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Low-momentum interactions in three- and four-nucleon scattering
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Low-momentum two-nucleon interactions obtained with the renormalization group method and the similarity
renormalization group method are used to study the cutoff dependence of low-energy 3N and 4N scattering
observables. The residual cutoff dependence arises from omitted short-ranged 3N (and higher) forces that are
induced by the renormalization group transformations and may help to estimate the sensitivity of various 3N and
4N scattering observables to short-ranged many-body forces.
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I. INTRODUCTION

Modern few- and many-body calculations of nuclear
structure and reactions are based on the picture of pointlike
nucleons interacting via two- and three-nucleon potentials.
For this purpose, a number of high precision (χ2/datum � 1)
but phenomenological meson-exchange models of the two-
nucleon (2N ) force such as the Nijmegen [1], Argonne V18
(AV18) [2], and CD-Bonn [3] potentials have been developed
over the past decade. However, with phenomenological models
it is not clear how to construct consistent three-nucleon
(3N ) forces and other operators. The lack of a systematic
organization or counting scheme results in model-dependent
predictions, as there is no way to make controlled comparisons
between the different force models. More recently, substantial
progress has been made in constructing nuclear interactions
from chiral effective field theory (EFT) [4,5], which is based on
the most general local Lagrangian with nucleon and pion fields
and all possible interactions consistent with the (broken) chiral
symmetry of quantum chromodynamics (QCD). In contrast
to phenomenological interaction models, the EFT approach
is universal and provides a model-independent framework
with a systematic organization of consistent 2N, 3N , and
higher-body forces (and other operators) prescribed by the
power counting.

For both phenomenological and EFT potentials, nuclear
few- and many-body calculations are complicated by strong
short-range repulsion and tensor forces that necessitate highly
correlated trial wave functions, nonperturbative resummations,
and slowly convergent basis expansions. However, the non-
perturbative nature of internucleon interactions is strongly
scale dependent and can be radically softened by using the
renormalization group (RG) to lower the momentum cutoff
that is present in all nuclear interactions. A consequence is
that many-body calculations become much more tractable at
lower resolutions, resulting in calculations that are amenable
to straightforward perturbative methods, simple variational
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ansätze, and rapidly convergent basis expansions [6–9]. The
RG approach has the important advantage of being able to vary
the cutoff as a tool to optimize and probe the quality of the
many-body solution and to provide estimates of omitted terms
in the Hamiltonian.

The above considerations have motivated the construction
of low-momentum potentials Vlow k through the RG method
[10,11] and, more recently, by the similarity renormalization
group (SRG) method [6,7]. Both methods serve to eliminate
the strong coupling between low- and high-momentum modes
in the Hamiltonian such that low-energy observables are pre-
served. In the RG method, one integrates out the problematic
high-momentum components of the input interaction above
a momentum cutoff �, leading to a new energy independent
potential Vlow k that has the same low-energy on-shell transition
matrix (t-matrix) as the input potential. In the original approach
� constitutes a sharp cutoff above which the t-matrix is zero;
the method has since been generalized to include a smooth
momentum-space regulator to avoid technical difficulties
stemming from the sharp cutoff [8]. The SRG method uses a
continuous sequence of unitary transformations that weakens
off-diagonal matrix elements, driving the Hamiltonian toward
a band-diagonal form [6,7]. In contrast to the RG method, SRG
preserves both low- and high-energy observables independent
of the value of the flow parameter λ that provides a measure
of the spread of off-diagonal strength. However, as with
the standard RG, the calculation of low-energy observables
is decoupled from the high-momentum physics with SRG-
evolved potentials (i.e., one can truncate intermediate state
summations to low momenta without distorting low-energy
observables).

Observables are scale-independent quantities. It is well-
known that RG (SRG) transformations generate short-range
many-body forces (in principle, up to A-body) that “run” with
the cutoff to maintain exact � (λ) independence of A-body
observables. If the RG transformation is truncated at the 2N

level, then the resulting cutoff-dependence in 3N observables
may provide an estimate of omitted short-range 3N forces
in the Hamiltonian. Along these lines, low-momentum 2N

potentials have been recently used in three- and four-nucleon
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(4N ) bound-state calculations [12] as a means to assess the size
of omitted higher-body forces by varying the cutoff. There, it
was found that the induced 3N forces due to the truncation
to low momentum are of the same order as the so-called
“bare” 3N forces attributed to integrating out excitations of
nucleons. That is, the cutoff dependence of the 3N binding
energies was rather weak, varying by only 1 MeV over a
large cutoff range, which is comparable to the 0.7–1 MeV
binding provided by the missing “bare” 3N forces in con-
ventional models and EFT calculations. In this sense, the RG
evolution to low momentum does not induce strong short-
ranged three-body force contributions to these 3N bound state
observables. Similar results were obtained in 4N bound-state
calculations, where the various 2N Vlow k calculations did not
differ any more from the phenomenological Tjon-line than did
calculations using 2N plus adjusted 3N forces.

