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Proton elastic scattering from tin isotopes at 295 MeV and
systematic change of neutron density distributions
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Cross sections and analyzing powers for proton elastic scattering from 116,118,120,122,124Sn at 295 MeV have
been measured for a momentum transfer of up to about 3.5 fm−1 to deduce systematic changes of the neutron
density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a
nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density
distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase
in the neutron skin thickness of tin isotopes with mass number.
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I. INTRODUCTION

Charge distributions in stable nuclei have been reliably
measured by electron elastic scattering and muonic x-ray
data [1]. These charge-sensitive experiments have provided
precise information on charge distributions. However, it is
much more difficult to deduce neutron density distributions
because electromagnetic interaction provides little information
on neutron density distributions. The proton and neutron
density distributions have a similar shape in stable nuclei.
However, in recent research it has been reported that in some
unstable nuclei the differences between proton and neutron
shapes are greater than those in stable nuclei [2]. It has
also been indicated that the thickness of the neutron skin
is closely related to the symmetry term of the equation of
state (EOS) [3,4]. Thus, the determination of neutron density
distributions has become increasingly important.

There have been many experiments attempting to extract
neutron and matter density distributions in the nuclear interior
using hadronic probes [5]. Pion and α elastic scattering have
been performed in the study of neutron and matter density
distributions [6–8]. Compared with other hadronic probes, the
elastic scattering of protons at intermediate energies is suitable
for extracting information on the nuclear surface and interior,

*Present address: RIKEN Nishina Center, Wako, Saitama 351-0198,
Japan.

†Present address: Miyazaki University, Miyazaki, Miyazaki
889-2192, Japan.

‡Present address: Laboratory of Nuclear Science, Tohoku Univer-
sity, Sendai, Miyagi 982-0216, Japan.

§Present address: Cyclotron and Radioisotope Center, Tohoku
University, Sendai, Miyagi 980-8578, Japan.

‖Present address: Center for Nuclear Study, University of Tokyo,
Wako, Saitama 351-0198, Japan.

¶Present address: Tokyo Institute of Technology, Ookayama, Tokyo
152-8550, Japan.

**Present address: University of Tsukuba, Tsukuba, Ibaraki
305-8571, Japan.

because at intermediate energies proton elastic scattering has
a simple reaction mechanism. To deduce nuclear densities
using protons, the incident energy must be sufficiently high to
describe the scattering by the simple mechanism. At energies
above 100 MeV, we can explain proton elastic scattering
microscopically, because the imaginary part of the optical
potential describes a quasifree process mainly without the
need for a renormalization factor. So far, energies above
500 MeV have been applied for proton elastic scattering
to study neutron density distributions [9,10]. However, this
energy is sufficiently high to produce mesons, and information
on the nuclear interior is easily masked by the meson produc-
tion. Furthermore, the total cross section of nucleon-nucleon
scattering shows a minimum at the incident energy of 300 MeV.
We thus adopt 300 MeV protons in this work as probes for
information on the nuclear interior.

In our previous article [11], we tuned the effective rel-
ativistic Love-Franey interaction by introducing “so-called
medium effects” for the scattering from a nucleus whose
density distribution is well known. We used elastic scattering
from 58Ni to tune the interaction, because 58Ni is the heaviest
stable nucleus with N ≈ Z and the density distribution of
the neutrons in 58Ni can be assumed to be the same as that
for the protons. To explain the results of our experiments we
found that we had to modify the scattering amplitudes of the
nucleon-nucleon interactions inside the nucleus as follows.
We phenomenologically changed the masses and coupling
constants of exchanged mesons depending on the nuclear
density. Thus, we could explain the scattering sufficiently well
to deduce the matter density distribution precisely.

For our first systematic search for neutron density distribu-
tions, we selected tin isotopes. Tin has many stable isotopes
(112Sn–124Sn). Also, unstable tin isotopes have a long isotopic
chain including two double-magic nuclei (100Sn [N = 50],
132Sn [N=82]). Moreover, its proton number is a magic num-
ber (Z = 50). Thus, tin isotopes are suitable for the study of
systematic changes in neutron density distributions. The main
purposes of this work are to attempt to deduce information on
neutron density distributions and to systematically study the
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neutron skin thickness of tin isotopes. The experimental setup
and procedures are described in Sec. II. Details of the analysis
used to deduce neutron density distributions are given in
Sec. III. The deduced radii of tin isotopes are discussed in
Sec. IV. A summary is given in Sec. V.

