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The projected shell model (PSM) study of 98–102Sr and 100–104Zr nuclei is carried out. The reliability of
the ground-state wave function is checked by reproducing yrast spectra and electromagnetic properties. The
mechanism for the onset of sudden and large deformation at N = 60 is worked out. The present piece of research
work has unified the two different, or conflicting, early explanations for the onset of deformation at N = 60 by
the spherical shell model and mean-field theory.
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I. INTRODUCTION

Cheifetz et al. [1] discovered in 1970 a new region of
deformation around mass number A ∼ 100. Well-developed
rotational spectra were observed in several neutron-rich
isotopes of Sr and Zr during the study of the fission fragments
of 252Cf. The observed B(E2; 0+ → 2+) values were as
enhanced as in the rare-earth and the actinide regions. A
striking feature of the observed spectra is the sudden onset
of large deformation as the neutron number changes from 58
to 60 in the Sr and Zr isotopes. The onset of deformation is
large, sudden, and asymptotic. The yrast spectra in the nuclei
98–102Sr and 100–104Zr are almost rotational. The onset of large
deformation is also reflected in the experimentalB(E2; 0+ →
2+) values.

The first calculations explaining the onset of large defor-
mation in neutron-rich nuclei in the mass region A ∼ 100
were done by Federman and Pittel [2–6]. They have tried to
identify some of the factors that could be held responsible
for the observed onset of large deformation at neutron
number 60 in Zr and Mo isotopes. These calculations, which
involved considerably restricted valence space, provided some
evidence suggesting that the neutron-proton (n-p) interaction
between the valence particles in the spin-orbit partner (SOP)
orbits—the orbits 1g9/2 and 1g7/2 in the present context—
may be responsible for the observed large deformation in
Zr isotopes. The role of the n-p interaction in the SOP
orbits in the context of the general development of the
collective features was also suggested by the shell-model
configuration mixing calculations for the nucleus 98Zr carried
out by Federman et al. [4]. These calculations involved
the Yukawa force with Rosenfeld admixture in conjunction
with the valence configuration (2p1/2, 1g9/2, 2d5/2)2π and
(3s1/2, 2d3/2, 1g7/2, 1h11/2)2υ outside the 94Sr core. It was
observed that the degree of collectivity of the wave functions
for the first excited 0+ level, as reflected in the extent of
configuration mixing, depended very much on the relative
energy separation between (1g9/2)π and (1g7/2)υorbits.

There is another school of thought put forth by mean-field
theorists [7–9] who have assigned the development of large
deformations in Zr isotopes to the occupation of low K

components of the h11/2 neutron orbit. Their mean-field calcu-
lations indicate the appearance of K = 1/2, 3/2 components
of h11/2 neutron orbits at the Fermi surface in 100,102Zr

isotopes. They claim that since this orbit is down-sloping,
its occupation brings in prolate deformation in the nucleus
and becomes a triggering mechanism for the development
of collectivity in 100–104Zr. It was shown in Refs. [10–12]
that a phenomenological quadrupole-quadrupole plus pairing
model of two-body interactions is quite reliable in this mass
region.

Thus, a paradoxical situation exists in the mass region
A = 100. One does not really understand whether the onset
of sudden and asymptotic deformation at neutron number
N = 60 should be attributed to the role of the deformation-
producing tendency of n-p interaction in SOP orbits or to the
occupation of the down-sloping K = 1/2, 3/2 components of
the h11/2 orbit by the neutrons as this orbit appearing at the
the Fermi surface as neutron number becomes 60. To have a
deeper understanding of the problem, it is important to look
at the limitation of the earlier calculations. Limitations could
be in the choice of the core, valence space, and two-body
residual interaction, which could produce an inaccurate wave
function. Thus, it is important to check the reliability of the
determinantal wave function that is suggestive of these two
mechanisms for the onset of large deformation at N = 60.