In the current study, we extend the cutoff-dependence study
of Ref. [12] to 3N and 4N scattering observables. In particular,
we apply RG- and SRG-evolved 2N interactions to study how
the neutron-deuteron (n-d) elastic vector analyzing power Ay

and the space star cross section in n-d breakup change with
the cutoff. These being the two major long-standing failures
of realistic interactions in their description of 3N data at
low energy, one would like to use cutoff dependence as a
tool to assess the sensitivity of these observables to omitted
short-range 3N force effects. Likewise, the same applies to
observables in 4N scattering that show large deviations to
data, namely the total neutron-triton (n-t) cross section σt

around the resonance region at neutron laboratory energy En =
3.5 MeV and the p-3He Ay that also misses the data by as much
as 25–40%.

In Sec. II we study 3N observables and in Sec. III 4N

observables. Finally in Sec. IV we present the conclusions.

II. THREE-NUCLEON OBSERVABLES

The results shown in this section are obtained from the
solution of the symmetrized Alt, Grassberger, and Sandhas
(AGS) equations [13] for the 3N system using the numerical
techniques of Ref. [14]. To relate the present work to the
findings of Ref. [12] we repeat in Fig. 1 the cutoff dependence
of the triton binding energy εt for CD-Bonn, AV18, and EFT
potential at next-to-next-to-next-to leading order (N3LO) [5]
based Vlow k potentials using RG (left side) and SRG (right
side) methodologies. In contrast to the calculations of Ref. [12]
with a sharp cutoff �, for simpler numerics we use a
smooth regulator of the form exp [−(k2/�2)8]. The results
are consistent with the ones of Refs. [6,12]. At first glance,
the SRG parameter λ that provides a measure of the spread of
off-diagonal strength is not obviously related to the cutoff � in
the RG. However, in Ref. [7] it was found that the “decoupling
scale” for SRG-evolved interactions was of order λ. That is,
low-energy phase shifts and binding energies are not distorted
if high-momentum modes greater than the decoupling scale
are set to zero (or any arbitrary value) by hand. Therefore, it
is not surprising that the behavior of εt in terms of � or λ is
qualitatively quite similar. We emphasize that the existence of
cutoffs where εt agrees with the experimental value does not
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FIG. 1. (Color online) Triton binding energy as function of RG
cutoff � (left side) and SRG parameter λ (right side). Results derived
from CD Bonn (solid curves), AV18 (dashed curves), and N3LO
(dotted curves) potentials are shown. The horizontal line at εt =
−8.482 MeV is the experimental value.

imply vanishing 3N forces, as they will contribute to other
observables.

The neutron analyzing power Ay in n-d elastic scattering
at neutron laboratory energy En = 3 MeV has a maximum
at the center of mass (c.m.) scattering angle θc.m. = 104 deg,
where the predictions based on realistic interaction models
underestimate the experimental value by about 20%. In Fig. 2
we plot the maximum value of Ay as a function of RG cutoff �

and SRG parameter λ. The cutoff dependence is quite weak,
indicating that this observable is not a sensitive probe of short-
range force effects. The net variation of Ay over the range of
cutoffs is smaller than the discrepancy from experiment of the
initial interactions, which implies that short-range 3N forces
are not likely to solve the Ay problem.

