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Cluster sum rules for three-body systems with angular-momentum dependent interactions

R. de Diego and E. Garrido
Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

A. S. Jensen and D. V. Fedorov
Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

(Received 31 August 2007; revised manuscript received 18 December 2007; published 5 February 2008)

We derive general expressions for non-energy-weighted and energy-weighted cluster sum rules for systems
of three charged particles. The interferences between pairs of particles are found to play a substantial role. The
energy-weighted sum rule is usually determined by the kinetic energy operator, but we demonstrate that it has
similar additional contributions from the angular momentum and parity dependence of two- and three-body
potentials frequently used in three-body calculations. The importance of the different contributions is illustrated
with the dipole excitations in 6He. The results are compared with the available experimental data.
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I. MOTIVATION

The use of sum rules in quantum mechanics is well
established and abundantly applied for many different systems
[1,2]. The prominent examples are the transitions from a
given quantum state induced by an electromagnetic multipole
operator. For any multipole operator acting on an initial state,
the sum of all the related transition probabilities multiplied by
powers of the excitation energy are completely determined by
the properties of the initial state [3,4].

The sum rules exist in general for any many-body quan-
tum system. Of specific interest are those systems where
the constituents clusterize, such that the degrees of freedom
can be divided into the internal ones corresponding to
each cluster and those associated with the relative motion of
the clusters [5]. Then the different multipole operators can be
decomposed into terms depending on the intrinsic coordinates
of each cluster and an additional term depending only on the
relative coordinates of the centers of mass of the clusters. This
operator structure then leaves two sum rules showing the same
decomposition: the sum rules associated with each individual
cluster (depending only on the properties of the initial cluster
state) plus the cluster sum rule (depending on the properties
of the few-body initial wave function). Examples are found
in Refs. [6,7], where the dipole non-energy-weighted and
dipole energy-weighted sum rules are obtained for many-body
systems clusterizing into a two-body system.

When a clusterized system can be properly described as a
few-body system where the internal cluster degrees of freedom
are frozen, only the cluster sum rules remain, corresponding
to the much smaller Hilbert space of ground and excited
states of the relative cluster motion. This kind of few-body
descriptions have been extensively used in nuclear physics
during the past 10–15 years in connection with halos and
weakly bound states in general [5]. The most interesting and
frequently investigated of these systems are approximated
by a three-body structure. Extensions to excited three-body
continuum states are now being pursued and attracting a lot
of attention [8–12]. To get accurate three-body wave functions
the Faddeev decomposition with different Jacobi coordinates

is employed in coordinate space computations [13]. The
unavoidable transformation from one set of Jacobi coordinates
to another complicates the structure of the cluster sum rules,
especially when more than one of the three particles is charged.

The purpose of this work is to generalize the dipole two-
body cluster sum rule as in Refs. [6,7] to three-body systems for
any multipolarity. Advanced three-body calculations employ
partial-wave-dependent pair interactions and state-dependent
three-body potentials, and these complications must therefore
also be taken into account in derivations of the cluster
sum rules. Typically, the two-body interactions are adjusted
independently for each partial wave to reproduce the available
properties of the corresponding two-body system (e.g., bound
state and resonance energies and phase shifts) [14,15]. These
interactions are then essentially nonlocal through their angular
momentum dependence. Also, it is common to introduce
effective angular momentum and parity-dependent three-body
forces for fine-tuning the crucial total energies of the three-
body states. Since the multipole transition operators carry
both angular momentum and parity they do not commute,
in general, with the angular-momentum-dependent two- and
three-body potentials. Thus, the energy-weighted cluster sum
rule should then be rederived by including the corresponding
contributions in addition to the usual kinetic energy term. In all
cases we must include contributions from the three Faddeev
components, which are expressed in their respective Jacobi
coordinates.

In Sec. II we briefly introduce the coordinates used and
summarize some important relations and definitions. In Sec. III
we derive the non-energy-weighted sum rule. The energy-
weighted sum rule is obtained in Sec. IV, which is divided into
three subsections corresponding to the contributions from the
kinetic energy operator, the partial-wave-dependent two-body
potentials, and the (total angular momentum) Jπ -dependent
three-body forces. As an illustration, in Sec. V we investigate
the dipole excitations in 6He and compare with the available
experimental data. We close the paper with a short summary
and the conclusions. A few intermediate expressions obtained
in the derivations have been collected in the Appendix.

0556-2813/2008/77(2)/024001(10) 024001-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.77.024001


DE DIEGO, GARRIDO, JENSEN, AND FEDOROV PHYSICAL REVIEW C 77, 024001 (2008)

II. THE TRANSITION PROBABILITY

We assume three clusters with masses mi and charges
zi(i = 1, 2, 3), described by coordinates r i , and with the
three-body center of mass at R. The three sets of mass-scaled
Jacobi coordinates are {xi , yi} ≡ {ρ, αi,�xi

, �yi
}, where ρ

is the hyperradius and {αi,�xi
, �yi

} are the five hyperangles
corresponding to the Jacobi set i (see, e.g., Ref. [13]). The
connection between the Cartesian and the mass-scaled Jacobi
coordinates is given by

rj − rk =
√

mN (mj + mk)

mjmk

xi , (1)

r i − R =
√

mN

mi

(mj + mk)

M
yi , (2)

where M = mi + mj + mk and mN is the normalization
mass. The transformations between different sets of Jacobi
coordinates are given by

yi = −xk sin ϕik − yk cos ϕik, (3)

tan ϕik = (−1)p
√

mjM

mimk

(if i �= k), and ϕii = π, (4)

which formally amounts to a rotation depending on the mass
ratios and the parity (−1)p of the permutation p of {i, j, k}.
Equations (3) and (4) lead to an important relation between
harmonic polynomials in different Jacobi coordinates, that is,

yλ
i Yλ,µ

(
�yi

) =
λ∑

�=0

(−1)λxλ−�
k (sin ϕik)λ−�y�

k (cos ϕik)�

×
√

4π (2λ + 1)!

