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For a one-body Hamiltonian obtained from the energy-density functional associated with a Skyrme effective
interaction, including a tensor force, semiclassical functional densities are derived in the framework of the
Extended Thomas-Fermi method, in spherical symmetry, for the kinetic energy and spin-orbit density. The
structure of the self-consistent mean-field potentials constructed with such semiclassical functionals is studied.
The impact of the tensor force in particular on the spin-orbit form factor clearly indicates the necessity of
including such tensor-force terms in the theoretical description of atomic nuclei and their possible influence on
the shell structure of exotic nuclei.
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I. INTRODUCTION

In the recent experimental effort of synthesizing nuclei far
from the β stability line, the possibility of a different shell
closure and thus the appearance of new magic numbers have
been widely discussed [1–3]. Experiments on properties of
low-lying collective states of neutron-rich even-even titanium
nuclei [4,5] seem to indicate, in addition to the standard N =
28 shell closure, the existence of a closed N = 32 subshell.
Such an additional shell structure can be generated if the
neutron single-particle f5/2 state is shifted upward, thus
leaving a gap between spin-orbit partners p3/2 and p1/2.
Another prominent candidate for a modified shell structure
is the relative shift of the 1g7/2 and 1h11/2 proton levels in
tin isotopes, an effect that is interpreted [6] by a reduction,
with increasing neutron numbers, of the spin-orbit splitting
of both single-particle levels with their respective spin-orbit
partners. From the theoretical point of view the spin-
orbit splitting in nuclei has its origin in the two-body
spin-orbit and tensor interactions [7–9], which contribute
differently to spin-saturated and spin-unsaturated nuclei.
Whereas the genuine spin-orbit interaction is, indeed, weakly
dependent on the nuclear shell structure, the spin-orbit splitting
induced by the tensor force leads to a strong dependence
on the filling of neutron and proton single-particle states.
Even though the tensor terms in the interaction were long
known, this part of the nucleon-nucleon force has generally
been neglected in mean-field-type calculations [10–13].1 Very
recently the important role of the so-far neglected tensor terms

1For a recent review on effective interactions and mean-field
theories, see Refs. [14–16] and references therein.

for spin nonsaturated systems, as they are encountered for
neutron-deficient or neutron-rich light nuclei, was largely
discussed in the framework of schematic calculations in
Refs. [17–19]. The inclusion of such tensor terms in the
two-body effective nucleon-nucleon interaction has been
worked out in the framework of the Skyrme Hartree-Fock
approximation in Ref. [20] when limited to spherically
symmetric systems, and, more generally, for time-reversal
symmetric even-even systems in Ref. [21]. It is now in-
teresting to develop the semiclassical counterpart of such
an approach in the framework of the so-called Extended
Thomas-Fermi (ETF) approximation [22,23]. It has, in fact,
been shown in Ref. [24] that the mean-field Skyrme form
factors obtained through the use of the semiclassical ETF
functional densities do, indeed, reproduce their Hartree-Fock
counterparts to considerable accuracy. Because this former
study was carried out in the absence of any tensor terms
(such terms having, at that time, also been neglected in
virtually all Hartree-Fock type calculations), the derivation
of the semiclassical density-functional expressions taking the
tensor interaction explicitly into account therefore becomes
of great interest and the present study is devoted to this
subject.

The present paper is organized as follows. After giving a
brief outline of the energy-density functional associated with
a Skyrme effective nucleon-nucleon interaction including a
zero-range two-body tensor force in Sec. II, we derive the
mean-field Hamiltonian and the various involved form factors.
The semiclassical ETF method is then used in Sec. III to
obtain explicit density functionals for the kinetic-energy and
spin-orbit densities in the presence of a tensor interaction.
Using these ETF functionals, we examine the impact of the
tensor force on the mean-field form factors in Sec. IV. Some
conclusions are given in Sec. V.
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II. SKYRME ENERGY-DENSITY FUNCTIONAL WITH
A TENSOR FORCE

Let us start from the standard effective nucleon-nucleon
interaction of the Skyrme type consisting of a density-
dependent central force vc, a standard spin-orbit term vso, and
a zero-range two-body tensor interaction vt:

vSky(r1, r2) = vc(r1, r2) + vso(r1, r2) + vt(r1, r2) (1)

with the central force [10,25]

vc(R, s) = t0(1 + x0Pσ ) δ(s) + t1

2
(1 + x1Pσ )