II. EXPERIMENT

The measurements were performed at the Research Center
for Nuclear Physics (RCNP), Osaka University. Polarized
protons from a high-intensity polarized ion source were
injected into an AVF cyclotron, transported to a six-sector ring
cyclotron, and accelerated up to 295 MeV. The polarization
axis was in the vertical direction. The spin direction and
magnitude of the beam polarization were measured contin-
uously using sampling-type beam-line polarimeters (BLPs)
[12] placed between the ring cyclotron and a scattering
chamber. Each polarimeter utilized left-right asymmetries
in p-H scattering from (CH2)n foil to determine the ver-
tical transverse component py of the beam polarization.
The typical beam polarization was 65%. Then the beam was
transported to a target center in the scattering chamber. The
typical beam spot size on the target during measurements
was 1 mm in diameter. Finally, the beam was stopped by
an internal Faraday cup inside the scattering chamber in the
case of forward-angle measurements. In the measurements
at backward scattering angles, the beam was transported to
another Faraday cup located inside the shielding wall of the
experimental room about 25 m downstream of the scattering
chamber. The integrated beam current was monitored using a
current digitizer (Model 1000C) made by BIC (Brookhaven
Instruments Corporation). Additionally, the beam current was
monitored independently using p-p cross sections at the BLPs
during the backward-angle measurements. Five tin isotope
targets (116,118,120,122,124Sn) in the form of self-supporting
metal foils were used for this experiment. Two different
thicknesses were used for each target. Thin targets were used
for the forward-angle measurements to reduce the dead time
of the data acquisition system, and thick targets were used
for the backward-angle measurements to increase the yields.
The enrichment and thicknesses of each target are shown in
Table I.

The main contaminants of the targets originated from other
tin isotopes. The present energy resolution could not separate
the elastic scattering of other tin isotopes. Thus, we analyzed
the targets including the contamination from other isotopes at
all momentum transfer regions. We estimated the error of this
analysis to be less than 1% for all cross sections and analyzing

TABLE I. Target enrichment and thicknesses of tin isotopes.

Nucleus Enrichment Thin Thick

116Sn 95.5% 10.0 mg/cm2 100 mg/cm2

118Sn 95.8% 10.0 mg/cm2 100 mg/cm2

120Sn 98.4% 5.12 mg/cm2 39.9 mg/cm2

122Sn 93.6% 10.5 mg/cm2 85.4 mg/cm2

124Sn 95.5% 5.00 mg/cm2 62.7 mg/cm2

powers. We used an automatic target changer system in this
experiment to reduce the systematic errors of relative cross
sections between isotopes. We formed a stack of three targets,
which were moved vertically every 2 min to avoid errors due
to the drift of the beam direction and that of its position on the
targets.

We used a high-resolution (p/�p ∼ 37,000) magnetic
spectrometer, “Grand Raiden” (GR), which had a Q1-SX-
Q2-D1-MX-D2 configuration and focal-plane counters for
momentum analysis [13]. The focal-plane counters consisted
of two vertical-drift-type multi-wire drift chambers (VDCs)
and two plastic scintillating counters. The momentum of
protons scattered from the target was analyzed using the
GR. The trajectory of the scattered protons from the target
was reconstructed from the position measurement carried out
using two sets (X1,U1 and X2,U2) of VDCs, which were
placed near the focal plane of the spectrometer [14]. Each
set had an effective area of 120 cm (width)× 10 cm (height).
Two 1-cm-thick plastic scintillating counters (PS1 and PS2)
placed behind the VDCs were used as triggers and for particle
identification.