(2� + 1)!(2λ − 2� + 1)!

× [
Yλ−�

(
�xk

) ⊗ Y�

(
�yk

)]λµ
. (5)

Let us consider the initial three-body state |n0J0M0〉, where
J0 is the total angular momentum with projection M0. All
the other needed quantum numbers are collected into n0. The
excited states {|nJM〉} can be populated from the ground state
by the electric multipole operator

Oλ
µ =

3∑
i=1

zi |r i − R|λYλ,µ

(
�yi

)
, (6)

where i runs over the three clusters, or equivalently, over the
three sets of Jacobi coordinates.

The transition probability corresponding to this elec-
tric multipole operator is proportional to the B(Eλ)-value,
that is,

B(Eλ, n0J0 → nJ ) =
∑
µM

∣∣〈nJM|Oλ
µ|n0J0M0〉

∣∣2
, (7)

from which the λ-multipole strengths are defined as

Sm =
∑
nJ

(EnJ − E0)mB(Eλ, n0J0 → nJ ), (8)

where E0 is the energy of the initial state, and EnJ is the energy
of the excited state with angular momentum J and additional
quantum numbers n.

The values of these multipole strengths, depending only
on the properties of the initial state, are known as the sum
rules. In this work we are concentrating on the sum rules with
m = 0, 1, also denoted as non-energy-weighted and energy-
weighted sum rules, respectively.

For the dipole case (λ = 1), after inclusion of Eq. (5) into
(6), and using Eqs. (2) and (4), one can see that for three
particles having equal value of the ratio zi/mi the dipole
operator is zero. This means that for the particular case of
three identical particles all the dipole strengths Sm in Eq. (8)
are zero.

III. THE NON-ENERGY-WEIGHTED SUM RULE

The sum over all transitions can be rewritten provided
the intermediate set of quantum numbers gives a complete
description of the (bound and continuum) final states, that is,∑

nJM |nJM〉〈nJM| = 1. We then get

S0 =
∑
nJ

B(Eλ, n0J0 → nJ )

=
∑
nJ

∑
µM

〈n0J0M0|Oλ†
µ |nJM〉〈nJM|Oλ

µ|n0J0M0〉

=
∑

µ

〈n0J0M0|Oλ†
µ Oλ

µ|n0J0M0〉, (9)

which for a given multipole operator is entirely determined by
the properties of the ground state |n0J0M0〉.

The definition in Eq. (6), together with Eqs. (2) and (5),
permits expressing the operator Oλ†

µ Oλ
µ in terms of a single set

of Jacobi coordinates, leading to

S0 =
3∑

i,k=1

λ∑
�=0

λ∑
µ=−λ

(−1)µzizk

√
4π (2λ + 1)!(2λ + 1)

(2� + 1)!(2λ − 2� + 1)!

× (ci)
λ(ck)λ(sin ϕik)λ−�(cos ϕik)�

∑
m1m2

(
� λ − � λ

m1 m2 −µ

)

×〈n0J0M0|xλ−�
k yλ+�

k Y ∗
λ,µ

(
�yk

)
Y�,m1

(
�yk

)
×Yλ−�,m2

(
�xk

)|n0J0M0〉, (10)

where the constants

ci =
√

mN

mi

(mj + mk)

M
(11)

arise when inserting Eq. (2) into the definition in Eq. (6).
The summation over the indexes µ and m1 can be made

analytically [16], leading to the final expression for the non-
energy-weighted sum rule:

S0 =
3∑

i,k=1

λ∑
�=0

zizk

(
λ λ − � �

0 0 0

)
2λ + 1√

2(λ − �) + 1

× (ci)
λ(ck)λ

√
(2λ + 1)!

(2�)!(2λ − 2� + 1)!
(sin ϕik)λ−�(cos ϕik)�
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×
∑
m2

〈n0J0M0|xλ−�
k yλ+�

k Yλ−�,m2

(
�xk

)
×Y ∗

λ−�,m2

(
�yk

)|n0J0M0〉. (12)

The sum (S0)diag of the diagonal terms (i = k) in Eq. (12) is
obtained by taking ϕii = π and � = λ [which reduce Eqs. (3)
and (5) to identities], which leads to

(S0)diag = 2λ + 1

4π

3∑
i=1

z2
i 〈J0M0||r i − R|2λ|J0M0〉. (13)

For a three-body system containing only one charged
particle the non-energy-weighted sum rule reduces to one
of the three diagonal terms in Eq. (13). When more than
one charged particle enters in the three-body system, the full
expression [Eq. (12)], which contains interferences between
charged particles, must be used.

The relevance of the nondiagonal terms can be easily
seen for a system containing three identical particles with
mass m and charge z for λ = 1. In this case the sum of the
diagonal contributions 3 3z2

4π
〈|rp − R|2〉 given by Eq. (13) is

fully canceled by the nondiagonal terms, such that S0 = 0, as
expected for three identical particles.

When only two of the particles with mass m each have the
charge z, one of the diagonal terms is canceled out by the
nondiagonal one, and we get S0 = 3z2

4π
〈|rp − R|2〉, which is

identical to the result when only one particle is charged. These
results are summarized in the second column in Table I.