× [k′2 δ(s) + δ(s)k2] + t2(1 + x2Pσ )k′ · δ(s)k

+ t3

6
(1 + x3Pσ ) ρα

0 (R)δ(s) (2)

and the spin-orbit interaction

vso(s) = iW0 (σ 1 + σ 2) · k′ × δ(s) k, (3)

where R and s are, respectively, the center of mass and relative
coordinate, Pσ is the spin exchange operator, and k = k1 −
k2 is the operator of relative momentum with the Hermitian
adjoint operator k′. The tensor part of the interaction is defined
as [7,26]

vt(s) = TE

2
{[3(σ 1 · k′) (σ 2 · k′) − (σ 1 · σ2)k′2] δ(s)

+ δ(s) [3(σ 1 · k) (σ 2 · k) − (σ 1 · σ 2)k 2]}
+ T0[3(σ 1 · k′) δ(s)(σ 2 · k) − (σ 1 · σ 2) k′ · δ(s)k].

(4)

The energy-density functional ESky associated with such a
general Skyrme effective interaction is given for a time-
reversal symmetric system, for which the time-odd local
components of the density matrix vanish, by the following
expression [20,27]:

ESky(r)

= h̄2

2m
τ0 +

∑
t=0,1

{
C

ρ
t [ρ0]ρ2

t − C
�ρ
t (∇ρt )

2 + Cτ
t ρt τt

−CT
t

∑
µν

Jtµν
Jtµν

− 1

2
CF

t


(∑

µ

Jtµν

)2

+
∑
µν

Jtµν
Jtµν




+C∇J
t ρt∇ · Jt

}
, (5)

where the indices t = 0 and t = 1 stand for the isoscalar and
isovector part of the corresponding densities, as, for example,

ρ0(r) = ρn(r) + ρp(r),
(6)

ρ1(r) = ρn(r) − ρp(r).

How the coefficients of the energy-density functional ESky are
related to the coefficients tk, xk, W0, α, TE , and T0 of the
effective interaction, Eqs. (2)–(4), will be explicitly written
down further on.

In the following we would like to investigate, in particular,
the contribution of the spin-current pseudotensor density Jtµν

to the total energy, but also to the mean-field form factors, such
as the one-body potential and, in particular, to the spin-orbit
potential, which, as pointed out in the introduction, determines
to a large extent the shell closure and the magic numbers. For
a given sort of particles (neutrons or protons) this quantity can
be written as

Jµν(r) = − i

2
(∇µ − ∇′

µ)
∑
σ,σ ′

ρ(rσ, r ′σ ′)|r=r ′ 〈σ ′|σν |σ 〉 (7)

(where for the time being we drop the charge index q =
{n, p}). Using the fact that the Cartesian components of the
spin-current pseudotensor density Jµν can be decomposed into
a pseudoscalar, an antisymmetric vector, and a symmetric
pseudotensor contribution (with well-defined transformation
properties under rotation), namely [20]

Jµν(r) = 1

3
δµνJ

(0)(r) + 1

2

∑
λ

εµνλJ
(1)
λ (r) + J (2)

µν (r) (8)

with

J (0)(r) =
∑

λ

Jλλ(r),

J
(1)
λ (r) =

∑
µν

ελµνJµν(r), (9)

J (2)
µν (r) = 1

2
[Jµν(r) + Jνµ(r)] − 1

3
δµν

∑
λ

Jλλ(r),

allows us to rewrite the J -dependent terms appearing in
Eq. (5) in the form [20]∑

µν

JµνJµν = 1

3
[J (0)]2 + 1

2
J 2 +

∑
µν

J (2)
µν J (2)

µν (10)

and

1

2


(∑

µ

Jtµν

)2

+
∑
µν

Jtµν
Jtµν


 = 2

3
[J (0)]2 − 1

4
J2

+ 1

2

∑
µν

J (2)
µν J (2)

µν , (11)

where J is the well-known spin-orbit density [10] with the
Cartesian components J