The energy resolution of the beam was 200 keV in FWHM,
which was determined by the energy width of the beam itself
and was sufficient to separate elastic peaks from inelastic
peaks. Figure 1 shows a sample focal-plane spectra of 120Sn.
The differential cross sections and analyzing powers were mea-
sured for analysis of up to 50◦, corresponding to a momentum
transfer of 3.5 fm−1 in the center-of-mass system. We included
3% errors for both cross sections and analyzing powers as
errors resulting from experimental conditions including target
thickness uncertainty.

III. THEORETICAL ANALYSIS

We analyzed our data using the formula for the rela-
tivistic impulse approximation (RIA) using the relativistic

FIG. 1. Sample focal plane spectra corresponding to the excita-
tion energy of 120Sn, taken at a laboratory scattering angle of 35.5◦.
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FIG. 2. Differential cross sections and analyzing powers for
proton elastic scattering from tin isotopes. The solid lines show the
results of RIA calculations with the default parameters proposed by
Murdock and Horowitz [15] and the RMF densities [16], and the
dashed lines show calculations using the global potential [17,18].

Love-Franey interaction [15]. The invariant amplitude has
been determined from nucleon-nucleon phase shifts and is
expressed as

F (q) = FS + FV γ
µ

(0)γ
µ

(1) + FPSγ 5
(0)γ

5
(1)

+FT σ
µν

(0) σ(1)µν + FAγ 5
(0)γ

µ

(0)γ
5
(1)γ(1)µ. (1)

Each amplitude is shown as the sum of real and imaginary
amplitudes using the masses, coupling constants, and cutoff
parameters of exchanged mesons.

Figure 2 shows the experimental results for five tin isotopes
and two different theoretical results. The solid lines in Fig. 2
are the results of RIA calculations with the default parameters
proposed by Murdock and Horowitz [15] and the relativistic
mean field (RMF) densities [16]. The dashed lines are the
calculations using the global potential [17,18]. While both
calculations are in good agreement with the experimental
data obtained from the analyzing powers, the differential
cross sections are overestimated, particularly in the large-
momentum-transfer region. Murdock and Horowitz [15] used
different masses and coupling constants for real and imaginary
scattering amplitudes, depending on the interaction. In our
previous work, we attempted to explain the experimental data
by phenomenologically changing the masses and coupling
constants of exchanged mesons (σ, ω) in the real and the
imaginary amplitudes depending on the nuclear density. The
formula for density dependence is as follows:

g2
j , ḡ

2
j −→ g2

j

1 + aj ρ(r)/ρ0
,

ḡ2
j

1 + āj ρ(r)/ρ0
(2)

mj, m̄j −→ mj [1 + bj ρ(r)/ρ0], m̄j [1 + b̄j ρ(r)/ρ0],

RMF + RIA

RMF + RIA
  (medium effect)

dσ
/d

Ω
 (

m
b/

sr
)

θc.m. (degree)

A
y
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FIG. 3. Experimental data for 208Pb measured at TRIUMF [20]
at 300 MeV. Dashed lines show the results of the original RIA calcu-
lations using RMF densities [16]. Solid lines show the calculations
based on the modified effective interaction using RMF densities.

where mj, m̄j , gj , and ḡj indicate the masses and coupling
constants of mesons for real and imaginary amplitudes,
respectively, where j refers to the σ, ω mesons. The normal
density ρ0 is 0.1934 fm−3 [11,19]. These changes in the masses
and coupling constants are called medium effects and may be
an effect of the presentations of the partial restoration of chiral
symmetry, Pauli blocking, and multistep processes. The tuned
effective interaction is applied to existing 208Pb data obtained
at TRIUMF [20] with a density distribution calculated from
the RMF in Fig. 3. It was found that the tuning of the effective
interaction was meaningfully improved compared with the
original unmodified interaction.

For the RIA calculation, we need four density distributions:
the vector and scalar density distributions of protons and
neutrons. The proton density distribution and the relation
between the scalar and vector density can be obtained from
the charge distributions, the nucleon electric form factors, and
the RMF calculation. Thus, we can determine the neutron
density distribution by comparing experimental data with a
calculation using the tuned effective interaction.

In this article, we attempt to extract neutron density distri-
butions for tin isotopes, considering the various ambiguities
caused by the modification parameters used in the RIA
calculation, the proton form factors, and an assumption based
on scalar densities.