IV. THE ENERGY-WEIGHTED SUM RULE

The energy-weighted sum rule is most easily obtained by
evaluating the expectation value of the double commutator in
the ground state, that is,

S1 = 1

2

∑
µ

〈n0J0M0|
[[

Oλ†
µ ,H

]
,Oλ

µ

]|n0J0M0〉

=
∑

µ

〈n0J0M0|Oλ†
µ HOλ

µ − E0O
λ†
µ Oλ

µ|n0J0M0〉, (14)

where E0 is the ground-state energy.
This expression is obtained by inserting the identity opera-

tor 1 = ∑
nJM |nJM〉〈nJM| between H and Oλ

µ and between

TABLE I. Non-energy-weighted sum rule (S0)
and the contribution of the kinetic energy operator
to the energy-weighted sum rule (S(T )

1 ) for a system
of three particles with equal mass (m) for λ = 1.
The first column gives the number N of charged
particles each with charge z. The symbol 〈〉 denotes
expectation value in the initial state, and rp is the
coordinate for one of the charged particles.

N S0 S
(T )
1

1 3z2〈|rp − R|2〉/(4π ) 3h̄2z2/(4πm)
2 3z2〈|rp − R|2〉/(4π ) 3h̄2z2/(4πm)
3 0 0

Oλ†
µ and Oλ

µ, where {|nJM〉} are the complete set of eigenstates
of H with the corresponding set of eigenvalues {EnJ }. In this
way we immediately recover the standard definition in Eq. (8):

S1 =
∑
nJ

(EnJ − E0)
∑
µM

∣∣〈nJM|Oλ
µ|n0J0M0〉

∣∣2
. (15)

According to Eq. (14) the energy-weighted sum rule
depends on the multipole operator, the initial state properties,
and the Hamiltonian. This Hamiltonian can have a complicated
angular momentum dependence of both two- and three-body
interactions, whose contributions to S1 in general do not
vanish. In particular we shall assume two-body interactions
that depend on the relative partial wave between the two
particles and three-body potentials depending on the total
angular momentum and parity of the three-body state.

In the following we evaluate the expression (14) separately
for the different terms of the Hamiltonian, that is, the tradi-
tional contribution from the kinetic energy operator and the
new terms arising from the partial-wave-dependent two-body
potentials and Jπ -dependent three-body potentials.

A. Kinetic Energy Operator

The kinetic energy operator can be expressed in terms of
any of the three sets of Jacobi coordinates as

T = −(
�xk

+ �yk

)
h̄2

/
2mN, (16)

where the two Laplace operators �xk
and �yk

are associated to
the Jacobi coordinates xk and yk . Since the multipole operator
[Eq. (6)] only depends on y-coordinates we can quickly find
the commutator [Oλ†

µ , T ] [Eq. (A1)], from which we get

[[
Oλ†

µ , T
]
,Oλ

µ

] =
3∑

i,k=1

zizk

h̄2

mN

∇yk

[|rk − R|λY ∗
λ,µ

(
�yk

)]
·∇yk

[|r i − R|λYλ,µ

(
�yi

)]
. (17)

Equation (5) permits rewriting of Eq. (17) in terms of a single
set of Jacobi coordinates, leading to

[[
Oλ†

µ , T
]
,Oλ

µ

] = h̄2

mN

3∑
i,k=1

(ci)
λ(ck)λzizk

λ∑
�=0

∑
mn

(−1)−µ

×√
2λ + 1

(
� λ − � λ

m n −µ

)√
4π (2λ + 1)!

(2� + 1)!(2λ − 2� + 1)!

× xλ−�
k Yλ−�,n

(
�xk

)
(sin ϕik)λ−�(cos ϕik)�

×∇yk

[
yλ

k Y ∗
λ,µ

(
�yk

)] · ∇yk

[
y�

kY�,m

(
�yk

)]
. (18)

The scalar product can now be performed by use of the
gradient formula (A2), and after writing the two spherical
harmonics in terms of a single one, and performing analytically
the summations over angular momentum projection quantum
numbers (details of which are given in the Appendix), one
gets the following final expression for the contribution of
the kinetic energy operator to the energy-weighted sum
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rule S
(T )
1 :

S
(T )
1 = −h̄2

2mN

3∑
i,k=1

(ci)
λ(ck)λzizk

λ∑
�=1

(sin ϕik)λ−�(cos ϕik)�

×
√

λ�(2� − 1)(2λ + 1)!(2λ + 1)3

(2�)!(2λ − 2� + 1)(2λ − 2� + 1)!

×
(

λ − 1 � − 1 λ − �

0 0 0

)

×
∑

n

〈n0J0M0|xλ−�
k yλ+�−2

k Yλ−�,n

(
�xk

)
×Y ∗

λ−�,n

(
�yk

)|n0J0M0〉, (19)

where the sum of the diagonal parts (i = k) becomes

(
S

(T )
1

)
diag = h̄2

2mN

λ(2λ + 1)2

4π

3∑
i=1

(ci)
2z2

i 〈n0J0M0|

× |r i − R|2λ−2|n0J0M0〉, (20)

where the constants ci are given by Eq. (11).
For λ = 1 the expression in Eq. (19) is independent of the

properties of the initial state. In particular, for three identical
particles with mass m and charge z the total value of S

(T )
1

is zero, which confirms the result anticipated at the end of
Sec. II. When one of these three particles has no charge, S

(T )
1

takes a constant value, which is the same as the one obtained
when only one of the three particles with mass m is charged.
The precise expressions of S

(T )
1 for these particular cases are

given in the last column of Table I.