From quantum mechanics, we know that information about
all observable quantities for a quantum system is just contained
in the wave function of the system. If the wave function is truely
representative of 100–104Zr, then it should reproduce not only
the deformation trend in 100–104Zr but also other observable
quantities as well. It is very much possible for two different
state functions to reproduce the deformation effects say in
100Zr, without being truly the representative of 100Zr. The true
test of the wave function is to see whether it reproduces all other
observable quantities such as high-spin yrast spectra, angular-
momentum-dependent moment of inertia, B(E2) transition
probabilities and nuclear “g” factors. Unfortunately, many
of the earlier calculations [2–7,9,13–19], have not made this
attempt and hence the reliability of their state function cannot
be ascertained. There are some calculations wherein B(E2)
values, excitation spectra, and g factors have been calculated
[10–12,20,21]. From the results presented in calculations
[10–12,21], the agreement for B(E2) values has been obtained
by varying the effective charges for protons and neutrons from
isotope to isotope. In the case of excitation energy spectra,
except for the 2+

1 state, the agreement for higher states is far
from satisfactory. This, therefore, creates doubt as to whether
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the wave function generated in these calculations is truly
representative of 100Zr.

Further, the advent of sophisticated experimental tools
has made it possible to obtain experimentally the high-spin
states,B(E2) transition probabilities, and nuclear g factors
[20,22–29]. The ground-state bands of 100–104Zr are presently
established up to 20+, 20+, and 14+, respectively [23].
Recently, eight new high-spin states have been identified from
studies of 252Cf spontaneous fission with Gammasphere [24]
in 100Zr. Levels in 102Zr were first studied by Cheifetz et al. [1].
Recently, Hua et al. [23] have extended the yrast band up to
20+. The quadrupole deformation parameter (β2) ∼ 0.39 has
been derived from life time measurement by Jared et al. [30].
Therefore, a region of large deformation is observed in heavy
even-even nuclei at 102Zr. The level scheme of 104Zr has been
extended up to 14+ by Hua et al. [23]. Experimentally,104Zr
with β2 = 0.47(7) has a larger deformation than that of 102Zr.
The nucleus 98Sr is well deformed. The ground-state band of
98Sr, in particular, exhibits excellent rotational properties with
a large and rigid moment of inertia. 98Sr is predicted to have a
well-deformed prolate ground state. 100Sr is the most deformed
neutron-rich isotope. The levels in 100Sr were observed at the
CERN-ISOLDE facility in a β-decay study of 100Rb by Azuma
et al. [31]. Further members of the ground-state band up to
Iπ = 10+were identified in prompt-fission studies [32].

It is known from the literature that the projected shell model
(PSM) has become quite popular for studying the structure of
deformed nuclei [33–38]. The advantage of this method is
that the numerical requirement is minimal and therefore it is
possible to perform a systematic study for a group of nuclei
in a reasonable time frame. The PSM approach is based on
the diagonalization in the angular-momentum-projected basis
from the deformed Nilsson states. This approach produced
good agreement in the rare-earth region [39,40]. Looking at
the success of PSM framework in the rare-earth region, we
were tempted to use this approach for the deformed Sr and Zr
isotopes.

In the present study an attempt has been made to study the
deformed 98–102Sr and 100–104Zr isotopes in the framework of
PSM by employing a quadrupole-quadrupole plus monopole
and quadrupole pairing force in the Hamiltonian.

The main emphasis of the present paper is first to establish
the reliability of the determinantal wave function by making a
calculation of the other important observable quantities such
as high-spin yrast states, B(E2) transition probabilities, and
nuclear g factors, all of which are very sensitive to the accuracy
and reliability of the wave function. Unfortunately, this could
not be done earlier as the data on high-spin states and nuclear
g factors have only recently become available [20,22–25].

II. PROJECTED SHELL MODEL

For a detailed description of PSM theory, the reader is
referred to the review article [41]. Here, we present an outline
of the model. For the present study, we include 0-, 2-, and
4-quasiparticle (qp) states |�κ〉 as

{|0〉, α+
vi
α+

vj
, |0〉, α+

πm
α+

πn
|0〉, α+

vi
α+

vj
α+

πm
α+

πn
|0〉}, (1)

for doubly even nuclei, where a+ is the creation operator for
a single quasiparticle and the index v(π ) denotes neutrons
(protons). The many-body wave function is a superposition of
projected (angular momentum) multiquasiparticle states,∣∣ψI

M

〉 =
∑
κK

f I
κKP I

MK |φκ〉, (2)

where P I
MK are the angular-momentum-projection operators.