A. Proton density distributions of tin isotopes

For the RIA calculations we used point proton density
distributions derived from charge distributions observed in
electron scattering experiments [1]. We used the sum-of-
Gaussian-type (SOG) charge distributions of 116,124Sn, which
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were obtained from the electron scattering over a 3.5-fm−1-
wide momentum transfer region [21]. The charge distributions
are described as

ρch(r) = Z

2π3/2γ 3

12∑
i=1

Qi

1 + 2R2
i

/
γ 2

× [
e−(r−Ri )2/γ 2 + e−(r+Ri )2/γ 2]

. (3)

However, reported data on charge distributions obtained using
model-independent distributions are limited.

Figure 4 shows the existing experimental results for the
charge radius of tin isotopes. Because the radius of tin
isotopes increases smoothly with mass number and the number
of protons is constant, we can expect a smooth change in
the charge distributions as the neutron number increases.
Thus we obtained the charge distributions of 118,120,122Sn by
interpolation using the arithmetic mean of the previous derived
charge distributions of 116,124Sn:

ρ
118Sn
ch (r) = 3ρ

116Sn
ch (r) + ρ

124Sn
ch (r)

4
(4)

ρ
120Sn
ch (r) = ρ

116Sn
ch (r) + ρ

124Sn
ch (r)

2
(5)

ρ
122Sn
ch (r) = ρ

116Sn
ch (r) + 3ρ

124Sn
ch (r)

4
. (6)

The interpolated radii of model-independent-type charge
distributions for 118,120,122Sn are consistent with other ex-
perimental data obtained from the electron scattering [1] and
muonic x-ray data [22], as shown in Fig. 4. The differences
between interpolated radii and other results from the combined
analyses of elastic electron scattering and muonic x-ray data
are small [23]. We estimate that the errors of our deduced

FIG. 4. Existing experimental results for the charge radius of tin
isotopes. Squares and triangles represent results from electron elastic
scattering using different shapes of charge distributions [1]. In the
case of SOG data, from existing obtained 116,124Sn data, 118,120,122Sn
data are deduced in this work. Circles show results from muonic
x-ray data [22]. Diamonds show combined results from both electron
scattering and muonic x-ray data [23].

charge radii are 0.003 fm, which are the same order as those
for 116,124Sn.

To extract the point proton density distribution we need to
unfold the charge distribution with the finite size of the protons
and to consider the contribution from neutrons. Therefore,
we can write a charge distribution ρch using the charge
distributions of a proton ρ

proton
ch and a neutron ρneutron

ch as
follows:

ρch(�r) =
∫

ρp(�r ′)ρproton
ch (�r − �r ′)d�r ′

+
∫

ρn(�r ′′)ρneutron
ch (�r − �r ′′)d�r ′′. (7)

Therefore, we calculate the mean square radius of the charge
distribution as

〈
r2

ch

〉 = 〈
r2
p

〉 + 〈(
r

proton
ch

)2〉 + N

Z

〈(
rneutron

ch

)2〉
, (8)

where
〈
r2

ch

〉 ≡
∫

r2ρch(�r)d�r
/ ∫

ρch(�r)d�r
〈
r2
p

〉 ≡
∫

r2ρp(�r)d�r
/ ∫

ρp(�r)d�r
〈(
r

proton
ch

)2〉 ≡
∫

r2ρ
proton
ch (�r)d�r

/ ∫
ρ

proton
ch (�r)d�r

〈(
rneutron

ch

)2〉 ≡
∫

r2ρneutron
ch (�r)d�r

/ ∫
ρneutron

ch (�r)d�r.

〈r2
ch〉1/2, 〈r2

p〉1/2, 〈(rproton
ch )2〉1/2, and 〈(rneutron

ch )2〉1/2 are denoted

as the root-mean-square (RMS) radii of ρch, ρp, ρ
proton
ch , and

ρneutron
ch , respectively. We used the simple parametrization of

nucleon form factors [24], where the RMS radius of the proton
itself is 0.863(4) fm and the mean square radius of the neutron
itself is −0.112(3) fm2. This proton radius is consistent with
that obtained from the measurement of the hydrogen 1S Lamb
shift [25]. The contribution to the RMS radius of the point
proton density distribution from the neutron form factor is on
the order of 0.02 fm. Thus, the contribution from the neutron
form factor is small but not negligible.

