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Converging sequences in the ab initio no-core shell model
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We demonstrate the existence of multiple converging sequences in the ab initio no-core shell model. By
examining the underlying theory of effective operators, we expose the physical foundations for the alternative
pathways to convergence. This leads us to propose a revised strategy for evaluating effective interactions for
A-body calculations in restricted model spaces. We suggest that this strategy is particularly useful for applications
to nuclear processes in which states of both parities are used simultaneously, such as for transition rates. We
demonstrate the utility of our strategy with large-scale calculations in light nuclei.
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I. INTRODUCTION

The ab initio no-core shell model (NCSM) is a method to
solve the full A-body problem for a system of nonrelativistic
particles that interact by realistic two- plus three-body forces.
A particular feature of the method is the use of effective interac-
tions appropriate for the large, but finite, harmonic-oscillator
(HO) model spaces employed in the calculations. Over the
last few years, the NCSM method has been established as
a very valuable tool in nuclear physics, aiming for an exact
description of nuclear structure starting from the fundamental
interaction between nucleons [1–3].

The objective of this paper is to highlight the existence
of multiple converging sequences in the NCSM, and the
opportunities that this property provides in practical appli-
cations. In particular, we will discuss and illustrate a specific
converging sequence that relies on the implicit freedom in the
choice of model-space cutoff when constructing the cluster-
approximated effective interactions used in the NCSM. These
effective interactions are intended to take into account effects
of configurations outside the model space. In general, the
effective interaction is derived from the underlying realistic
internucleon potential by a unitary transformation [4–8]. The
procedure aims to reproduce exactly a subset of the eigenvalues
to the original Hamiltonian in the finite model space. The
effective interaction, in principle, becomes an A-body operator
but is, in practice, usually approximated at the a-body operator
level, where a < A. This cluster approximation generates, e.g.,
a dependence on the choice of HO frequency, h̄�. However,
the construction guarantees convergence to the exact solution,
for any value of h̄�, as the size of the model space increases.
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This guarantee holds independent of the relationship between
the model space used to evaluate the cluster approximation and
the model space used to carry out the diagonalization of the
resulting A-body operator, as long as both increase. In addition,
we note that for any finite model space of dimensionality dP ,
and in the limit a → A, we obtain exact solutions for dP

states of the full problem, with flexibility for the choice of
physical states subject to certain conditions [9]. Thus, there
is an arbitrary number of sequences in the NCSM that all
converge, in principle, to the same result.

The implicit freedom in generating approximated effective
interactions, as mentioned above, will be introduced in
Sec. II in connection to a brief description of the NCSM
formalism. The strategy that we propose to employ for certain
applications has several advantageous properties compared to
the traditional strategy for evaluating effective interactions.
These properties will be discussed in Sec. III, while the features
and applicability of the revised strategy will be illustrated in
Sec. IV. The ideas presented in this paper are substantiated by
large-scale calculations for light nuclear systems. However,
we note that our revised strategy was already utilized in two
recent papers applying the NCSM to heavier systems (with
A = 47–49) in restricted many-body model spaces [10,11].
Conclusions and perspectives are presented in Sec. V.

II. THEORY

The goal is to solve the A-body Schrödinger equation
with an intrinsic Hamiltonian HA = Trel + V , where Trel is
the relative kinetic energy and V is the sum of two-body
nuclear and Coulomb interactions. The NCSM method also
allows for the inclusion of three-body forces [12]. However,
while realistic three-nucleon forces have been shown to
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be important in obtaining the nuclear spectra [12–14] and
in describing electromagnetic and weak form factors [15],
we consider only two-body interactions in this study. We
solve the many-body problem in a finite HO basis space
and the usual approach is therefore to derive a model-space
dependent effective Hamiltonian. For this purpose, we perform
a unitary transformation of the Hamiltonian, in the spirit of Da
Providencia and Shakin [4] and Lee, Suzuki, and Okamoto
[5–8], which is able to accommodate short-range correlations.
However, the very first step is to add a center-of-mass (c.m.)
HO Hamiltonian to the intrinsic Hamiltonian. In the full Hilbert
space the added H�

c.m. term has no influence on the intrinsic
properties. When we introduce our cluster approximation
below, the added H�

c.m. term generates a real dependence
on the choice of HO frequency, but it also facilitates faster
convergence to exact results with increasing basis size.