(1)
λ given in Eq. (9). The Skyrme energy

density of Eq. (5) then takes the form

ESky(r) = h̄2

2m
τ0 +

∑
t=0,1

{
C

ρ
t [ρ0]ρ2

t − C
�ρ
t (∇ρt )

2 + Cτ
t ρt τt

+ 1

3
C

J0
t

[
J

(0)
t

]2 + 1

2
CJ1

t J 2
t + CJ2

t

∑
µν

J
(2)
tµν

J
(2)
tµν

+C∇J
t ρt ∇ · Jt

}
, (12)

where we have defined the coefficients

C
J0
t = − (

2CF
t + CT

t

)
, CJ1

t = (
1
2CF

t − CT
t

)
,

CJ2
t = − (

1
2CF

t + CT
t

)
.

To obtain the one-body Hamiltonian for a nucleon of type
q = {n, p}, one has to carry out the following minimization
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procedure (with Nq = {N
2 , Z

2 }):
δ

δϕ∗
i (r, σ, q)

×
∫ 

ESky(r) −
∑

q

Nq∑
j=1

∑
σ ′

ε
(q)
j |ϕj (r, σ ′, q)|2


 d3r

= 0, (13)

which for the energy density here can be written as

∂ESky

∂ϕ∗
i (r, σ, q)

− ∇
[

∂ESky

∂∇ϕ∗
i (r, σ, q)

]
= Hqϕi(r, σ, q)

= ε
(q)
i ϕi(r, σ, q). (14)

Since the derivative in Eqs. (13) and (14) is with respect to
the single-particle wave function ϕj of a nucleon of type q

we prefer, for better transparency, to write down the Skyrme
energy-density functional in terms of the neutron and proton
densities instead of the isoscalar and isovector densities of
Eq. (6). As a first step in the treatment of the tensor interaction,
we shall, as was also done in Ref. [20], restrict ourselves
in the following to spherically symmetric nuclear systems.
It is now interesting to note that, when imposing spherical
symmetry, only one out of the nine components of the tensor
Jµν survives. One can, indeed, show that in that case the scalar
part J (0) and the symmetric part J (2)

µν of the second ranked
tensor vanish and only the (radial part of the) vector J survives.
The Skyrme energy-density functional can then be simply
written as

ESky(r)

=
∑

q

{
h̄2

2m
fqτq + (

C
ρ

0 + C
ρ

1

)
ρ2

q + (
C

ρ

0 − C
ρ

1

)
ρqρq̄

− (
C

�ρ

0 + C
�ρ

1

)(∇ρq

)2 − (
C

�ρ

0 − C
�ρ

1

)∇ρq · ∇ρq̄

+ 1

2

(
CJ

0 + CJ
1

)
J 2

q + 1

2

(
CJ

0 − CJ
1

)
Jq · Jq̄

− [(
C∇J

0 + C∇J
1

)∇ρq + (
C∇J

0 − C∇J
1

)∇ρq̄

] · Jq

}
,

(15)

where we have slightly changed the last term by moving
through an integration by parts the gradient operator from
the spin-orbit density J onto the local density ρ. Since for
spherical systems no confusion is possible, and to simplify
the notation, we have also written CJ

t instead of C
J1
t in this

equation. The effective-mass form factor fq(r) is here defined
in the usual way as

fq = 1 + 2m

h̄2

[(
Cτ

0 + Cτ
1

)
ρq + (

Cτ
0 − Cτ

1

)
ρq̄

]
. (16)

The coefficients Cx
t appearing in the energy-density functional

ESky, Eq. (15), are related to the coefficients tk, xk, W0, α, TE ,
and T0 of Eqs. (2)–(4) in the following way [20,27]:

C
ρ

0 = 3
8 t0 + 3

48 t3ρ
α
0 (r),

C
ρ

1 = − 1
8 t0(2x0 + 1) − 1

48 t3(2x3 + 1)ρα
0 (r),

C
�ρ

0 = 1
64 [−9t1 + t2(4x2 + 5)],

C
�ρ

1 = 1
64 [3t1(2x1 + 1) + t2(2x2 + 1)],

Cτ
0 = 1

16 [3t1 + t2(4x2 + 5)] ,

Cτ
1 = 1

16 [−t1(2x1 + 1) + t2(2x2 + 1)],

C∇J
0 = − 3

4W0, C∇J
1 = − 1

4W0,

CJ
0 = − 1

16 [t1(2x1 − 1) + t2(2x2 + 1) − 5(TE + 3T0)] ,

CJ
1 = − 1

16 [−t1 + t2 + 5(TE − T0)] . (17)