Equation (7) shows that we need the neutron density
distribution to precisely deduce density distribution. Because
the errors of proton radii are mainly determined by the charge
radii in the equation, the errors of the RMS radii of the point
proton of tin isotopes are estimated to be 0.003 fm.

In this report we tune newly a medium-effect parameter set
using the 58Ni data of Refs. [11] and [26], because we adopted
a new treatment for the point proton density distribution.

B. 58Ni and the effective interaction

We must calibrate the effective nucleon-nucleon interac-
tion, particularly in the nuclear interior, by the scattering from
the nucleus. In this subsection we discuss the analysis of the
elastic scattering of 58Ni at the energy of 295 MeV, which
allows adjustment of the effective interaction further.

In the previous work, eight parameters were searched for
independently including the imaginary parts of two exchanged

024317-4



PROTON ELASTIC SCATTERING FROM TIN ISOTOPES . . . PHYSICAL REVIEW C 77, 024317 (2008)

mesons [11]. It is difficult to obtain a unique medium-effect
parameter set because of its many degrees of freedom.
This difficulty causes ambiguities in the neutron density
distributions. Thus, we attempt to express the elastic scattering
using the medium-effect parameters that have less freedom.
We need the information of both proton and neutron density
distributions to calibrate the effective interaction based on
RIA calculations. Several calculations have been performed
to obtain the proton and neutron density distributions of 58Ni
using relativistic or nonrelativistic mean-field calculations.
The results are dependent on the interactions used in the
calculations but the differences between the RMS radii of
point protons and neutrons, the neutron skin, are generally
small [27–32], and are given as

�rnp ≡ 〈
r2
n

〉1/2 − 〈
r2
p

〉1/2
. (9)

The use of 800 MeV proton elastic scattering based on KMT
nonrelativistic impulse approximation gave a thickness of
�rnp = 0.01(5) fm [9]. X-ray measurement of an antiprotonic
atom gave a value of −0.9(9) fm [33]. Thus, in the case of
58Ni, we can assume that the neutron density distribution has
the same shape as the proton density distribution. Therefore,
the neutron density distribution can be described as

ρn(r) = (N/Z)ρp(r). (10)

Thus, the substitution of Eq. (10) into Eq. (7) gives Eq. (11)
the point proton density distribution of 58Ni,

ρch(�r) =
∫

ρp(�r ′)
[
ρ

proton
ch (�r − �r ′) + (N/Z)ρneutron

ch (�r − �r ′)
]
d�r ′.

(11)

According to the RMF calculation, the ratio of scalar-to-vector
densities has an almost constant value of 0.96, as shown in
Fig. 5, corresponding to the ratio of the integrated scalar
density to the integrated vector density. Using this constant
value, we reproduced the scalar density distributions from the
RMF calculation.

Even if we had taken a different constant value from 0.95 to
0.97, the differences in the cross sections and analyzing powers
would have been less than 2–3%, which can be compensated
for by the ambiguity of the medium-effect parameters.

Because in the case of eight parameters, we have too many
degrees of freedom for fitting parameters and the correlations
among these parameters are large, in this work we have used
the same modification parameters for both real and imag-
inary parts of the scattering amplitude (āj = aj , b̄j = bj ).
Figure 6 shows the correlation between modification parame-
ters of aσ and aω. The correlation is valley like and very strong;
the correlations of the other five combinations of modification
parameters also show similar behavior. Thus, we determined
the modification parameters uniquely.

The medium-effect parameters were determined by fitting
the experimental data so as to minimize the chi-square (χ2)
value. χ2 is defined as

χ2 =
∑

[(xexp. − xtheo.)/�xexp.]
2, (12)

where xexp., �xexp., and xtheo. are the experimental data, the
errors in the data, and the calculation results, respectively.

FIG. 5. Ratios of scalar density to vector density for proton and
neutron calculated by the RMF calculation for 58Ni.