Note that even if the original Hamiltonian contained just
one- and two-body terms, the transformed Hamiltonian H
contain up to A-body terms. Obtaining the exact transfor-
mation operator is equivalent to solving the initial problem,
which would make the procedure impractical. Therefore, we
introduce the cluster approximation. The approximation con-
sists in obtaining the effective interaction from the decoupling
condition between the model space (P ) and the excluded
space (Q) for the a-body problem, where a � A, and then
using the effective interaction thus obtained in the desired
A-body problem. See, e.g., Refs. [1,2,16] for details on the
procedure. This approximation introduces a real dependence
on the oscillator parameter h̄�. The resulting effective a-body
effective interactions also depends on the nucleon number A

and on Nmax, the maximum A-body HO excitation energy
defining the model space. The usual approach to handle the
h̄�-dependence is to search for a range of h̄� values over
which the results are weakly h̄�-dependent. This empirical
choice then corresponds to the optimal HO frequency for the
system.

There are two limiting cases of the cluster approximation:
First, when a → A, the solution becomes exact; a higher-order
cluster is a better approximation and was shown to increase the
rate of convergence [13]. Second, when P → 1, the effective
interaction approaches the bare interaction; and as a result,
the effects of the cluster approximation can be minimized by
increasing as much as possible the size of the model space.

In this work, we present results obtained at the two-body
cluster level. In practice, the exact (to numerical precision)
solutions for the a = 2 cluster are obtained in basis spaces
of several hundred h̄� in each relative motion NN channel.
The resulting effective Hamiltonian, now consisting of a
relative two-body operator, and the subtracted pure H�

c.m.

term introduced earlier, is then inserted into an m-scheme
Lanczos diagonalization process to obtain the A-body, P-space
eigenvalues and eigenvectors. The evaluation of the A-nucleon
Hamiltonian and its diagonalization is a highly nontrivial
problem due to the very large dimensions we encounter. For the
present work, we performed the many-body calculation with
two completely independent shell-model codes: a specialized
version of the code ANTOINE [17]; and the many-fermion
dynamics MFD shell-model code [18]. At the diagonalization
stage we also add the Lawson projection term, β(H�

c.m. − 3
2h̄�)

(with β being a large positive coefficient) to separate the
physically interesting states with 0s c.m. motion from those
with excited c.m. motion. We retain only the eigenstates
with pure 0s c.m. motion when evaluating observables.
All observables that are expressible as functions of relative
coordinates, such as the rms radius and radial densities, are
then evaluated free of c.m. motion effects.

III. CONVERGING SEQUENCES

We define our P-space to consist of all A-body config-
urations in the oscillator basis with total oscillator energy
less than or equal some cutoff value (Nm + 3A/2)h̄�, where
Nm = Nmin + Nmax, and Nm is the sum of 2n + l values of
the occupied single-particle states in the configuration. Nmin

is the minimum value required by the Pauli principle. As an
example, Nmin = 2 for 6Li. The P-space is equally described
by the cutoff parameter Nmax, that begins with 0. We note
that the usual convention is to solve only for states whose
parity corresponds to the configurations in the maximum
subspace governed by Nmax. The opposite-parity states are
then obtained in the Nmax + 1 model space. The corresponding
two-body cluster model space, P2, is defined by the range
of two-body states encountered in the P-space. This implies
that the relative (n, l) states are restricted by the condition
2n + l � Nm − Nspsmin, where Nspsmin denotes the minimum
possible number of HO excitations of the (A − 2) spectators.
Consider, e.g., a 6Li calculation in the Nmax = 4 model space.
In this case Nm = 6 and Nspsmin = 0 (since the 4 spectator
nucleons can all fit in the 0s shell), which leads to a two-body
cutoff at 2n + l � 6.

Due to our cluster approximation a dependence of our
results on Nmax and on h̄� arises. For a fixed cluster size
a, the smaller the basis space, the larger the dependence on
h̄�. The residual Nmax and h̄� dependences can be used to
infer the uncertainty in our results arising from the neglect of
effective many-body interactions.

The usual NCSM strategy has been to evaluate Heff for each
A-body model space. This strategy leads to the use of separate
Heff for positive- and negative-parity states. The convergence
of, e.g., the energy spectrum of natural-parity states is
then observed by performing calculations in a sequence of
model spaces Nmax = 0, 2, 4, . . ., with corresponding effective
interactions, while unnatural-parity states are obtained in the
Nmax = 1, 3, 5, . . . sequence. However, the theory guarantees
convergence to the exact results of any sequence that follows
a simple rule and brings us to the full A-body Hilbert space
(P → 1) as the model space is increased. In particular, we
can consider the following rule for evaluating the effective
Hamiltonian:

Nmax,eff = Nmax + Nshift, (1)

where convergence is obtained for Nmax → ∞, and where
Nshift = 0 is the conventional choice. We will instead consider
the combination of choosing Nshift = 1 for natural-parity
states and Nshift = 0 for unnatural-parity states. This choice
implies that we will have the same Heff for both positive-
and negative-parity states in adjoining model spaces, e.g.,
the Nmax,eff = 1 effective Hamiltonian will be used in both
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the Nmax = 0 and Nmax = 1 model spaces. The logic for the
revised strategy stems from four considerations: (1) either
strategy will converge to the exact result in sufficiently
large model spaces; (2) the relative position of positive- and
negative-parity states will converge faster when the same
effective Hamiltonian is used for both of them; (3) for adjoining
spaces in heavier systems, the predominant sets of pairwise
interactions are in the same configurations with just one pair at
a time shifting to the larger space; and (4) for electromagnetic
transitions between states of opposite parity, the theory of
the corresponding effective operators will be simplified. In
addition to these four considerations, the revised strategy
simplifies our work to compute Heff since it is required
only for every other increment in the basis space, such as
Nmax,eff = 1, 3, 5, . . ., to evaluate the converging sequence.

In the next section we will explicitly illustrate the first two
points by presenting results from large-scale calculations for
two p-shell nuclear systems: 6Li and 9Be. The third point
was highlighted in two recent papers applying the NCSM
to systems with A = 47–49 in restricted many-body model
spaces [10,11]. In those papers, the authors particularly argued
that the bulk of the binding should not be altered in proceeding
from a 0h̄� to a 1h̄� model space in A = 48, suggesting
the same Heff is preferred. Finally, the fourth consideration is
useful for applications of the NCSM formalism involving tran-
sitions between states of different parities; and consequently
for the future description of low-energy reactions such as
electric dipole radiative capture processes.

IV. RESULTS

A. Converging sequences: different Nshift

We have performed calculations for 6Li up through the
16h̄� (Nmax = 16) model space, and for 9Be up through the
10h̄� (Nmax = 10) model space. The maximum dimensions of
the encountered model spaces are dP = 7.9 × 108 and dP =
5.4 × 108 for 6Li and 9Be, respectively.

Most of the results presented in this paper are obtained using
the nonlocal CD-Bonn 2000 (CDB2k) potential [19], which
is a charge-dependent NN interaction based on one-boson
exchange. The off-shell behavior of the CDB2k interaction
differs from local potentials which leads to larger binding
energies in nuclear few-body systems. Still, the CDB2k gives
underbinding of nuclear many-body systems as is typical
for standard high-precision NN interactions. In general,
the CDB2k potential applied in the NCSM gives a good
convergence rate and a weak HO frequency dependence.

A more recent realistic, nonlocal NN interaction, obtained
through an inverse scattering analysis of the NN data, is
able to provide reasonable binding energies of p-shell nuclei
and is called the “JISP16” interaction [20]. We will use this
interaction in Sec. IV B to illustrate the value of exponential
fits to converging sequences in the NCSM.

The optimal HO frequency for each isotope was found by
performing a series of calculations for a number of different
frequencies and model spaces. We searched for the region in
which the dependence on h̄� is minimal; and we selected this
frequency (from the calculation in the largest model space) to
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FIG. 1. (Color online) Ground-state binding energy of 6Li cal-
culated with the CDB2k Hamiltonian with h̄� = 10 MeV. Results
obtained using two-body effective interactions generated with Nshift =
0 and Nshift = 1 are compared.

use in the more detailed investigation. In this way we found that
the optimal frequencies for the CDB2k interaction are h̄� =
10 MeV for 6Li and h̄� = 12 MeV for 9Be (see also Ref. [21]).
Since we will also use the Nmax + 1 effective Hamiltonian for
natural-parity states, diagonalized in the Nmax model space,
we verified by explicit calculations that the same choices of
optimal frequencies apply.

Note that the choice of optimal frequency is dependent
on the model space used in the calculations. Consequently,
a larger HO frequency (h̄� = 13 MeV) was employed in an
earlier NCSM study of 6Li, in which the calculations were
limited to Nmax � 10 [3].

The ground-state binding energy of 6Li, as a function of
increasing model space Nmax, is presented in Fig. 1. The
results obtained using the traditional cutoff for evaluating the
effective interaction, Nmax,eff = Nmax, is represented by black
circles, while the results obtained with Nmax,eff = Nmax + 1
is represented by red squares. A number of observations can
be made: First, these calculations demonstrate that the NCSM
with the cluster-approximated effective interaction is not a
variational approach. Convergence is not necessarily from
above. Second, the difference between the two strategies for
computing the effective interactions is the largest for small
model spaces. The choice Nmax,eff = Nmax + 1 reduces the
excursions in the renormalized results in the lowest basis
spaces as a function of Nmax. Third, both strategies converge to
the same value as Nmax → ∞. The binding-energy difference
between the two calculations is plotted on a semilogarithmic
scale in the inset of Fig. 1. We find that the convergence rate
toward zero difference is exponential. The observed difference
in our largest model space (Nmax = 16) is less than 70 keV
(corresponding to ∼0.2% of the total binding energy).