For what follows it will be useful to write down in some
detail the Cartesian components of the spin-orbit density vector
J as obtained from Eqs. (7) and (9):

Jq = − i

2

∑
k

∑
σ ′σ ′′

[ϕ∗
k (r, σ ′′, q) ∇ϕk(r, σ ′, q)

−∇ϕ∗
k (r, σ ′′, q) ϕk(r, σ ′, q)] × 〈σ ′′|σ |σ ′〉. (18)

Through the functional derivative in Eq. (14) the one-body
Hamiltonian Hq is obtained. The calculation of the different
contributions is straightforward. The contributions [the so-
called J 2 terms [20] proportional to the CT

t coefficients in
Eq. (5)] arising from the tensor force but also from the
exchange part of the central interaction are explicitly derived
in the Appendix. Summing all the terms appearing in the
functional derivative one obtains the following mean-field
Hamiltonian Hq of Eq. (14):

Hq = − h̄2

2m
∇ · fq(r)∇ + Vq(r) − i

2

∑
σ ′

[Wq · (∇ ×〈σ |σ |σ ′〉)

+ (∇ × 〈σ |σ |σ ′〉) · Wq], (19)

where the effective mass form factor fq(r) is given by
Eq. (16) and where the central mean-field potential Vq(r) and
the spin-orbit type potential Wq(r) are obtained in the usual
way as functional derivatives of the energy density ESky with
respect to the local density ρq and the spin-orbit density Jq ,
respectively,

Vq(r) = (
Cτ

0 + Cτ
1

)
τq + (

Cτ
0 − Cτ

1

)
τq̄ + 2

[(
C

ρ

0 + C
ρ

1

)
ρq

+ (
C

ρ

0 − C
ρ

1

)
ρq̄

] +
[(

∂C
ρ

0

∂ρ0
+ ∂C

ρ

1

∂ρ0

)
ρ2

q

+
(

∂C
ρ

0

∂ρ0
− ∂C

ρ

1

∂ρ0

)
ρqρq̄

]
+ 2

[(
C

�ρ

0 + C
�ρ

1

)∇2ρq

+ (
C

�ρ

0 − C
�ρ

1

)∇2ρq̄

] + (
C∇J

0 + C∇J
1

)
divJq

+ (
C∇J

0 − C∇J
1

)
divJq̄ (20)

and

Wq(r) = − (
C∇J

0 + C∇J
1

) ∇ρq − (
C∇J

0 − C∇J
1

)∇ρq̄

+ (
CJ

0 + CJ
1

)
Jq + (

CJ
0 − CJ

1

)
Jq̄ . (21)

At this point one could be tempted to conclude that, using
this definition of Wq , the spin-orbit dependent part of the
energy density could be simply written in the form

∑
q Jq ·

Wq , as this was the case before the introduction of the tensor
terms [22]. This is, however, not possible because the terms
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in CJ
t and C∇J

t appear in Eq. (15) with a different coefficient
(1 versus 1/2).

Since the energy density functional ESky, Eq. (15), for
a Skyrme effective interaction depends only on the local
densities ρq, τq, and Jq , and consequently the resulting
mean-field potentials Vq(r), Eq. (20), and Wq(r), Eq. (21),
simple and useful approximate functionals for τ [ρ] and J[ρ]
in terms of the particle density ρ and its derivatives can be
obtained through the semiclassical Extended Thomas-Fermi
method [22]. This then allows us to express the total energy
as a functional of the neutron and proton densities only, which
are obtained by a density variational calculation. Such an
approach can be considered as an approximate treatment of
the Hohenberg-Kohn method [28] in density functional theory.
For a standard Skyrme force [i.e., without any tensor term and
with the Jq and Jq̄ terms in Eq. (21) ignored], explicit ETF
density functionals for τ [ρ] and J[ρ] up to fourth order in
the semiclassical h̄ expansion are given in integrated form (to
calculate semiclassical energies) in Ref. [22] and locally [to
be able to determine the form factors Vq(r) and Wq(r)] in
Ref. [24]. Full ETF density functionals that take into account
all the terms of Eq. (15), including the tensor term, are derived,
up to order h̄2, in the next section.