Figure 7 shows the experimental data at 295 MeV and the
fits with the RIA calculation using the modified effective
interaction with the unfolded proton and neutron densities
of 58Ni obtained using Eq. (10). Our calculations are in
good agreement with all the data of the cross sections, the
analyzing powers, and the spin rotation parameters for up
to 3.5 fm−1. χ2

min, the minimum of χ2 for 58Ni data using
four free parameters, has almost the same order as that in the
previous work using eight free parameters. We estimated the
errors of the modification parameters from the statistics and

FIG. 6. Contour plot of χ 2 correlation of aσ with aω for 58Ni. The
hatched area represents the region obtained from Eq. (13). The open
circle and bars represent the best-fit parameter and the errors shown
in Table II, respectively. The magnitude of χ 2 is arbitrary.
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RMF+RIA

Deduced density
+ RIA(medium effect)
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Q
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FIG. 7. Experimental data for 58Ni at 295 MeV and results of
several calculations. Dashed lines show results of the original RIA
calculations using RMF densities. Dotted lines represent similar
calculations but using densities deduced from electron scattering
data. Solid lines show calculations based on the modified effective
interaction using the deduced densities.

the experimental conditions as follows.

χ2 � χ2
min + P. (13)

Here, P (in this work P = 4) denotes a number of fitting
parameters [34]. Table II shows a summary of the fitting
results.

Figure 6 shows the correlation between aσ and aω. The
circle shows the best-fit parameter, and horizontal and vertical
bars show the error bars of aσ and aω, respectively. The
hatched area shows the region that satisfies Eq. (13). Because
each pair of parameters has a strong correlation, we cannot
independently use the entire region defined by the errors in
Table II, meaning that the usable area defined by each pair of
the parameter set is very narrow.

C. Tin isotopes and neutron density distributions

We have tried to deduce the neutron density distributions
of tin isotopes using the newly modified effective interaction.
The scalar nucleon density distributions of tin isotopes were
assumed to be 0.96 times the vector nucleon density distribu-
tions as in the case of 58Ni, because the ratios of the scalar to

TABLE II. Medium-effect parame-
ters at 295 MeV. The error estimation is
discussed in Sec. II.B.

j σ ω

aj 0.33 ± 0.06 1.08 ± 0.12
bj −0.12 ± 0.05 −0.30 ± 0.03

vector densities for tin isotopes are almost the same [16]. The
initial proton density distributions of tin isotopes are obtained
by Eq. (7) using the neutron density distribution given by
Eq. (10). We used a SOG for the neutron density distribution,
which is expressed as

ρn(r) = N

2π3/2γ 3

12∑
i=1

Qi

1 + 2R2
i

/
γ 2

× [
e−(r−Ri )2/γ 2 + e−(r+Ri )2/γ 2]

. (14)

Here, N is the number of neutrons. Equation (14) is almost the
same as Eq. (3). While parameters such as γ and Ri were fixed
using results of the charge distribution of 116,124Sn [1], Qi were
determined independently under the following normalization
condition,

∫
ρn(r)dr = N ⇒

12∑
i=1

Qi = 1. (15)

For fitting, we used a range of momentum transfer from 0.7 to
3.5 fm−1, because the data for the forward angle (θc.m. < 8◦)
were difficult to measure experimentally. Our range covers the
same momentum transfer region of electron scattering as that
in Ref. [1]. For the medium-effect parameters, we used the
same parameters as those determined by the scattering from
the 58Ni target.

In Fig. 8, we show experimental data together with the
fitting results and calculations using the initial neutron density
distributions, which are defined as

ρn(r) = ρp(r) + (
ρRMF

n (r) − ρRMF
p (r)

)
, (16)

where ρRMF
n(p) (r) denote the RMF neutron (proton) density

distributions [16]. We determine the proton and neutron
density distributions by iterating Eq. (7) several times until
self-consistency is achieved. The process of iteration hardly
affects the proton densities, because the proton density
distributions are not sensitive to the fine structure of the neutron
density distributions.

The calculations using the initial neutron density and the
medium-modified effective interaction reproduce the absolute
value of the cross sections and analyzing powers. The angular
distributions of both the differential cross sections and the
analyzing powers using the initial neutron density are shifted
to forward angle in angle because the RMF calculation has a
tendency of a larger neutron radius.