We present the results of a similar comparison for 9Be
in Fig. 2. The spectroscopy and various properties of this
nucleus were extensively studied within the NCSM approach
in Ref. [21]. The same observations as for 6Li concerning the
convergence rate apply for this case, although with A = 9 we
are slightly further from converged results. Still, we find an
exponential convergence rate toward zero difference between
the two strategies, as shown in the lower panel of Fig. 2.
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FIG. 2. (Color online) Upper panel: Ground-state binding energy
of 9Be calculated with the CDB2k Hamiltonian with h̄� = 12 MeV.
Results obtained using two-body effective interactions generated
with Nshift = 0 and Nshift = 1 are compared. Lower panel: Difference
between binding energies computed with Nshift = 0 and Nshift = 1 for
the first three natural-parity states of 9Be.

We studied three different, low-lying natural-parity states and
found the same convergence pattern. For the ground state
calculated in the Nmax = 10 model space, the difference in
computed binding energy is 350 keV (�0.7% of the total
binding energy).

As an additional remark, we note that the eigenenergies
obtained with the Nmax + 1 effective interaction are always
above the ones obtained with the Nmax effective interaction.
This observation persists for other systems that we have
studied. An indication of the underlying reason for this
observation can be obtained from the following argument:
The Nmax + 1 effective interaction can be diagonalized in the
Nmax + 1 model space, but we choose to diagonalize it in
the Nmax model space. Thus, we have a truncation of the
“available” basis space so the result will be above the one
with the same Hamiltonian in the full “available” space. This
argument does not prove though, that it will always be above
the results in the Nmax basis space with the Nmax effective
Hamiltonian.

Up until now we have demonstrated that the two strategies
converge to the same value, and that the Nmax + 1 effective
interaction gives better renormalized results in the smallest
(0h̄�) model space. We also want to show that the relative
position of positive- and negative-parity states converges faster
when they are obtained by diagonalizing the same effective
Hamiltonian. This claim is supported by the results presented
in Fig. 3. In this figure, the combined spectrum of natural-
and unnatural-parity states of 9Be is plotted. The two panels
show the evolution of the spectra with increasing model
spaces for the two strategies: (left) different effective Hamil-
tonians for each separate model space; and (right) the same
effective Hamiltonian for each pair of model spaces, Nmax =
(0−1), (2−3), (4−5), . . .. The evaluated experimental spec-
trum [22] is shown in the leftmost column. Indeed, we find
that the relative position of positive- and negative-parity states
is better described already for small model spaces with the
Nmax + 1 effective interaction being used for the natural-parity
states.

Exponential fits to the calculated eigenenergies of the first
natural- and unnatural-parity states are shown in Fig. 4. The
two sequences of calculations of E(3/2−

g.s.) (with Nshift = 0
and Nshift = 1, respectively) constitute an example of a series
of converging sequences that converge to the same exact
result. Therefore, we carry out a constrained fit of the two
data sets. We use exponential functions and the constraint for
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FIG. 3. (Color online) Spectrum of natural- and unnatural-parity states of 9Be calculated with the CDB2k Hamiltonian with h̄� =
12 MeV. The natural-parity states are obtained using two-body effective interactions generated with Nshift = 0 (left panel) or Nshift = 1 (right
panel).
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FIG. 4. (Color online) Basis size dependence of the calculated
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gs) and E(1/2+
1 ) binding energies. The CDB2k Hamiltonian

with h̄� = 12 MeV is used. The binding energy of the (natural-
parity) ground state is obtained using two-body effective interactions
generated with Nshift = 0 (black circles) and Nshift = 1 (red squares).
See text for details.

the fit is to have a common asymptote to both sequences.
The fit produces a common asymptote of −51.40 MeV with
uncertainty of about 200 keV. In carrying out this constrained
fit, the chi-square weights were based on the local derivative
with respect to Nmax so that results with minimal sensitivity to
Nmax receive greater weight. The Nmax = 0–2 results were
excluded from the fit. We attempted alternative functional
forms, such as α + βN