III. SEMICLASSICAL FUNCTIONALS IN THE PRESENCE
OF A TENSOR INTERACTION

At this stage we would like to insist on the point that
the single-particle Hamiltonian (19) is exactly of the same
form that it was before the inclusion of the tensor terms in
the two-body interaction. The only thing that has changed
is the fact that the central mean-field potential Vq and the
spin-orbit potential Wq are of a slightly different form, now
containing additional terms (depending on the coefficients CJ

0
and CJ

1 ). We can therefore conclude that for a one-body
Hamiltonian of the form (19) the ETF spin-orbit density
functional Jq[ρ] obtained at lowest order (order h̄2) in the
semiclassical expansion is of the usual form [22]

Jq = − 2m

h̄2fq

ρqWq . (22)

Here Wq as given by Eq. (21) now has a much richer structure
than in the absence of the tensor terms. One thus obtains the
following expression:

Jq = − 2m

h̄2fq

ρq

[(
CJ

0 + CJ
1

)
Jq + (

CJ
0 − CJ

1

)
Jq̄

− (
C∇J

0 + C∇J
1

)∇ρq − (
C∇J

0 − C∇J
1

) ∇ρq̄

]
. (23)

Because the final aim of the ETF approach is to express
quantities such as the spin-orbit densities Jn and Jp as functions
of the local densities ρn and ρp and its derivatives, one then
simply has to solve the following system of linear equations:[

h̄2

2m
fn + (

CJ
0 + CJ

1

)
ρn

]
Jn + (

CJ
0 − CJ

1

)
ρnJp

= (
C∇J

0 + C∇J
1

)
ρn∇ρn + (

C∇J
0 − C∇J

1

)
ρn∇ρp,

[
h̄2

2m
fp + (

CJ
0 + CJ

1

)
ρp

]
Jp + (

CJ
0 − CJ

1

)
ρpJn

= (
C∇J

0 + C∇J
1

)
ρp∇ρp + (

C∇J
0 − C∇J

1

)
ρp∇ρn. (24)

Notice at this point that in the absence of the aforementioned
J 2 terms in the Skyrme energy-density functional, the ETF
spin-orbit density recovers, of course, the usual simple form
[22,24]. The question now also arises whether this treatment
of the spin-orbit density can be easily carried on to the
fourth order in the semiclassical expansion. This is, however,
not the case, since the fourth-order counterpart of Eq. (22)
involves not only the spin-orbit potential but also its first and
second derivatives [24], which through Eq. (21) would then
lead to a differential equation for the spin-orbit density. We
will therefore, in the following, neglect the influence of the
tensor terms on the fourth-order spin-orbit density functional.
Such an approximation should be quite reasonable since it
fully includes the impact of the J 2 terms in the secnd-order
functionals and only neglects its influence on the fourth-order
terms, which have been explicitly shown in Ref. [24] to
be small as compared to the second-order terms (and the
Thomas-Fermi term, when present, as for the functional τ [ρ]).
Since the tensor term itself yields an important, yet in no way
dominant, contribution to the nuclear structure, the introduced
approximation should be largely sufficient to take its influence
into account in our Extended Thomas-Fermi calculations.

When calculating the central mean-field potential Vq(r)
through Eq. (20) the divergence of the vector fields Jn(r) and
Jp(r) is needed. These quantities are easily obtained by taking
the divergence of Eq. (24) and solving a system of linear
equations, which is straightforward but somewhat lengthy to
write down and which we therefore do not display here. It is,
however, in all points similar to the one here for the fields
Jq(r).

