normalization

used in Table IV, are (0.75 ± 0.7)10−3 for the 1−
2 → 0+

1 E1
transition and (1.05 ± 0.07)10−3 for the 1−

2 → 2+
1 , which are

to be compared with the theoretical values 0.29 × 10−3 and
0.46 × 10−3, respectively.

Therefore, if the first two levels of the excited s = 2 band are
tentatively identified with the 0+

2 and 1−
2 levels of 224Ra, their

properties are not so well accounted for. One can hypothesize
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different explanations for this fact. First, we remark that the
identification of these levels as members of the β band can be
put to a discussion. Actually, the 0+

2 level could result from
other (collective or noncollective) modes of excitation, such
as, for example, pairing vibration [35,36], whereas the 1−

2
could correspond to (or be mixed with) the bandhead of the
Kπ = 1− band. Otherwise, the observed disagreement could
indicate that our model is unable to correctly predict states
outside the ground-state band, in particular if they are not far
from levels of the nonaxial modes having the same Jπ . The
simultaneous investigation of axial and nonaxial modes, as
has been performed via the extended coherent state model in
Refs. [17–20], is outside our present possibilities.

V. CONCLUSIONS

An extension of Iachello’s X(5) model to the axial
quadrupole + octupole deformation has been developed with
the formalism introduced in our previous paper I [10]. As-
suming that both β2 and β3 can vary within a two-dimensional
well with rectangular borders, and with a proper determination
of a free function of the model, we have found the results
to converge to those of X(5) when the interval available
for β3 tends to zero. The formalism is therefore suitable
to describe the critical point of phase transitions involving
axial quadrupole and octupole deformation at the same
time.

As anticipated in I, the principal aim of this second part of
our work was the description of the transitional nuclei 224Ra
and 224Th, which were proposed to be close to such a critical
point.

Actually, in spite of the admittedly crude schematization of
the bidimensional potential, the relative values of the excitation
energies of levels (of positive and negative parity) in the
ground-state bands of both 224Ra and 224Th are satisfactorily

reproduced by adjusting the only available parameter (the
aspect ratio b = βw

3 /βw
2 of the potential well). A good

agreement is obtained with b = 0.81 for 224Ra and with
b = 0.85 for 224Th. Moreover, a good agreement is also
obtained for the first part of the ground-state band of 226Ra
with a lower value of the parameter, b = 0.68: Only above
J = 14 do the experimental points deviate slightly from the
calculated values, in the direction of the rigid-rotor curve
(Fig. 4).

The (few) known ratios of transition strengths in the
ground-state band for electromagnetic transitions of equal
multipolarity (either E2 or E1) are in agreement with the
model predictions. Unfortunately, only in a few cases can
the ratio of the reduced strengths for transitions of equal
multipolarity be deduced from the experimental data (see
Table III) and in these cases the values expected at the critical
point are not very different from those of the rotational model.

In some more cases, the relative strength of two transitions
of different multipolarity (E1 and E2), coming from the same
level, can be deduced from the measured branching ratio. The
comparison with the model requires in this case one more
parameter, which has been determined by a best-fit procedure
(see Table IV and Fig. 8). But, in this case, the expected trend
at the critical point is significantly different from that of a rigid
rotator.

The calculated critical-point values of the ratios E1/E2 are
in a rather good agreement with the experimental results in the
case of 224Th (Fig. 8), whereas for 226Ra the trend of empirical
values is closer to the one expected for a rigid rotor. For 224Ra,
the E1 transitions are very weak and experimental data are
too scarce to permit a significant comparison with the model
predictions.

New and more extensive measurements of the transition
strengths either in 224Ra or 224Th would be highly desirable
for a more significant test of the model.

[1] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[2] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503

(2001).
[3] R. Krucken et al., Phys. Rev. Lett. 88, 232501

(2002).
[4] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 66, 031301(R)

(2002).
[5] R. Clark et al., Phys. Rev. C 68, 037301 (2003).
[6] C. Hutter et al., Phys. Rev. C 67, 054315 (2003).
[7] D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler,

O. Moller, S. Heinze, P. von Brentano, and R. F. Casten, Phys.
Rev. C 69, 034334 (2004).

[8] P. G. Bizzeti, in Symmetries in Physics, edited by A. Vitturi and
R. Casten (World Scientific, Singapore, 2003), p. 262.