D. Uncertainties of neutron density distributions

We estimated the uncertainties of the neutron density
distributions of the tin isotopes. There are generally two types
of uncertainty. One originates from the experiment, and the
other originates from the model of calculation. In our case, the
reduced chi-square χ2/ν is larger than 1 and is typically 7 for
116,118,122,124Sn. In the case of 120Sn, not only the cross section
and analyzing powers but also the spin rotation parameters [26]
are used as experimental data in the analysis. Thus, the errors
for 120Sn resulting from the experimental conditions, degrees
of freedom ν and χ2/ν, are different from those for other
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FIG. 8. Differential cross sections and ana-
lyzing powers for proton elastic scattering from
tin isotopes. The figure includes data from
Fig. 2. The dashed lines show calculations based
on the modified effective interaction using trial
density distributions. The solid lines are best-
fit calculations based on the modified effective
interaction.

isotopes. χ2/ν is about 10 for 120Sn. If the model were perfect,
it would realize χ2/ν = 1. Thus, the reason that χ2/ν > 1 is
attributed to the inadequacy of our model. To compensate
for this inadequacy of the model, we increased the errors
artificially by multiplying all the experimental errors by a
constant factor to realize χ2/ν = 1. This means that we must
redefine Eq. (13) as

χ2 � χ2
min + P × χ2

min

/
ν. (17)

The uncertainties of the neutron density distributions are
estimated by the following procedure.

First, we obtain a new medium-effect parameter set using
58Ni data by the Monte Carlo method. We adopt the parameter
sets that satisfy Eq. (13) as “good” medium-effect parameter
sets.

Second, we estimate the uncertainties of neutron density
distributions using each set of “good” medium-effect param-
eters. The neutron density distributions are calculated by the
Monte Carlo method under the normalization condition of Eq.
(15). We compare the experimental data with the result of the
calculation using each “good” set of medium-effect parameters
and the trial neutron density distributions. We also adopt all
neutron density distributions that satisfy Eq. (17) as “good”
neutron density distributions.

We repeated this procedure until the uncertainty of each
“good” neutron density distribution converged. The uncertain-
ties of the neutron density distributions in this analysis are
defined as the outskirts of the density distributions at each
radial point. The uncertainties of the RMS radii of the neutron
density distributions were also calculated using all the neutron
density distributions that satisfy Eq. (17).

Figure 9 shows the deduced neutron density distributions
and point proton density distributions of the tin isotopes.
Hatched areas in the figure represent outskirt regions encom-
passing all the neutron density distributions for tin isotopes
allowed by Eq. (17), corresponding to the uncertainties of the
neutron density distributions in this analysis.

Table III shows a summary of the RMS radii of the
proton and neutron density distributions and the neutron skin
thicknesses of the tin isotopes.

In the high-momentum-transfer region, the multistep pro-
cess may affect the angular distribution of elastic scat-
tering [35]. To estimate the effect of multistep processes,
we performed a coupled-channel calculation by using the
coupled-channel code ECIS95 written by Raynal [36]. Figure 10
shows the calculated cross sections and analyzing powers
with and without performing a coupled-channel calculation
using the global potential [17,18]. The contribution from the
coupled-channel calculation for 58Ni in the momentum transfer
range from 0.7 to 3.5 fm−1 is relatively small (1–2%), which
is less than the uncertainty of the medium-effect parameter.
In the case of the tin isotopes, the situation is similar to the
case of 58Ni. Thus, the effect from the coupled-channel is

TABLE III. Reduced RMS radii and thicknesses of tin isotopes.