The cutoff dependence is even weaker for the n-d breakup
differential cross section in the space star configuration. We
demonstrate that in Fig. 3 for the differential cross section close
to the center of the space star configuration at En = 13 MeV;
the values measured in two different experiments are shown
as a reference. These flat curves are again an indication that
space star cross section is not sensitive to short-range physics
as already found in conventional calculations with different
2N interactions or by adding a 3N force [16,17].
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FIG. 2. (Color online) Neutron analyzing power Ay for n-d
scattering at En = 3 MeV and θc.m. = 104 deg as function of RG
cutoff � (left side) and SRG parameter λ (right side). The horizontal
line at 102Ay = 5.86 is the experimental value from Ref. [15].
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FIG. 3. (Color online) Differential cross section for n-d breakup
at En = 13 MeV in the space star configuration (50.5◦, 50.5◦, 120◦)
at arclength S = 6.25 MeV as function of RG cutoff � (left side)
and SRG parameter λ (right side). The experimental data are from
Ref. [18] (square) and [19] (circle).

III. FOUR-NUCLEON OBSERVABLES

The results shown in this section are based on the solution
of the AGS equations [20] in a symmetrized form following
the technical developments expressed in Refs. [21–23] for all
elastic and transfer 4N reactions below three-body breakup
threshold.

As discussed in Ref. [21], one of the simplest observables
in 4N scattering is the total n-3H cross section σt that exhibits
a resonance around En � 3.5 MeV. This peak of the total
cross section results from a complicated interference between
3PJ n-3H partial waves whose relative strength is sensitive to
the realistic 2N force one uses. Although at threshold we
find the usual scaling between σt and εt (σt decreases as
|εt | increases), at En � 3.5 MeV we observe a breakdown of
scaling when we use N3LO [21], which is a low-momentum
potential when compared with the meson-exchange potentials.
There N3LO yields the largest cross section while not having
the lowest |εt |.

Furthermore, in Ref. [24] it was found that adding the
Urbana IX 3N force to AV18 slightly reduces σt at the peak
while more significantly lowering the cross section at threshold
toward the data as expected through scaling.
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FIG. 4. (Color online) Total cross section for n-3H scattering at
En = 3.5 MeV as function of RG cutoff � (left side) and SRG
parameter λ (right side). The horizontal line at σt = 2.45 b is the
experimental value from Ref. [25].
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FIG. 5. (Color online) S- and P -wave contributions to the total
cross section for n-3H scattering at En = 3.5 MeV. On the left side
they are shown as functions of RG cutoff � or SRG parameter λ,
whereas on the right side their correlation with the 3H binding energy
is shown. The SRG and RG interactions are derived from the AV18
potential.

Therefore, to investigate the effect of low-momentum
potentials on σt we plot in Fig. 4 the total cross section at the
peak versus �(λ). In contrast to studied 3N observables, σt

shows stronger dependence on � or λ, which is not surprising
because the ratio of triples to pairs increases.

In Fig. 5 we split up the total cross section into n-3H
relative S- and P -wave contributions using AV18-based Vlow k .
The S-wave contribution scales well with the 3H binding
energy; that scaling is slightly violated for RG approach at
� < 1.5 fm−1. In contrast, P -waves show no correlation with
εt and are responsible for an increase of the total cross section
at small �(λ) values. This is consistent with the findings of
Ref. [21]. In Fig. 6 we use the AV18 potential to show σt versus
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FIG. 6. (Color online) Total cross section for n-3H scattering as
function of neutron lab energy for different values of RG cutoff �

(top) and SRG parameter λ (bottom). All results are derived from
the AV18 potential. The predictions of the original AV18 potential
(dashed curves) are also shown. The experimental data are from
Ref. [25].
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FIG. 7. (Color online) Maximum of the neutron analyzing power
Ay for n-3H scattering at En = 3.5 MeV as function of RG cutoff �

(left side) and SRG parameter λ (right side).

En for the values of �(λ) that fit the experimental triton binding
energy and for the one that yields deepest binding. Although
one finds that one may describe the total neutron cross section
over a wide energy range by using � ≈ 1.25 fm−1 in RG
method or λ ≈ 1.8 fm−1 in the SRG approach that also yield
reasonable values for εt , we emphasize once again that these
particular values of �(λ) do not imply vanishing 3N and 4N

forces, as they will contribute to other few- and many-nucleon
observables, for example, to the ground-state energies of light
nuclei that do not match experiment with those “special”
choices of �(λ) [9].