B. Partial-Wave-Dependent Two-Body Potentials

Typically, the two-body interactions are adjusted separately
for the individual partial waves to reproduce the known
experimental data for the two-body systems. This procedure
leads to two-body interactions depending on the two-body
quantum numbers {�x, sx, jx}. The full two-body potential
operator takes the form V̂2b = ∑3

i=1 V̂
(i)

2b , where the index i

runs over all the three sets of Jacobi coordinates and V̂
(i)

2b is the
two-body operator describing the interaction between particles
j and k. This two-body operator is formally written as

V̂
(i)

2b =
∑

�xi
,sxi

∑
jxi

,mxi

V

(
�xi

,sxi
,jxi

)
i (xi)P̂i

× ∣∣�xi
, sxi

, jxi
, mxi

〉 〈
�xi

, sxi
, jxi

, mxi

∣∣, (21)

where P̂i represents any spin operator that could enter in the
two-body potentials.

The contribution of the full two-body potential operator
V̂2b to the second sum rule has then three contributions,
each corresponding to one of the three two-body interactions.
According to Eq. (14), the contribution S

(2b,i)
1 (i = 1, 2, 3) from

each of them is given by

S
(2b,i)
1 =

∑
µ

[〈n0J0M0|Oλ†
µ V̂

(i)
2b Oλ

µ|n0J0M0〉

− 〈n0J0M0|Oλ†
µ Oλ

µV̂
(i)

2b |n0J0M0〉
]
, (22)

where |n0J0M0〉 represents the initial state with total angular
momentum J0 and projection M0. The quantum number n0

refers to all other additional quantum numbers necessary to
specify this state.

For each two-body interaction V̂
(i)

2b it is now convenient
to write the corresponding ground-state wave function 	 in
terms of the Jacobi coordinates {xi , yi} ≡ {ρ, αi,�xi

, �yi
}

and expand it in terms of a set of functions YJ0M0
γi

(�i):

	J0M0
n0

(xi , yi) = 1

ρ5/2

∑
γi

F n0J0
γi

(ρ)YJ0M0
γi

(�i), (23)

where

YJ0M0
γi

(�i) = φ
(�xi

,�yi
)

K (αi)
[∣∣�xi

, sxi
, jxi

〉 ⊗ ∣∣�yi
, si , jyi

〉]J0M0
,

(24)

with γi ≡ {K, �xi
, sxi

, jxi
, �yi

, jyi
} and with φ

(�xi
,�yi

)
K (αi) being

the usual function of the hyperangle αi entering in the
definition of the hyperspherical harmonics [13]. The functions
(24) reduce to the usual hyperspherical harmonics for particles
without spin.

With the definition (21), the two-body potential operator
V̂

(i)
2b acting on a term of the basis YJ0M0

γi
(�i) (written in the

Jacobi set i) leads to

V̂
(i)

2b YJ0M0
γi

(�i) = V
(�xi

,sxi
,jxi

)
i (xi)P̂iYJ0M0

γi
(�i). (25)

Equation (23) permits us to write Eq. (22) as

S
(2b,i)
1 =

∑
µ

∫
dρ

∑
γi

∑
γ ′

i

F n0J0
γi

(ρ)Fn0J0

γ ′
i

(ρ)

× [〈
YJ0M0

γi

∣∣Oλ†
µ V̂

(i)
2b Oλ

µ

∣∣YJ0M0

γ ′
i

〉
− 〈

YJ0M0
γi

∣∣Oλ†
µ Oλ

µV̂
(i)

2b

∣∣YJ0M0

γ ′
i

〉]
. (26)

Inserting in the two matrix elements in Eq. (26) the unity
operator

1 =
∑
γ ′′

i

∑
J ′′M ′′

∣∣YJ ′′M ′′
γ ′′

i
(�i)

〉 〈
YJ ′′M ′′

γ ′′
i

(�i)
∣∣ (27)

in between Oλ†
µ and V̂

(i)
2b , and Oλ†

µ and Oλ
µ, respectively,

and making use of Eq. (25), we immediately get the final
expression:

S
(2b,i)
1 =

∑
µ

∫
dρ

∑
γi

∑
γ ′

i

F n0J0
γi

(ρ)Fn0J0

γ ′
i

(ρ)

×
∑
γ ′′

i

∑
J ′′M ′′

〈
YJ0M0

γi
(�i)

∣∣Oλ†
µ

∣∣YJ ′′M ′′
γ ′′

i
(�i)

〉

× 〈
YJ ′′M ′′

γ ′′
i

(�i)
∣∣(V (�′′

xi
,s ′′

xi
,j ′′

xi
)

i (xi)P̂iO
λ
µ

−V
(�′

xi
,s ′

xi
,j ′

xi
)

i (xi)O
λ
µP̂i

)∣∣YJ0M0

γ ′
i

(�i)
〉
. (28)
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When the Vi functions are independent of the partial wave,
this equation can be written in a more compact way as

S
(2b,i)
1 = 1

2

∑
µ

∫
dρ

∑
γi

∑
γ ′

i

F n0J0
γi

(ρ)Fn0J0

γ ′
i

(ρ)

× 〈
YJ0M0

γi

∣∣Vi(xi)
[[

Oλ†
µ , P̂i

]
,Oλ

µ

]∣∣YJ0M0

γ ′
i

〉
, (29)

which is trivially zero for the central part of the two-body
potential (P̂i = 1) and for the spin-spin term (since Oλ

µ does not
depend on the spin and therefore commutes with the spin-spin
operator). The same result is obtained for the tensor operator,
which depends only on coordinates and spin operators. For the
spin-orbit term (�x · sx = �+s− + �−s+ + �zsz) one has the
same result, since �+, �−, or �z applied on Oλ

µ is proportional
to Oλ

µ+1,O
λ
µ−1, or Oλ

µ, and therefore each of the three terms
in �x · sx double commutes with Oλ

µ.
Thus, for two-body interactions independent of the partial

waves and containing the usual spin operators one has
S

(2b)
1 = 0.