Target
〈
ρ2

p

〉1/2
(fm)

〈
ρ2

n

〉1/2
(fm) �rnp (fm)

116Sn 4.562 ± 0.003 4.672 ± 0.018 0.110 ± 0.018
118Sn 4.575 ± 0.003 4.720 ± 0.016 0.145 ± 0.016
120Sn 4.589 ± 0.003 4.736 ± 0.033 0.147 ± 0.033
122Sn 4.602 ± 0.003 4.748 ± 0.016 0.146 ± 0.016
124Sn 4.615 ± 0.003 4.800 ± 0.017 0.185 ± 0.017
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FIG. 9. Point nucleon density distributions for tin isotopes. Solid
lines show point proton density distributions. Dashed lines show
best-fit neutron density distributions. Hatched areas represent the
error envelopes encompassing all the trial SOG neutron density
distributions deduced by the modified effective interaction. Not only
statistical and experimental errors but also systematic errors from the
model dependence contribute to these regions.

masked by the uncertainties of our introduced medium effects
in this analysis. Also, the coupled-channel effect might be
partly included in our parametrization because we aimed to
phenomenologically reproduce the experimental data. Thus,
the effect of the coupled-channel is negligible and was not
included explicitly in our analysis.

dσ
/d

Ω
 (

m
b/

sr
)

Non-coupling

0++2+Coupling

θc.m. (degree)

A
y

θc.m. (degree)

FIG. 10. Coupled-channel effect of 58Ni at 295 MeV. Solid lines
show the coupled-channel calculation between the ground state and
the first 2+ state. Dashed lines show the calculation without the
coupled-channel effect. The global potential was used as the optical
potential.

FIG. 11. RMS radii of point proton and neutron of tin isotopes.
Solid, dotted, and dashed lines show the results of theoretical
calculations using typical mean-field models: RMF with NL3 [31]
and SHF including BCS force with SIII [32] and with SkM∗ [37],
respectively.

IV. RESULTS AND DISCUSSION

We have obtained the uncertainties of neutron density
distributions considering statistics, systematic experimental
errors, the uncertainties of the modification parameters, and
our model, as shown in Fig. 9. Therefore the differences among
the deduced shapes of the neutron density distributions of tin
isotopes gradually changes. However the deduced RMS radii

FIG. 12. Neutron skin thicknesses of tin isotopes obtained by
various methods. Our results are indicated by solid squares. Results
from proton elastic scattering at 800 MeV [9], giant dipole resonance
[38], spin dipole resonance [39], and antiprotonic x-ray data [33] are
shown by open triangles, open diamonds, open crosses, and open
squares, respectively. The lines represent the models described in
Fig. 11.
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of the point proton and neutron density distributions clearly
increase with the mass number, as shown in Fig. 11.

This tendency is also shown in the results of several typical
theoretical calculations, which are also plotted in the figure
and have slopes consistent with our experimental results.
Among the calculations, the nonrelativistic Skyrme Hartree
Fock (SHF) calculations using SkM∗ parametrization are in
good agreement with the RMS radii of both point proton and
neutron density distributions. Neutron skin thicknesses �rnp

are shown in Fig. 12. The values of the �rnp are about 0.11–
0.19 fm for tin isotopes, which are not as large as what some
RMF models suggest. The values of our �rnp are reproduced
by the SHF calculation using SkM∗ parametrization. On the
other hand, the values are larger than those of SIII and smaller
than those of NL3. Oyamatsu and Iida [40] and Chen et al. [41]
calculated a linear relation between the �rnp and the symmetry
term of the EOS. Therefore, our results favor medium values
for the symmetry energy and its density dependence used in
SkM∗ one, which are not so large as those of NL3 but larger
than those of SIII.

V. SUMMARY

In this work, we have extracted the neutron density distri-
butions of tin isotopes. The experimental data were analyzed

in the framework of the RIA using a newly tuned relativistic
Love-Franey interaction obtained for 58Ni. The uncertainties
of the neutron density distributions were estimated in consid-
eration of not only experimental but also model uncertainties.
Using the tuned interactions in the nuclear medium, the neutron
density distributions of the tin isotopes were deduced so
as to reproduce the experimental data of the isotopes. We
also deduced the RMS radii of the point proton and neutron
density distributions. We compared our experimental results
with those of several theoretical mean-field calculations. SHF
calculations using SkM∗ parametrization as above were in
good agreement with the RMS radii of both point proton and
neutron density distribution. The results of our analysis showed
the clear increase in neutron skin thickness with mass number,
although the values obtained were not as large as what some
RMF models suggest.
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