There is a clear correlation between maximum values of
nucleon analyzing power Ay in p-3He and n-3H scattering
[21,22]; we therefore study only the latter case. Though Ay

in n-d and n-3H scattering are also correlated to some extent,
their dependence on cutoff is different as shown in Fig. 7; it
is considerably stronger for n-3H. The largest increase of Ay

value at the maximum, by a factor 1.13 (N3LO) to 1.21 (AV18),
is observed around cutoff values that yield experimental
or deepest binding. However, according to Ref. [22], the
experimental Ay value at the maximum for p-3He scattering
in the same energy region is larger than theoretical predictions
by a factor 1.45 (CD Bonn) to 1.55 (AV18). In Fig. 8

0.0

0.2

0.4

0 50 100 150

A
y 

Θc.m. (deg)

RGΛ = 1.25 fm-1

Λ = 1.5 fm-1

Λ = 2.1 fm-1

Λ → ∞ 

0 50 100 150
Θc.m. (deg)

SRGλ = 1.6 fm-1

λ = 1.8 fm-1

λ = 2.1 fm-1

λ → ∞ 

FIG. 8. (Color online) Neutron analyzing power Ay for n-3H
scattering at En = 3.5 MeV as function of center-of-mass scattering
angle for different values of RG cutoff � (left side) and SRG
parameter λ (right side). All results are derived from the AV18
potential. The predictions of the original AV18 potential (dashed
curves) are also shown.

we use the AV18 potential to show Ay versus θc.m. for the
values of �(λ) that fit the experimental triton binding energy
and for the one that yields deepest binding.

IV. CONCLUSIONS

To probe the sensitivity of 3N and 4N scattering observ-
ables to short-range physics, we used AV18, CD Bonn, and
N3LO based Vlow k potentials that are generated through the RG
(SRG) method to study their evolution with the cutoff �(λ).
Truncating the RG (SRG) equations to the two-body level
amounts to neglecting short-ranged 3N (and higher) forces
that are generated to preserve exact cutoff independence.
Therefore, one expects to find residual cutoff dependence
in few-body observables when only 2N low-momentum
interactions are used. That cutoff dependence may provide
a measure of the sensitivity of a given observable to omitted
short-ranged 3N (and higher) forces because the RG evolution
does not distort the long-ranged forces arising from pion
exchange, provided � (or λ) is well above the pion mass,
and it is only short-ranged operators that “run” to maintain
cutoff independence.

Comparing the results shown in Figs. 2 and 3 with those
in Figs. 4 and 7 one cannot help noticing that the cutoff
dependence of 3N observables is much weaker than the one
observed for 4N observables. Clearly for the 3N observables,
the cutoff dependence is rather weak, which seems to imply
that short-ranged 3N forces are not likely to fix the two
long-standing discrepancies with data mentioned above. This
is indeed what has been found when the leading missing
“bare” 3N force, which contains both long- and short-ranged
operators, is added. Nucleon-deuteron Ay in elastic scattering
and the space star differential cross section for breakup barely
change by adding a two-π -exchange 3N force [16,26,27],
an effective 3N force due to the explicit �-isobar excitation
[17,28], or the more recent leading 3N force from chiral EFT
[29]. However, there is hope that the subleading long-range 3N

forces from chiral EFT might be important for the resolution
of these problems due to their novel space, spin, and isospin
structures.

On the contrary, 4N scattering observables seem to be
more sensitive to omitted short-ranged many-body forces as
demonstrated by the more pronounced dependence on the
cutoff. In n-3H scattering at low energy the total cross section
σt is dominated by S and P waves in the relative n-3H motion.
The S waves (1S0,

3S1) are Pauli repulsive and therefore simply
scale with εt over the whole energy region shown in Fig. 6.
Therefore sensitivity to 2N forces comes through the P waves
(3P0,

3P1 − 1P1,
3P2), which, in the resonance region, have

a very complex behavior with the cutoff parameter, leading
to breaking of scaling with εt . This is consistent with the
previous findings [21] obtained with various 2N potentials.
It also indicates that the σt discrepancy may be sensitive to
missing short or intermediate range 3N forces, in contrast to
the p-3He Ay puzzle [22].

From these studies one may conclude that 4N scattering
observables are more sensitive to short-range physics than
the 3N observables where, at low energy, they seem to be
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constrained, to a large extent, by on-shell 2N scattering
and three-particle unitarity, as was expressed long ago by
Brayshaw [30]. Recent developments [26,27] indicate that one
needs to fit triton binding energy or neutron-deuteron doublet
scattering length to constrain some other 3N observables that,
unlike Ay , are sensitive to scaling. Nevertheless, this is already
fine-tuning on top of results that are already very close to those

of the experimental data. This is not the case for low-energy
4N observables.
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