If the two-body potentials are partial-wave dependent, but
contain only central, spin-spin (P̂i = sj · sk) and spin-orbit
(P̂i = �xi

· sxi
) terms, because these operators are diagonal in

the basis {|�xi
, sxi

, jxi
, mxi

〉}, one then has

P̂iYJ0M0
γi

(�i) = f
jxi

�xi
,sxi

YJ0M0
γi

(�i), (30)

where f
jxi

�xi
,sxi

= 1 for the central part of the poten-

tial, f
jxi

�xi
,sxi

= [sxi
(sxi

+ 1) − sj (sj + 1) − sk(sk + 1)]/2 for

the spin-spin part, and f
jxi

�xi
,sxi

= [jxi
(jxi

+ 1) − �xi
(�xi

+ 1) −
sxi

(sxi
+ 1)]/2 for the spin-orbit part. Equation (28) can then

be written for this particular case as

S
(2b,i)
1 =

∑
µ

∫
dρ

∑
γi

∑
γ ′

i

F n0J0
γi

(ρ)Fn0J0

γ ′
i

(ρ)

×
∑
γ ′′

i

∑
J ′′M ′′

〈
YJ0M0

γi
(�i)

∣∣Oλ†
µ

∣∣YJ ′′M ′′
γ ′′

i
(�i)

〉

× 〈
YJ ′′M ′′

γ ′′
i

(�i)
∣∣(V (�′′

xi
,s ′′

xi
,j ′′

xi
)

i (xi)f
j ′′
xi

�′′
xi

,s ′′
xi

−V
(�′

xi
,s ′

xi
,j ′

xi
)

i (xi)f
j ′
xi

�′
xi

,s ′
xi

)
Oλ

µ

∣∣YJ0M0

γ ′
i

(�i)
〉
. (31)

It is important to keep in mind that the operator Oλ
µ has

three terms [see Eq. (6)], each expressed in one of the three
sets of Jacobi coordinates. When inserted in Eq. (31), the two
terms in Oλ

µ differing from the set of Jacobi coordinates i must
be transformed into this set by use of Eq. (5).

When only one of the three particles is charged the operator
Oλ

µ reduces to one term. A partial-wave dependence in
the interaction between the charged particle and any of the
other two will produce a nonvanishing contribution to the
energy-weighted sum rule according to Eq. (31). However,
if the only partial-wave dependence appears in the two-body
potential between the two neutral particles then S

(2b)
1 = 0. This

is because the Oλ
µ operator then automatically is written in

the same Jacobi set as the angular functions in Eq. (31). The
operator is then independent of �xi

, and the integral over these

angles in the last matrix element of Eq. (31) vanishes unless
�′′

xi
= �′

xi
, s ′′

xi
= s ′

xi
, and j ′′

xi
= j ′

xi
and therefore the full matrix

element vanishes.
The integrals over �xi

and �yi
in the two matrix elements

that appear in Eq. (31) can be calculated analytically, be-
cause xi = ρ sin αi , and therefore the two-body potentials are
independent of the angles �xi

and �yi
. The expressions for

these two matrix elements are given as Eq. (A6) of the
Appendix for the particular case of particles without spin.

As an example we consider dipole excitations (λ = 1)
in a system of three spin-zero particles with equal mass
m = 4mN , where mN is the nucleon mass, and where two
particles are neutral and one particle has a charge equal to
twice the proton charge. We consider only s and p waves
in the calculation. The two-body interactions are taken to be
Gaussians [Vs,p(r) = Ws,pe−r2/b2

] with equal range b for s

and p waves. We have constructed a 0+ ground state with a
very large contribution of s waves and only a few percent p

waves. This has been done by taking b = 2.98 fm, Ws = Wp =
−0.18 MeV for the interaction between the two neutral
particles, and Ws = Wp = −1.18 MeV for the interaction
between the charged particle and one of the neutral ones. The
binding energy of the 0+ state is −10.4 MeV. According to
Eq. (31), since only terms with �′′

xi
�= �′

xi
contribute (s ′′

xi
=

s ′
xi

= 0, j ′′
xi

= �′′
xi
, j ′

xi
= �′

xi
, and f

jxi

�xi
,sxi

= 1), the contribution

S
(2b)
1 to the energy-weighted sum rule is proportional to

�W = Ws − Wp, where Ws and Wp refer to the strengths of
the interactions between the charged and the neutral particle.

In Fig. 1, the dashed line (+ signs) shows S
(2b)
1 as a function

of �W when the strength of the s-wave potential between the
charged and neutral particles (Ws) is kept fixed and Wp is
changed. Since the p-wave contribution to the ground-state
wave function is insignificant, a small variation in the strength
of the p-wave potential only slightly modifies the ground-state
radial wave functions Fn0J0

γ (ρ). Therefore, the behavior of S
(2b)
1

is almost perfectly linear with �W . However, if we modify
�W by keeping Wp fixed while changing Ws , the radial wave
functions are much more sensitive to a change in the s-wave
two-body potential, since the s-waves dominate. Therefore
S

(2b)
1 is not a completely linear function of �W as seen by

the solid line (× signs in the figure). When �W = 0, the total
value of S1 for this particular case is S1 = 9.90 e2 MeV fm2,
which means that the contribution from �W �= 0 can be of
comparable size (see Fig. 1).