The coefficients f I
κK are the weights of the basis state κ

and are determined by the diagonalization of the shell-model
Hamiltonian in the space spanned by the projected basis states
given. Because of the presence of axial symmetry and omission
of particle number projection, the set of quantum numbers
κ contains the total intrinsic magnetic quantum number K

implicitly. We can therefore omit writing K in the amplitude
f I

κK for such a system. Moreover, the summations over K can
also be omitted since only one specific K contributes to the
sum for a given κ . This leads to the set of equations on which
the present numerical calculations are based:∑

κ ′

(
HI

κκ ′ − ENI
κκ ′

)
f I

κ ′ = 0,

where the Hamiltonian and norm matrix elements are defined
by

HI
κκ ′ = 〈φκ |Ĥ P̂ I

KK ′ |φκ ′ 〉
and

NI
κκ ′ = 〈φκ |P̂ I

KK′ |φκ ′ 〉.
The projection of an intrinsic state, |φκ〉, onto a good angular
momentum will generate the rotational energy as

Eκ (I ) = 〈φκ |Ĥ P̂ I
KK |φκ〉

〈φκ |P̂ I
KK |φκ〉

= HI
κκ

NI
κκ

.

It represents the expectation value of the Hamiltonian with
respect to a projected quasiparticle state κ . A diagram in which
rotational energies of various bands are plotted against the spin
I will be referred to as a band diagram. Such diagrams contain
incredibly rich information.

The usual separable-force Hamiltonian [41]

H = Ĥ0 − χ

2

∑
µ

Q̂+
µQ̂µ − GMP̂ +P̂ − GQ

∑
µ

P̂ +
µ P̂µ (3)

has been used successfully to explain the system of rotational
spectra for a large number of nuclei. The first term is the
spherical single-particle Hamiltonian

Ĥ0 =
∑

α

c+
α Eαcα, (4)

where c+
α , cα are the single-particle creation and annihilation

operators, respectively, and Eα is the single-particle energy
given by

Eα = h̄ω[N − 2κl̂ · ŝ − κµ(l̂2 − 〈l̂〉2)], (5)

where ω is the harmonic-oscillator parameter, which incorpo-
rates the principle of volume conservation for nuclei deformed
from spherical shapes, and s and l represent the intrinsic
nucleon spins and orbital momenta in the stretched coordinate

024308-2



PROJECTED SHELL MODEL STUDY OF NEUTRON-RICH . . . PHYSICAL REVIEW C 77, 024308 (2008)

basis. The Nilsson parameters κ and µ are taken from the
N -dependent values of Refs. [42,43]. The remaining terms in
Eq. (3) are residual quadrupole-quadrupole, monopole pairing,
and quadrupole pairing interactions, respectively. The strength
χ of the quadrupole-quadrupole term can be obtained via
self-consistent conditions with a given deformation parameter,
β2, so it is not a true parameter. The value of β2 was set by
varying it around the experimental value so as to reproduce the
E+

2 -E+
0 energy gap. In our calculations we have taken three

major shells N = 2, 3, and 4 for protons and 3, 4, and 5 for
neutrons. The size of the qp basis in the present case is about
67. The operators appearing in Eq. (3) are defined as [41]

Q̂µ =
∑
αβ

c+
α Qµαβcβ,

Qµαα′ =
√

4π

5
δNN ′ 〈Njm|

( r

b

)2
Y2µ|N ′j ′m′〉,

P̂ + = 1

2

∑
α

c+
α c+

α

P̂ +
µ = 1

2

∑
αβ

c+
α Qµαβc+

β̄
.

The strength of the quadrupole-quadrupole force was ad-
justed such that the known (input) quadrupole deformation
(β2) is obtained as a result of the self-consistent mean-field
calculation. The monopole and quadrupole pairing interactions
are given by

GM =
(

G1 − G2
N − Z

A

)
1

A
(MeV), (6)