One might wonder in which way the ETF kinetic-energy
density τ [ρ] will change by the inclusion of the tensor terms
in the energy-density functional. The answer is not at all,
except that the spin-orbit form factor Wq in Eq. (21) now has a
richer structure, as previously mentioned. Limiting ourselves
again to the lowest nontrivial order beyond the Thomas-Fermi
approximation (order h̄2) one obtains, as usual [22],

τq[ρq] = 3

5
(3π2)2/3ρ5/3

q + 1

36

(∇ρq)2

ρq

+ 1

3
�ρq

+ 1

6

∇ρq · ∇fq

fq

+ 1

6
ρq

�fq

fq

− 1

12
ρq

(∇fq

fq

)2

(25)

+ 1

2

(
2m

h̄2

)2

ρq

(
Wq

fq

)2

,

q = {n, p}.

Since the spin-orbit form factor Wq is given by Eq. (21) as a
function of the spin-orbit densities Jq , which are themselves
determined through the system of linear equations (24), the
kinetic-energy density is known. It is understood that the full
4th order kinetic energy density is used in the calculations
presented in the following.
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IV. IMPACT OF THE TENSOR FORCE ON MEAN-FIELD
POTENTIALS IN THE SEMICLASSICAL ETF

APPROACH

It will now be interesting to investigate the impact of the
tensor terms on a large variety of nuclear quantities that can be
determined or, at least, constrained by available experimental
data. At this point we do not aim at a full self-consistent
semiclassical treatment, which would include the full effective
interaction as presented earlier. Such a complete approach
has been presented in Ref. [20]. Here we will rather treat
the influence of the tensor terms perturbatively, performing
a full selfconsistent ETF calculation (up to order h̄4) with a
Skyrme effective interaction limited to the central force and
spin-orbit term, Eqs. (2) and (3), and setting, as usually done,
the coefficients CJ

t equal to zero, and add the contributions of
the terms that were left out to the thus obtained fields. Such an
approach is in the same spirit as the perturbative treatment of
the tensor terms in Refs. [29,30].

We will in the following investigate in particular the impact
of the tensor terms on the total energy, central mean-field, and
spin-orbit potential. One should first notice that, even in the
absence of a genuine tensor force, that is, with the coefficients
TE and T0 equal to zero, the resolution of the system of linear
equations for the Jn(r) and Jp(r) will not lead to the traditional
ETF expression

Jq = −2m

h̄2

ρq

fq

W0

2
∇(ρ0 + ρq), (26)

which has its origin in the neglect of J 2 in the energy-density
functional. A comparison between the two spin-orbit densities
is shown in Fig. 1 for the neutron densities obtained in 208Pb
with the Skyrme interactions SkM∗ [22,31] and SLy4 [32].
The effect is clearly visible, with a decrease of the spin-orbit
densities by about 10% when the contribution of the J 2 terms,
which have their origin in the exchange part of the central
force, are consistently taken into account. An effect of the
same order of magnitude is observed for the proton densities.

It is now interesting to investigate the impact of a genuine
tensor force. To that aim we choose one of the parameter
sets proposed in Ref. [20], namely the T42 parametrization,
which, according to Figs. 27 to 32 of that publication, seems to
be among the best candidates for an effective interaction of the
Skyrme type that takes a tensor term consistently into account.
The result is even more striking here, as can be seen in Fig. 2,
since the inclusion of the J 2 terms leads to a reduction of the
spin-orbit densities by approximately a factor of 2.

Such a very noticeable change in the spin-orbit density
raises the question of to what extent the inclusion of the
J 2 terms will modify the spin-orbit potential and thereby
have an impact on the spin-orbit splitting. To answer this
question we display in Fig. 3 the neutron spin-orbit po-
tential obtained in 208Pb with the T42 Skyrme interaction
with and without the inclusion of the J-dependent terms in
Eq. (21). Since it is interesting to investigate how such a
behavior varies when going from light to heavy nuclei, we
are also showing, in Fig. 3, the same quantity for the nucleus
90Zr. One concludes from both cases that the effect is dramatic,
leading to a reduction of the spin-orbit potential by practically

FIG. 1. Radial component of the ETF neutron spin-orbit density
Jn(r) in 208Pb obtained with the Skyrme interactions SkM∗ (upper
part) and SLy4 (lower part) by solving the system of linear
equations (21) (solid line) and by Eq. (26), that is, by neglecting the
coefficients of the J 2 terms in the energy-density functional (dashed
line).