C. Jπ -Dependent Three-Body Potentials

When performing three-body calculations it is quite usual to
employ effective three-body forces to fine-tune the energies of
the computed states. Very often different three-body forces are
used to place the lowest state with given angular momentum
and parity Jπ at the correct energy. This means that these
three-body potentials usually depend on Jπ . In this section
we investigate the additional contribution S

(3b)
1 to the energy-

weighted sum rule arising from this kind of three-body
potentials. With these assumptions the three-body potential
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FIG. 1. For dipole excitations in a system of three particles with
equal mass (m = 4 times the nucleon mass), and only one of them
with a charge (equal to twice the proton charge), the figure shows the
variation of (S1 − S

(T )
1 ) as a function of the strength difference (�W )

between the Gaussian s- and p-wave two-body potentials of equal
range (see text). The solid and dashed lines give the results when
only the s-wave strength and only the p-wave strength are changed,
respectively (the dashed line has been multiplied by a factor 0.5 to be
more easily distinguished from the solid line). The dotted line shows
the same variation as a function of the strength difference between
the Gaussian three-body forces in the excited (1−) and ground (0+)
states when the three-body potentials have equal range, when only the
strength of the 1− states is changed, and when the two-body potentials
are �-independent.

operator can be written as

V̂3b =
∑
JπM

∑
n(Jπ )

V
(Jπ )

3b (ρ)|n(Jπ )J
πM〉〈n(Jπ )J

πM|, (32)

where n(Jπ ) refers to all the additional quantum numbers
needed to specify each of the three-body states with total
angular momentum and parity Jπ . Following Eq. (14) we can
write

S
(3b)
1 =

∑
µ

[〈
n0J

π0
0 M0

∣∣Oλ†
µ V̂3bO

λ
µ

∣∣n0J
π0
0 M0

〉
− 〈

n0J
π0
0 M0

∣∣Oλ†
µ Oλ

µV̂3b

∣∣n0J
π0
0 M0

〉]
, (33)

where we explicitly labeled the initial state by its parity π0.
Substituting now Eq. (32) into Eq. (33) and inserting the

unity operator between Oλ†
µ and Oλ

µ in the last matrix element,
we finally get

S
(3b)
1 =

∑
µ

∑
JπM

∑
n(Jπ )

〈n(Jπ )J
πM|Oλ

µ

∣∣n0J
π0
0 M0

〉〈
n0J

π0
0 M0

∣∣
×Oλ†

µ

(
V

(Jπ )
3b − V

(J
π0
0 )

3b

)|n(Jπ )J
πM〉, (34)

which gives the contribution to the energy-weighted sum rule
from Jπ -dependent three-body potentials. This contribution
vanishes when the three-body interactions are Jπ -independent.

For the special case in which the ground state has J0 = 0
the expression simplifies to

S
(3b)
1 =

∑
µ

〈n00π0 0|∣∣Oλ
µ

∣∣2(
V

(λπ )
3b (ρ) − V

(0π0 )
3b (ρ)

)|n00π0 0〉,

(35)

where π = π0(−1)λ, which, except for the difference between
the three-body potentials, is similar to Eq. (9). Therefore, the
analytic expression of S

(3b)
1 for J0 = 0 is given by Eq. (12),

but with an additional factor equal to the difference between
the three-body potentials inserted in the last matrix element.

In Fig. 1 the dotted line (with circles) shows S
(3b)
1 for the

same system and the same transition as for the S
(2b)
1 case.

We have taken the �-independent two-body potentials used in
Sec. IV B as a starting point, meaning that S

(3b)
1 = S1 − S

(T )
1 .

The result is shown as a function of the strength difference
(�W ) between the Gaussian effective three-body forces used
to compute the 1− excited states and the 0+ ground state.
The range of the three-body force is the same (6.0 fm) for
0+ and 1−. The variation in �W is obtained by changing
the strength in the three-body force for the 1− excited states.
Then the ground-state wave function remains unchanged. As
a consequence, according to Eq. (34), and as demonstrated by
the dotted line in the figure, S(3b)

1 depends linearly on �W . The
contribution from S

(3b)
1 can be of comparable size to the value,

S1 = 9.90 e2 MeV fm2, for angular-momentum-independent
potentials.

V. A REALISTIC CASE: DIPOLE EXCITATIONS IN 6He

The main properties of the Borromean two-neutron halo
nuclei are well reproduced by describing them as three-body
systems made by an inert core surrounded by two neutrons.
The characteristic feature of these nuclei is their large spatial
extension, which is responsible for the large values of the
breakup cross sections after electromagnetic excitation. This
can be easily envisaged from Eqs. (13) and (20), which
depend directly on the size of the system. For this reason,
electromagnetic excitations of two-neutron halo nuclei have
attracted a lot of attention, especially dipole excitations, which
is the dominating multipolarity for such excitations.

In this section we investigate dipole excitations in 6He
(α + n + n), which is one of the most prominent examples
of Borromean two-neutron halo nuclei. We compute the three-
body states by use of the hyperspheric adiabatic expansion
method [13]. The neutron-neutron and α-neutron interactions
are the ones used for instance in Ref. [17]. The computed
bound ground state (0+) has a two-neutron separation energy
matching the experimental value of −0.97 ± 0.04 MeV. This
is achieved with a Gaussian effective three-body force with
range 2.9 fm and strength −7.55 MeV. The continuum 1−
states have been discretized by use of a box boundary condition
at ρmax = 50 fm.
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FIG. 2. Computed (circles) dipole strength function for 6He. The
curve through the computed points is obtained by cubic interpolation.
Gaussian three-body forces are used to obtain the ground (0+) and
excited (1−) three-body states. The range of the Gaussian (2.9 fm)
is the same for both angular momenta. The different curves show
the results obtained with different values of the strength (W (1−)

3b ) of
the three-body force for the 1− states. The experimental data (shaded
area) are from Ref. [18].