GQ = γGM (MeV), (7)

where GM is inversely proportional to the particle number A

and contains two adjustable constants G2 and G1 . Adjusting
the parameters β2,G2, and G1 will change the energy gap for
each shell and thus will affect the selection of the quasiparticle
basis. Here in our calculations G1is taken as 20.25 for
both neutrons and protons and G2 as 16.20(0) for neutrons
(protons). The strength of the quadrupole-quadrupole pairing
force, GQ, is assumed to be proportional to GM . One may
carefully adjust the ratio of GQ/GM during the calculation to
get the best representation of experimental observation. In the
present calculation, the ratio of GQ/GM is fixed as 0.20 for
98,100Sr and 0.18 for 102Sr, and 100–104Zr. These strengths are
the same as employed in the previous PSM calculation for this
mass region [33,34]. After diagonalizing the Hamiltonian in
the quasiparticle basis, we use the lowest energy for each
spin to compare with the experimental yrast energy. The
resulting wave functions are usually used to compute the
B(E2) transition strengths and gyromagnetic g factors [39].

III. RESULTS AND DISCUSSION

A. Discussion of band diagrams

In Fig. 1, the band diagrams for 98–102Sr and 100–104Zr are
displayed. From Fig. 1(a) for 98Sr, one finds that the yrast
spectra up to 14+ is coincident with the ground-state band
arising from the 0-qp intrinsic state. Between 14h̄ and 16h̄,

the ground-state band is crossed by the 2-qp neutron band
having configuration 2υh11/2[−3/2, 5/2],K = 1, indicating
that the states with Iπ > 14h̄ of the yrast band arise from
this intrinsic state. In 100Sr [Fig. 1(b)], the states up to 14h̄
are coincident with the ground-state band arising from the
0-qp state, after which there is a crossing from the 2-qp
proton band having configuration 2πg9/2[−3/2, 5/2],K = 1.
In 102Sr [Fig. 1(c)] also, the ground-state band and the
yrast band up to 16h̄ are coincident; thereafter, the yrast
states arise from the 2-qp proton band having configuration
2πg9/2[−3/2, 5/2],K = 1. In the case of 100Zr [Fig. 1(d)],
the situation is slightly different in the sense that yrast
states up to 12h̄ come from the ground-state band and
thereafter the states from 14+ to 18+ arise from four 2-
qp neutron bands having configurations 2υh11/2[−3/2, 5/2],
K = 1, 2υh11/2[1/2,−3/2], K = −1, 2υh11/2[−3/2,−3/2],
K = 0, and 2υh11/2[1/2, 5/2], K = −2 and the states af-
ter 20h̄ arise from the 4-qp band having configuration
2πg9/2[−3/2, 5/2] + 2υh11/2[1/2,−3/2],K = 0. In 102Zr
[Fig. 1(e)], the states of the yrast band up to 12+ are coin-
cident with the ground-state band. Thereafter there are three
bands that cross the ground-state band having configurations
2πg9/2[−3/2, 5/2],K = 1, 2υh11/2[−3/2, 5/2],K = 1, and
2υh11/2[5/2, 5/2],K = 0, which produce the higher angular
momentum states of the yrast band. In 104Zr [Fig. 1(f)],
the yrast band up to 18+ is coincident with the ground-
state band. The states with Iπ > 18h̄ arise from the
bands having configuration 2πg9/2[−3/2, 5/2], K = 1,
2υh11/2[−3/2, 5/2], K = 1, 2υh11/2[1/2, 1/2], K = 0,
2υh11/2[5/2,−7/2], K = −1, 2υh11/2[5/2, 5/2], K = 0, and
2πg9/2[−3/2, 5/2] + 2υh11/2[−3/2,−5/2],K = 2.

From the study of the theoretical band diagrams, it is
clear that the deformation systematics and the asymptotic
onset of deformation in the deformed 98–102Sr and 100–104Zr
isotopes depend entirely on the nature of the ground-state band,
which in turn depends on the 0-qp intrinsic state. Thus, the
information regarding the factors and the mechanism of the
onset of large asymptotic deformation in the Sr, Zr region is
mostly contained in the 0-qp intrinsic state of these isotopes.

B. Yrast spectra

In Fig. 2, the comparison of experimental and calculated
yrast spectra is presented for 98–102Sr and 100–104Zr. As is
evident from the graphs of Fig. 2, the agreement between the
theoretical results and the experimentally available spectra is
very good. In98Sr, the maximum difference between the theory
and the observed value of energy for the 12+ is 0.087 MeV.
For 100Zr, the maximum difference between the theory and the
observed value for I = 12+ is 0.428 MeV. Here, the spectra
is reproduced up to 20+. In 102Zr, the spectra up to 20+ are
reproduced. Here the maximum difference for the observed
and the theoretical value for Iπ = 20h̄ is 0.379 MeV. The
agreement of 104Zr up to 14+ is also good.