[9] P. G. Bizzeti and A. M. Bizzeti-Sona, in Nuclear Theory 24,
edited by S. Dimitrova (Heron Press, Sofia, 2005), p. 311.

[10] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 70, 064319
(2004).

[11] P. G. Bizzeti and A. M. Bizzeti-Sona, in Symmetries and Low-
Energy Phase Transition in Nuclear-Structure Physics, edited
by G. L. Bianco and D. Balabanski (University of Camerino,
Italy, 2005), p. 87.

[12] P. G. Bizzeti and A. M. Bizzeti-Sona, in Collective Motion and
Phase Transitions in Nuclear Systems, edited by A. A. Raduta,
V. Baran, A. Gheorghe, and I. Ursu (World Scientific, Singapore,
2006), p. 3.

[13] P. G. Bizzeti and A. M. Bizzeti-Sona, in Changing Facets on
Nuclear Structure (Proceedings of the 9th International Spring
Seminar on Nuclear Physics, Vico Equense 2007), edited by
A. Covello (World Scientific, Singapore, 2007).

[14] D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, and P. Yotov,
Phys. Rev. C 71, 064309 (2005).

[15] D. Lenis and D. Bonatsos, Phys. Lett. B633, 474
(2006).

[16] N. Minkov, P. Yotov, S. Drenska, W. Scheid, D. Bonatsos, D.
Lenis, and D. Petrellis, Phys. Rev. C 73, 044315 (2006).

[17] A. A. Raduta, L. Pacearescu, and V. Baran, Phys. Rev. C 67,
014301 (2003).

[18] A. A. Raduta and C. Raduta, Nucl. Phys. A768, 170
(2006).

[19] A. A. Raduta, A. H. Raduta, and C. M. Raduta, Phys. Rev. C 74,
044312 (2006).

[20] A. Raduta and C. Raduta, in Collective Motion and Phase
Transitions in Nuclear Systems, edited by A. Raduta, V. Baran,

024320-10



DESCRIPTION OF NUCLEAR OCTUPOLE AND . . . PHYSICAL REVIEW C 77, 024320 (2008)

A. Gheorghe, and I. Ursu (World Scientific, Singapore, 2006),
p. 21.

[21] D. A. Bohr, Dan. Mat. Phys. Medd. 26, n. 14 (1952).
[22] C. Wexler and G. G. Dussel, Phys. Rev. C 60, 014305

(1999).
[23] J. Eisenberg and W. Greiner, Nuclear Theory, Vol. I, 3rd ed.

(North-Holland, Amsterdam, 1987).
[24] W. Nazarewicz and P. Olanders, Nucl. Phys. A441, 420 (1985).
[25] http://www.caam.rice.edu/software/arpack/.
[26] http://www.nndc.bnl.gov/.
[27] D. A. Bohr and B. Mottelson, Nucl. Phys. 4, 529 (1957).
[28] D. A. Bohr and B. Mottelson, Nucl. Phys. 9, 687 (1958).

[29] A. Tsvenkov, J. Kvasil, and R. Nazmitdinov, J. Phys. G 28, 2187
(2002).

[30] J. Cocks et al., Nucl. Phys. A645, 61 (1999).
[31] B. Ackermann et al., Nucl. Phys. A559, 61 (1993).
[32] M. Marten-Toelle, B. Ackermann, H. Baltzer, T. Bihn, V. Grafen,

C. Guenther, H. Hausmann, N. Singh, R. Toelle, J. de Boer et al.,
Z. Phys. A 336, 27 (1990).

[33] P. Butler and W. Nazarewicz, Nucl. Phys. A533, 249 (1991).
[34] E. Egido and L. Robledo, Nucl. Phys. A524, 65 (1991).
[35] C. Friedman, K. Katori, D. Albright, and J. Schiffer, Phys. Rev.

C 9, 760 (1974).
[36] W. van Rij and S. H. Kahana, Phys. Rev. Lett. 28, 50 (1972).

024320-11