−γ
max, but found none to be as successful

as the constrained exponential fits shown in Fig. 4. Finally,
we present in Fig. 5 a plot of the excitation energy of the
first unnatural-parity state in 9Be, relative the natural-parity
ground state, as a function of the model space size for the
two different strategies. These results illustrate rather clearly
that the relative position of natural- and positive-parity states
is better described in the revised strategy where the same
effective Hamiltonian is being used for diagonalization in both
Nmax and Nmax + 1 model spaces. The dashed lines correspond
to the differences between the eigenenergy fits of Fig. 4. The
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FIG. 5. (Color online) Basis size dependence of the calculated
Ex(1/2+

1 ) excitation energy relative to the lowest negative-parity state.
The CDB2k Hamiltonian with h̄� = 12 MeV is used. The binding
energy of the (natural-parity) ground state is obtained using two-body
effective interactions generated with Nshift = 0 (black circles) and
Nshift = 1 (red squares).
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FIG. 6. (Color online) Ground-state binding energy of 6Li cal-
culated with the JISP16 Hamiltonian for different HO frequencies
(h̄� = 12.5–30 MeV). The curves are extrapolated using a con-
strained exponential fit as described in the text.

common asymptote is Ex(1/2+
1 ) = 2.10 MeV. The difference

in excitation energy between the two calculations is plotted on
a semilogarithmic scale in the inset of Fig. 5.

B. Converging sequences: different h̄�

Additional examples of series of converging sequences
in the ab initio NCSM can be found. In the following we
present a series of calculations of the ground state eigen-
value of 6Li using the JISP16 realistic NN interaction [20].
Figure 6 displays the results for the bare interaction as a
function of Nmax up through Nmax = 12. In this case the
series consists of the eight sequences of calculations for in-
creasing model spaces performed at different HO frequencies,
ranging from h̄� = 12.5–30 MeV. The Nmax = 0 results are
suppressed. These calculations should all converge to the same
result as the dependence on the choice of HO frequency
disappears with increasing model space. In addition, the
procedure is variational due to the use of bare interactions.
We carry out a constrained fit using exponential functions for
each sequence at fixed h̄� using only the Nmax = 6 through
Nmax = 12 results. The constraint for the fit is to have a
common asymptote to all sequences. The uniformity of the
convergence is striking and produces a common asymptote
of −31.33 MeV with uncertainty of about 100 keV. Again,
the chi-square weights used in the fit were based on the local
derivative with respect to Nmax so that results with minimal
sensitivity to Nmax receive greater weight. We attempted
alternative functional forms but found none to be as successful
as the constrained exponential fits shown in Fig. 6.

V. CONCLUSION

The ab initio NCSM is generally characterized by providing
very fast convergence of many observables with increasing
model space. This property is obviously very valuable when
applying the method to studies of many-body nuclear systems.
The existence of multiple converging sequences is another
important property of the method; but one that has not
been extensively utilized in the past. In this paper we have
demonstrated the existence of multiple converging sequences
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in the ab initio NCSM, and we have discussed some benefits
of this property for certain applications. In particular, we
have proposed a revised strategy for computing cluster-
approximated effective interactions for A-body calculations
in restricted model spaces.

The fundamental principle that motivated this work is
a particular property of the theory of effective operators
employed in the NCSM; namely that convergence to the exact
results is guaranteed for any sequence that returns the bare
Hamiltonian as the model space is increased, Nmax → ∞. It
was shown in Secs. III and IV that the specific choice of
employing the same effective Hamiltonian for calculations
in adjacent A-body model spaces resulted in some attractive
convergence properties. Firstly, it was shown that it moderates
the excursions in the renormalized results that are usually
encountered when performing calculations in smaller model
spaces, and secondly, that it gives a faster convergence of the
relative position of binding energies of opposite parity states.
We also demonstrated, by explicit large-scale calculations, that
the revised strategy indeed converges to the same result as the
traditional choice of using a Nshift = 0 effective interaction
for each model space. We suggested that this new strategy
is particularly useful for studies of nuclear systems in which
states of both parities are simultaneously involved. Use of
the revised strategy is specifically envisioned for calculations
of electromagnetic transitions between states of opposite
parities, as the theory of the corresponding effective operator
is simplified.

Another class of converging sequences was demonstrated
by performing calculations using the bare JISP16 realistic
NN interaction for a series of HO frequencies. In this
case, our approach obeys the variational principle; for each
choice of h̄� we are guaranteed to approach the exact
result from above. In addition, all sequences are guaranteed
to converge to the same result as Nmax → ∞. We utilized
this property by carrying out fits to all sequences using
exponential functions, with the constraint to have a common
asymptote. This approach is potentially very useful for gaining
confidence in extrapolated results and for estimating their
uncertainties.
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[1] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84(25),
5728 (2000).
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