A. Dipole Strength Function

The transition probability B from the ground state to one
of the box discretized continuum states is given in Eq. (7). To
obtain a smooth distribution from the discretized continuum
we use the finite-energy interval approximation to the strength
function,

dB
dE

≈ �B
�E

, (36)

where �E is the size of the given energy interval, and �B
is the sum of the transition probabilities into the states whose
energies fall into this interval. These values are then plotted as
function of the central energy values of the intervals.

The interval should be of a reasonable size (i.e., large
enough to provide a smooth function but small enough not
to wash out the desired structure). In practice we have used
bins with centers at 0.3, 0.9, 1.5, 2.3, 3.2, 4.2, 5.4, 6.7, and
8.2 MeV and a standard cubic interpolation to smooth the
curve.

In Fig. 2 we compare the computed smoothed dipole
strength function for 6He for different Gaussian three-body
potentials in the excited 1− states with the measured distribu-
tion [18]. A strongly attractive three-body potential produces a
pronounced low-lying peak, which for even stronger attraction
would turn into a bound state. Thus the three-body potential
should at least be less attractive than that corresponding to
W

(1−)
3b = −40 MeV (b = 2.9 fm). For moderately attractive

three-body potentials we observe an increase from zero at
threshold to a peak value at around 1 MeV followed by a
relatively fast decrease toward zero at higher energies. This
is consistent with the calculations in Refs. [8] and [19].
Compared to the experiment [18], the theory overestimates the
strength at around 1 MeV and, consistent with the sum rule,
underestimates the strength at higher energies. Apparently

TABLE II. Non-energy-weighted (S0) and energy-weighted (S1)
dipole sum rule values for 6He. The fourth column gives the
contribution to S1 from the kinetic energy operator (S(T )

1 ). The last
column (S1/S0) is an average dipole resonance energy. Shown are
the experimental and computed sum rule results for states below
energies of 5 and 10 MeV, respectively. The last row gives the
converged results including all excitations. The experimental data
are from Ref. [18]. The S0 values are given in units of e2 fm2 and S1

and S
(T )
1 are in units of e2 fm2 MeV. The average dipole resonance

energy S1/S0 is given in MeV.

S0 S1 S
(T )
1 S1/S0

E∗ � 5 MeV (expt.) 0.59 ± 0.12 1.9 ± 0.4 – 3.22 ± 0.94
E∗ � 5 MeV (theor.) 0.66 1.94 – 2.94
E∗ � 10 MeV (expt.) 1.2 ± 0.2 6.4 ± 1.3 – 5.3 ± 1.4
E∗ � 10 MeV (theor.) 1.01 4.43 – 4.39
Converged 1.25 8.26 4.95 6.61

a significant three-body repulsion in the 1− channel would
approach the experimental data presented with relatively large
error bars.

B. Sum Rule Results

The second and third columns of Table II give the non-
energy-weighted (S0) and energy-weighted (S1) dipole sum
rule strengths. The experimental data, available from Ref. [18],
are given in the first and third rows, including states of
energies below 5 and 10 MeV, respectively. The corresponding
theoretical values are obtained numerically directly from the
first row of Eq. (9) and Eq. (15), and they are given in the
second and fourth rows of the table.

We can see that the computed results for S0 agree very well
with the experimental values when the sum over the excited
states in Eq. (9) is restricted to energies below 5 and 10 MeV,
respectively. As even higher energies are included the value
of S0 converges to the result given in the last row of the table,
which agrees with the expected result obtained from Eq. (13).
The converged value is already reached with an energy limit
of about 40 MeV.

Essentially the same sort of agreement happens for S1. The
computed values agree reasonably well with the experimental
ones. Also the result obtained for energies below 10 MeV is
still clearly below the converged value, which requires inte-
gration up to energies at least of about 60 MeV. The converged
value for S1 clearly disagrees with the result provided by
Eq. (20), where only the kinetic energy contribution is
considered. This value is given in the fourth column of Table II.
It is important to note that the computed results given in the
table have been obtained by using the same effective three-
body force for the 0+ ground state and the 1− excited states.
This means that the difference between the converged S1 value
and S

(T )
1 is exclusively due to the effect of the �-dependence

of the two-body α-neutron potentials [see Eq. (31)].
As seen in the table, this effect is far from being negligible.

The last column in Table II shows the ratio between the
energy-weighted and non-energy-weighted sum rules, which
is interpreted as an average energy of the soft dipole mode.
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FIG. 3. Computed dipole sum rule strength S1 for 6He as a
function of the maximum energy allowed above threshold. Gaussian
three-body forces are used to obtain the ground (0+) and excited (1−)
three-body states. The range of the Gaussian is the same (2.9 fm)
for all the states. The different curves show the results obtained with
different values of the strength (W (1−)

3b ) of the three-body force for
the 1− states. The thick curve is the result with the same three-body
force for the ground and excited states. The experimental data are
from Ref. [18].

The value of 6.6 MeV obtained after reaching convergence in
S0 and S1 is consistent with previous results, such as those in
Refs. [20,21], where a value of about 5 MeV also is obtained.
In Ref. [19] a clearly smaller value is given (3.8 MeV), very
likely because these authors used S

(T )
1 instead of the full S1

in the computation of the ratio. In any case these rather large
variations illustrate how important it is in practice to use the
correct sum rules in such estimates.

So far all the calculations of the S1 strength have been
performed with the same effective three-body force for the
ground state and the 1− excited states. This force was adjusted
to fit the experimental two-neutron separation energy in the
0+-state. However, for the 1− states the interaction might
be different and an additional contribution to the S1 strength
would appear as seen in Eq. (35).