C. Discussion of moment of inertia versus square of rotational
frequency

In Fig. 3, the plots of moment of inertia (J (1)) versus
the square of the rotational frequency (ω2) for 98–102Sr and
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FIG. 1. Band diagrams (bands before configuration mixing) for 98–102Sr and 100–104Zr. Only the important lowest lying bands in each
configuration are shown.

100–104Zr are presented. The kinematic moment of inertia J (1)

is defined as

J (1) = [(I − 1/2)/ω](h̄2 MeV−1)

and rotational frequency (ω) is defined as

ω = [E(I ) − E(I − 2)]/2(h̄ MeV).

From Figs. 3(a), 3(b), 3(c), 3(e), and 3(f), the experimental and
theoretical curves show similar trend, however, in Fig. 3(d) for

100Zr , the theoretical moment of inertia shows an upbending at
10+, that is not exhibited by the experimental values. The trend
of the J (1) − ω2curve up to 10h̄matches with the experimental
curve.

D. Discussion of B(E2; 2+
1 → 0+

1 ) and g(21) values

B(E2) transition probabilities can give important informa-
tion on the nuclear structure and provide a stringent test of a
particular model.
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FIG. 2. Comparison of calculated yrast spectra with the experimental data for 98–102Sr and 100–104Zr.

The matrix elements of a quadrupole operator Q̂LM with
respect to the (final) shell-model wave functions can be
evaluated by using the formula [41]〈
ψIf Mf

∣∣Q̂LM

∣∣ψIiMi

〉 = (IiMi, LM|If Mf )
〈
ψIf

∥∥Q̂L

∥∥ψIi

〉
. (8)

The reduced transition probabilities B(EL) from the initial
state Ii to the final state If are given by [39]

B(EL, Ii → If ) = e2

(2Ii + 1)

∣∣〈ψIf

∥∥Q̂L

∥∥ψIi

〉∣∣2
, (9)

where the reduced matrix element is given by〈
ψIf

∥∥Q̂L

∥∥ψIi

〉 =
∑
κi ,κf

f Ii

κi
f

If

κf

∑
Mi,Mf ,M

(−)If −Mf

×
(

If L Ii

−Mf M Mi

)

× 〈
φκf

∣∣P̂ If

Kκf
Mf

Q̂LMP̂
Ii

Kκi
Mi

∣∣φκi

〉
= 2

∑
κi ,κf

f Ii

κi
f

If

κf

∑
M ′,M ′′

(−)If −Kκf (2If + 1)−1
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FIG. 3. Comparison of calculated moment of inertia (J (1)) with experimental one as a function of square of rotational frequency (ω2) for
98–102Sr and 100–104Zr.

×
(

If L Ii

−Kκf
M ′ M ′′

)∫
d
DM ′′Kκi

(
)

× 〈
φκf

∣∣Q̂LM ′R̂(
)
∣∣φκi

〉
(10)

The g factors g(I ), gπ (I ), and gν(I ) are defined by [39]

g(I ) = µ(I )

µNI
= gπ (I ) + gν(I ), (11)

with

gτ (I ) = 1

µN [I (I + 1)]1/2
× [

gτ
l 〈ψI‖Ĵ τ‖ψI 〉

+ (
gτ

s − gτ
l

)〈ψI‖Ŝτ‖ψI 〉
]

(12)

and µ(I ) is the magnetic moment of a state (I ).

In our calculations, the standard values of gl and gs have
been taken as gπ

l = 1, gυ
l = 0, gπ

s = 5.586 × 0.75, and gυ
s =

−3.826 × 0.75.
In Table I, the electromagnetic properties such as B(E2)

transition probabilities and g factors are presented. TheB(E2)
values have been calculated by taking a single value of effective
charge (i.e., 0.5) for all six deformed nuclei 98–102Sr and
100−104Zr. The agreement between the theoretical and the
experimental values of B(E2) and g factors wherever available
is reasonably good.