FIG. 2. Same as Fig. 1, but obtained with the T42 parametrization
of Ref. [20] through the solution of the system of linear equations (21)
(solid line), by solving that system with the tensor-force coefficients
(T0 and TE) set to zero (dotted line) and by neglecting the J 2

coefficients altogether (dashed line).
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FIG. 3. Neutron spin-orbit potential obtained in 208Pb (left) and 90Zr (right) with the T42 Skyrme parametrization with (solid line) and
without (dashed line) the J-dependent terms.

a factor of 2, owing to a large cancellation that takes place
between the old and the new terms in Eq. (21). Such a reduction
has been also observed for a chain of Ni isotopes in the
Hartree-Fock-Bogoliubov calculations of Ref. [20].

It is now also interesting to investigate the impact on the
additional J terms on the central mean-field potentials Vn(r)
and Vp(r). Such terms do not explicitly show up in the Hartree-
Fock approach, but there the changes in the central potentials
come about through the impact that these terms generate in
the self-consistent procedure on the local densities ρq, τq ,
and Jq . One therefore expects the impact on the semiclassical
central potentials to be rather small. In the ETF approach an
additional contribution is generated through the changes that
the inclusion of these additional terms are bringing about in
the ETF kinetic-energy and spin-orbit density functionals. It is
also clear that the change of the spin-orbit potential discussed
here will be carried onto the ETF kinetic-energy density (last
term) of Eq. (25). The div Jq terms in Eq. (18) will, obviously,
also be modified, since these terms are found, as previously
mentioned, by calculating the divergence of both Eqs. (24).
The thus generated changes in the central mean fields Vq(r)
are expected to be rather small since both of these changes
correspond to corrections in the semiclassical functionals of
order h̄2 and it has been shown in Ref. [24] (see in particular
Fig. 2 there) that those corrections are themselves quite small
as compared to the dominant Thomas-Fermi contribution. To
be more specific, it is found that the corrections generated
by the new terms never exceed 0.4 MeV in amplitude in
either of neutron and proton potentials calculated in 208Pb
for either of the two Skyrme interactions used here (SkM∗
and SLy4), in which case the change is not visible on the
figure when displaying the mean-field potentials Vq(r). For the
T42 parametrization, however, this difference reaches 1.6 MeV
(0.6 MeV) for the neutron (proton) central field in 208Pb and
even slightly more in the case of 90Zr. We therefore show the
neutron central mean field for this latter nucleus in Fig. 4. As
can be seen from the figure such corrections are limited to the
surface region where they cause, after all, a small change.
What exclusively the mean-field potentials are concerned,

such a change should have little influence on the location
of single-particle states in such a potential, a location that
is, however, also largely determined by the strength of the
spin-orbit field, and we expect the effect of the latter, as shown
on Fig. 3, to have a rather noticeable effect on the precise
location of single-particle states and thereby on the associated
shell structure.

All of these investigations rely on a perturbative treatment
of the previously neglected J 2 terms, which have their origin in
the exchange part of the central nucleon-nucleon force and in a
genuine tensor interaction. We would like to close the present
study by assessing the validity of such an approximation
through a fully self-consistent semiclassical ETF calculation
in which the aforementioned terms are fully included in the
variational treatment. The result of such an investigation is
shown in Fig. 5. The fully self-consistent treatment, where
all of the terms in the energy-density functional are included
in the semiclassical density variational calculation leads to
a spin-orbit form factor that is slightly smaller than the one
obtained in the approach where these terms are taken into
account perturbatively. The two curves are, however, very close

FIG. 4. Neutron central mean-field potential obtained with the
T42 Skyrme parametrization for the nucleus 90Zr with (solid line) and
without (dashed line) the J 2 terms in the energy-density functional.
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FIG. 5. Neutron spin-orbit potential obtained with the T42
Skyrme parametrization for the nucleus 90Zr with a fully self-
consistent (solid line) and a perturbative treatment (dashed line) of
the J 2 terms in the energy-density functional.

to each other, with a deviation of less than 5%. Such a behavior
therefore justifies, a posteriori, the perturbative treatment that
was at the base of our study.