From what has been said, it is clear that the agreement
of the theoretical results with the experiments for the energy
spectra, moment of inertia,B(E2) transition probabilities, and
nuclear g factors is reasonably good. This type of agreement
leads one to conclude that the ground-state wave function,
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TABLE I. Comparison of experimental (Exp.) and calculated
(Th.) B(E2) reduced transition probabilities (in units of e2b2) and g

factors in 98–102Sr and 100–104Zr. Data from Refs. [20,22,25,26,29].

Nucleus Transition B(E2; 2+
1 → 0+

1 ) g(2+
1 )factor

Exp. Th. Exp. Th.

98Sr 2+
1 → 0+

1 0.258(3) 0.338 +0.38(7) 0.341
100Sr 2+

1 → 0+
1 0.288(6) 0.352 0.360

102Sr 2+
1 → 0+

1 0.368 0.356
100Zr 2+

1 → 0+
1 0.22(1) 0.26 +0.30(3) 0.304

102Zr 2+
1 → 0+

1 0.32(4) 0.31 +0.22(5) 0.261
104Zr 2+

1 → 0+
1 0.40(6) 0.39 0.251

which contains information regarding the mechanism of the
onset of large deformation, is very reliable. One intends to
look for the factors that produce the right kind of deformation
in these nuclei. From the analysis of the band diagrams, we
have already found that the deformation systematics in 98–102Sr
and 100–104Zr arise from the corresponding 0-qp intrinsic state,
which is the true representative of the corresponding nuclei in
view of the good agreement that has been obtained for the other
observable quantities for these nuclei. To obtain those factors
we have analyzed the intrinsic state vis-a-vis shell-model orbits
that are occupied in these intrinsic states.

IV. DEFORMATION SYSTEMATICS

From the systematics of 2+ states in 98–102Sr and 100–104Zr
(see Table II), it is observed that the energy of the 2+ state
decreases from its value of 0.212 MeV in 100Zr, to 0.151 MeV
in 102Zr, giving an indication that there is an increase in the
degree of deformation as one goes from 100Zr to 102Zr. This
fact is also confirmed by the increase in the ratio E+

4 /E+
2 .

The value of this ratio for 100Zr is 2.66 whereas its value
for 102Zr is 3.16. Besides this, it is observed that the 2+
state suffers a very small change as one moves from 100Zr
to 104Zr. This small change is indicative of the fact that
the onset of deformation in 100Zr is asymptotic and there
is very little chance of increasing deformation thereafter.
This is also indicated by the small change in the value of

E+
4 /E+

2 . The value of this ratio for 102Zr is 3.16 whereas its
value for 104Zr is 3.25. A similar trend is also observed in
deformed Sr nuclei. For 98Sr, E+

2 is 0.144 MeV and E+
4 /E+

2
is 3.0, whereas in 100Sr, E+

2 is 0.129 MeV and the E+
4 /E+

2
ratio is 3.23. The last two columns of Table II display
the experimental and theoretical quadrupole deformation
parameters for98–102Sr and 100–104Zr. The theoretical β2 values
listed in Table II are actually the input deformation parameters
for the deformed basis and have been varied around the
experimental value so as to reproduce the E+

2 –E+
0 energy gap.

The theoretical values follow the same trend as is exhibited
by the experimental values. The theoretical values are in close
agreement with the experimental values, thereby showing that
the deformation systematics are qualitatively reproduced. The
value obtained theoretically for β2 is 0.35 for 98Sr whereas
the observed value is 0.40. Similarly, in the case of 100Zr,
the observed and the calculated values for β2 are 0.32 and
0.30, respectively. For 102Zr, the values are 0.39 and 0.32,
respectively. We note that theoretical values of β2 show a
marginal increase as one goes from one isotope to the other,
indicating that the onset of deformation is asymptotic.

We next focus our attention on the factors that could
be responsible for the deformation of neutron-rich Sr and
Zr isotopes. In this regard, it is important to discuss and
highlight some of the well-accepted factors responsible for
bringing sizeable collectivity in nuclei in the same region. It
is generally felt that the n-p effective interaction possesses
a deformation-producing tendency and the neutron-neutron
(n-n) or proton-proton (p-p) effective interactions are mostly
of spherifying nature [2,6,44–47]. These ideas have played a
pivotal role in the development of the stretch scheme [45] of
Danos and Gillet, the rotor model [46] of Arima and Gillet,
and the interacting boson model of Arima et al. [47]. In
this regard, the role of the n-p interaction in SOP orbits in
the context of the general development of collective features
was also suggested by Federman and Pittel [2–5] and Casten
[48]. Their calculations provided evidence suggesting that the
n-p interaction between the valence nucleons in the SOP
orbits- (1g9/2)π and (1g7/2)υ in the zirconium nuclei may be
instrumental vis-à-vis the observed set of deformation in Zr
isotopes with A � 100. It may be pointed out that the role
of the n-p interaction between the SOP orbits in producing
deformation depends critically on the relative occupation
probabilities of (1g9/2)π and (1g7/2)υ orbits [49].

TABLE II. Comparison of experimental (Exp.) and calculated (Th.) excitation energies (in units of MeV)
of 2+

1 (E+
2 ), 4+

1 (E+
4 ), E+

4 /E+
2 ratio, and deformation parameter (β2) in 98–102Sr and 100–104Zr. Data from

Refs. [15,23–28,32].

Nucleus Exp. Th. β2

E+
2 E+

4 E+
4 /E+

2 E+
2 E+

4 E+
4 /E+

2 Exp. Th.

98Sr 0.144 0.433 3.00 0.131 0.430 3.28 0.409(5) 0.350
100Sr 0.129 0.417 3.23 0.127 0.419 3.29 0.426 0.350
102Sr 0.126 0.123 0.408 3.31 0.350
100Zr 0.212 0.564 2.66 0.191 0.614 3.21 0.32 0.300
102Zr 0.151 0.478 3.16 0.158 0.519 3.28 0.39 0.320
104Zr 0.139 0.452 3.25 0.140 0.463 3.30 0.47(7) 0.360
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TABLE III. The BCS subshell occupation number of the various (a) proton (b) neutron subshells in ground states
of the 96–102Sr and 98–104Zr.

(a) BCS subshell occupation number

Nucleus 2p1/2 2p3/2 1f5/2 1f7/2 3s1/2 2d3/2 2d5/2 1g7/2 1g9/2

96Sr 0.74 3.46 3.76 7.88 0.01 0.02 0.16 0.1 1.89
98Sr 0.59 2.33 3.17 7.84 0.09 0.05 0.81 0.08 3.01
100Sr 0.59 2.33 3.18 7.84 0.07 0.05 0.81 0.08 3.01
102Sr 0.58 2.32 3.18 7.85 0.07 0.05 0.81 0.08 3.00
98Zr 1.13 3.73 4.73 7.91 0.01 0.02 0.12 0.08 2.27
100Zr 0.65 3.12 3.57 7.87 0.07 0.06 0.72 0.13 3.78
102Zr 0.64 3.00 3.51 7.86 0.08 0.08 0.79 0.15 3.84
104Zr 0.64 2.72 3.44 7.84 0.12 0.14 0.92 0.22 3.93

(b) BCS subshell occupation number

Nucleus 3s1/2 2d3/2 2d5/2 1g7/2 1g9/2 3p1/2 3p3/2 2f5/2 2f7/2 1h9/2 1h11/2
96Sr 0.36 0.60 3.20 3.09 9.74 0.005 0.01 0.01 0.10 0.04 0.88
98Sr 0.58 0.96 2.24 2.95 9.06 0.02 0.17 0.05 1.02 0.06 2.91
100Sr 0.59 1.00 2.68 3.28 9.43 0.03 0.18 0.06 1.12 0.09 3.52
102Sr 0.60 1.03 3.15 3.78 9.62 0.03 0.20 0.09 1.20 0.11 4.14
98Zr 0.28 0.45 3.56 3.05 9.77 0.006 0.01 0.02 0.08 0.05 0.80
100Zr 0.54 0.92 2.44 2.99 9.41 0.014 0.11 0.03 0.8 0.052 2.741
102Zr 0.57 0.97 2.82 3.38 9.55 0.02 0.14 0.04 0.99 0.06 3.42
104Zr 0.61 1.05 3.09 3.75 9.57 0.05 0.22 0.11 1.24 0.14 4.14

In the mean-field approach, the deformation in the Zr
isotopes has generally been explained in terms of two unrelated
features, namely, the polarization of the Z = 40 core and the
participation of the h11/2 neutron orbit in the configuration
space. The deformation in Zr is seen to arise through crossing
of 1h11/2; ±1/2,±3/2 levels at the Fermi surface.