V. CONCLUSIONS

For the case that a tensor force is included in the two-
body interaction of an N -particle system, Extended Thomas-
Fermi functional expressions are derived, for the first time,
for the kinetic-energy density τ and spin-orbit density J as
functions of the local matter density ρ and its derivatives for
spherically symmetric systems. It is shown that in the case of a
Skyrme-type effective interaction, the tensor terms as well as
the previously neglected J-dependent terms, originating from
the exchange part of the central force, have a strong influence
on the spin-orbit mean-field potential and could, therefore,
have a substantial influence on the shell structure of exotic
nuclei. We conclude that such terms therefore need to be taken
into account in any future adjustments of the effective nucleon-
nucleon interaction.
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APPENDIX: J2 CONTRIBUTIONS TO
THE ONE-BODY HAMILTONIAN

As pointed out in the main text the one-body Hamiltonian
of Eq. (19) is obtained through the functional derivative of
the total energy-density functional as given by Eq. (15) for a
Skyrme effective interaction in the case where the system is
time reversal invariant and spherically symmetric. Let us carry

out the functional derivative of the different J dependent terms
of Eq. (15) one by one we obtain

δ

δϕ∗
j (r, σ, q)

∫
d3r ′ [J 2

q (r ′)
]

= 2Jq · ∂Jq

∂ϕ∗
j (r, σ, q)

− 2
∑

λ

∇λ

[∑
κ

Jqκ

∂Jqκ

∂∇λϕ
∗
j (r, σ, q)

]

= −i
∑

κ

Jqκ

∑
σ ′

∑
µν

εµνκ∇µϕj (r, σ ′, q)〈σ |σν |σ ′〉

− i
∑
µ,ν,κ

∑
σ ′

∇µ

[
εµνκJqκ

ϕj (r, σ ′, q) 〈σ |σν |σ ′〉]
= −iJq ·

∑
σ ′

(∇ × 〈σ |σ |σ ′〉)ϕj (r, σ ′, q)

− i
∑
σ ′

(∇ × 〈σ |σ |σ ′〉) · Jqϕj (r, σ ′, q), (A1)

δ

δϕ∗
j (r, σ, q)

∫
d3r ′[Jq(r ′) · Jq̄(r ′)]

= − i

2

[
Jq̄ ·

∑
σ ′

(∇ × 〈σ |σ |σ ′〉)ϕj (r, σ ′, q)

+
∑
σ ′

(∇ × 〈σ |σ |σ ′〉) · Jq̄ϕj (r, σ ′, q)

]
, (A2)

δ

δϕ∗
j (r, σ, q)

∫
d3r ′[∇

r′ ρq · Jq(r ′)]

= ∂(∇ρq · Jq)

∂ϕ∗
j (r, σ, q)

−
∑
λ,κ

∇λ

[
∂(∇κρqJqκ

)

∂∇λϕ
∗
j (r, σ, q)

]

= ∇ϕj (r, σ, q) · Jq − i

2

∑
κ

∇κρq

×
∑
σ ′,σ ′′

∑
k

∑
µ,ν

εµνκ∇µϕj (r, σ ′, q)〈σ |σν |σ ′〉δkj δσσ ′′

−
∑
λ,κ

∇λ

[
Jqκ

δλ,κϕj (r, σ, q)
] − i

2

∑
κλ

∇κ∇λρq

×
∑
σ ′

∑
µ,ν

εµνλ ϕj (r, σ ′, q)〈σ |σν |σ ′〉δµκ

= − (divJq)ϕj (r, σ, q) − i

2

∑
σ ′

[∇ρq · (∇ × 〈σ |σ |σ ′〉)

+∇ · (〈σ |σ |σ ′〉 × ∇ρq)]ϕj (r, σ ′, q), (A3)

δ

δϕ∗
j (r, σ, q)

∫
d3r ′[∇

r′ ρq̄ · Jq(r ′)]

= ∂(∇ρq̄ · Jq)

∂ϕ∗
j (r, σ, q)

−
∑
λ,κ

∇λ

[
∂(∇κρq̄Jqκ

)

∂∇λϕ
∗
j (r, σ, q)

]

= − i

2

∑
σ ′

[∇ρq̄ · (∇ × 〈σ |σ |σ ′〉)

+∇ · (〈σ |σ |σ ′〉 × ∇ρq̄)]ϕj (r, σ ′, q). (A4)
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