To understand how deformation arises in Sr and Zr isotopes,
we present in Table III the results of occupation probabilities
of various proton and neutron subshells. These occupation
probabilities have been calculated from the BCS intrinsic
state. From Table III(a), it is observed that 2p1/2, 2p3/2, and
1f5/2 proton subshells are polarized and partially filled. The
polarization of these subshells will be one of the important
factors contributing to the appearance of deformation in Sr
and Zr isotopes. Second, it is observed from this table that the
the 1g9/2 proton occupation is sizeable even for nuclei 96Sr
and 98Zr for which N = 58. For these very nuclei, one notices
from Table III(b) that there are neutrons in the1g7/2 subshell.
Thus, there is an opportunity for n-p interaction in SOP orbits
to operate (the 1g9/2 proton and 1g7/2 neutron orbits in this
case). If the n-p interaction operating between the SOP orbits
was a dominant effect then 96Sr and 98Zr should also have been
deformed, which is actually not the case. It is therefore a weak
deformation-producing effect. Thus, one could conclude that
this factor alone cannot lead to large deformation in Sr and
Zr isotopes. As pointed out by Federman and Pittel [5], this
factor could also be one of the factors contributing to the onset
of deformation in Sr and Zr isotopes. From Table III(b), we
also notice that low K components of 1h11/2 and 2f7/2 neutron
orbits are getting occupied in 96Sr to 102Sr and 98Zr to 104Zr and
these occupation probabilities undergo sharp increase as one
goes from 96Sr to 98Sr and from 98Zr to 100Zr. Since these low K

components are sharply down-sloping, their occupation could

also lead to deformation in these isotopes. The occupation of
low K components of the (1h11/2)υ orbit has been claimed
to be the mechanism behind the large onset of deformation
in Zr isotopes by mean-field theorists [7–9]. Moreover, one
notices that the 2d5/2 and 1g7/2 neutron subshells are less than
half full and could therefore also contribute to the buildup of
deformation in heavy Sr and Zr isotopes.

From this discussion, it is evident that there are a number
of factors responsible for bringing in deformation in neutron-
rich Sr and Zr isotopes at neutron number N = 60. The
results clearly point out that the simultaneous polarization
of 2p1/2, 2p3/2, and 1f5/2 proton orbits is one of the major
factors of onset of deformation. The second factor is the sharp
increase in the 1g9/2 proton occupation as one goes from 96Sr
to 98Sr and from 98Zr to 100Zr. The third factor responsible for
the deformation systematics in neutron-rich Sr and Zr isotopes
is the occupation of low K components of 1h11/2 and 2f7/2

neutron orbits. The last (but not the least) factor that could
also contribute to the deformation in this region is the fact that
2d5/2 and 1g7/2 neutron subshells are less than half full.

The present calculation reveals that all these conditions hold
true simultaneously in the deformed Sr and Zr isotopes. These
factors are therefore acting in unison and are responsible for
the sudden onset of large and asymptotic deformation in Sr
and Zr isotopes.

V. CONCLUSIONS

From the results of our calculation, the following conclu-
sions can be drawn:

(i) The PSM calculations performed with the quadrupole-
quadrupole interaction plus monopole and quadrupole
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pairing force reproduces correctly the observed
deformation systematics in 98–102Sr and 100–104Zr iso-
topes. The deformation develops because of the follow-
ing effects, all of which take place simultaneously in
these nuclei:

(a) the simultaneous polarization of 2p1/2, 2p3/2, and
1f5/2 proton orbits,

(b) the sharp increase in the g9/2 proton occupation as we
go from 96Sr to 98Sr and from 98Zr to 100Zr,and

(c) the occupation of low K components of 1h11/2 and
2f7/2 neutron orbits, and

(d) the fact that 2d5/2 and 1g7/2 neutron subshells are less
than half full.

(ii) The reasonably good agreement of the theoretical
results with the experimental data for the energy states,
moment of inertia , B(E2) transition probabilities, and
g factors test the reliability of the PSM wave function.
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