In Fig. 3 we show the dipole sum rule strength S1 for 6He as
a function of the maximum energy allowed above threshold.
We have considered Gaussian three-body forces with a range
of 2.9 fm. For the ground state (0+) a strength of −7.55 MeV
has been used. When the excited states are obtained with the
same three-body force, S1 behaves as shown by the thick solid
line in the figure. This calculation corresponds to the numbers
quoted in Table II. When the strength of the three-body force
used for the 1− states is changed, S(3b)

1 depends linearly on the
strength difference.

The thin solid lines in the figure show S1 for different values
of the strength (W (1−)

3b ) of the three-body force for the 1− states.
This strength has been changed from 0 to −40 MeV, which
is at the limit of producing a low-lying narrow 1− resonance
in 6He (understood as a pole of the S matrix). As seen in the
figure, the deeper the three-body potential, the smaller is the
value of S1. The converged value can change significantly with

the three-body force. The result obtained with a strength of
−40 MeV is about 33% smaller than that obtained for W

(1−)
3b =

0. Therefore, the value of the average dipole resonance energy
(the ratio between the values of the two sum rules) also changes
substantially with the three-body force, ranging between
7.2 MeV when W

(1−)
3b = 0 and 4.7 MeV when W

(1−)
3b =

−40 MeV.
As seen in the figure, all the curves agree well with the

experimental value obtained for states below a maximum
energy of 5 MeV. When this maximum energy is 10 MeV,
all the computed curves are below the experimental value.
Although this experimental value has a rather large error
bar, it is clear from the figure that the smaller strengths
in the three-body force for the 1− states are closer to the
experimental value. This tendency is consistent with the
fact that a 1− resonance has not been found experimentally
since a strength weaker than about −30 MeV also excludes
such a state in computations. Extension to include higher
energies in the experiment would allow distinction between
the values obtained for different strengths. Probably 6He is a
very favorable system for this investigation because the core
excitations are expected to be negligible.

VI. SUMMARY AND CONCLUSIONS

We have derived general expressions for the non-energy-
weighted and energy-weighted cluster sum rules for excita-
tions of three-body systems. We consider transitions arising
from electric multipole operators of any order and for which
each of the constituent particles (clusters) may have a finite
charge. The most obvious nuclear applications are in systems
close to three-body thresholds where three-body clusterization
frequently seems to be a dominating part of the structure. This
is also the region where the spatially extended and weakly
bound halos appear.

Accurate calculations of three-body wave functions require
in general decomposition into Faddeev components either by
directly solving the Faddeev equations or by a variational
procedure including similar components expressed in the
different Jacobi coordinates. Derivation of the non-energy-
weighted sum rule only relies on the use of a complete
set of intermediate wave functions. Therefore only matrix
elements of the multipole operators enter into the expressions
whereas the interactions disappear altogether, except of course
indirectly through the properties of the excited continuum
states. However, the properties of the wave functions are
essential, and in particular the different Faddeev components
give rise to crucial interference effects when more than one
particle carries a charge.

Such interference effects are also crucial for the energy-
weighted sum rule where in addition also the properties of
the interactions are essential. This sum rule is traditionally
derived as a double commutator between the Hamiltonian and
two multipole operators. Usually then only the second-order
derivatives from the kinetic energy operator contribute whereas
the potentials including the spin-orbit terms commute with
the multipole operators and lead to vanishing contributions.
However, when the interactions are angular momentum de-
pendent, the double commutator does not vanish because the
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multipole operators themselves also carry angular momentum.
These contributions must therefore be computed and included
in the sum rule estimates. Still the character of the sum rule
remains in the sense that, no matter how the excitations are
distributed, they must add up to the value given by the sum rule,
which only depends on properties of the ground state and the
interactions.

The angular momentum dependence and the subsequent
contributions to the sum rule are separated into terms arising
from the two- and three-body potentials, which often in
accurate three-body computations depend on angular momen-
tum. A possible sequence to determine appropriate potentials
could be as follows: First, adjust the two-body potentials
independently for each partial wave to known two-body bound
or continuum properties. Second, fine-tune the three-body state
computed with the two-body potentials to a desired energy
by adding a short-range three-body potential with as little
structure as possible to maintain the properties provided by
the two-body interactions. Both types of angular momentum
dependence are important as they turn out to give substantial
contributions to the ordinary kinetic energy contribution to the
sum rule.

To assess numerically the relative importance of these
new sum rule contributions we investigate the electric dipole
excitations of the ground state of the well-known halo nucleus
6He. We first notice that the strength distribution has a
peak at around 1 MeV, falls off at higher energies, and in
practice reaches zero at about 60 MeV. The contribution to
the energy-weighted sum rule from the two-body potentials
amounts to two-thirds of the kinetic energy contribution.

The contribution from the three-body potential depends
on an expectation value of the difference between those
potentials for ground- and excited-state angular momenta of
0 and 1, respectively. Thus for state-independent but finite
three-body potentials we arrive at the established result of
zero contribution. However, the sensitivity to the difference in
these three-body potentials is significant. Realistic potentials
give estimates of up to 30% of the kinetic energy value. This is
then also an estimate of the sensitivity of the soft dipole mode
to the three-body potential.

In conclusion, we have generalized the energy-weighted
and non-energy-weighted cluster sum rules for electric mul-
tipole transitions to angular momentum two- and three-body
interactions. The additional contributions can be comparable
in size to the ordinary terms arising from the kinetic energy
operator.
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APPENDIX A: INTERMEDIATE EXPRESSIONS AND
FORMULAS

In this appendix we give some of the intermediate expres-
sions obtained when deriving Eq. (19).

The commutator between the electric multipole operator
Oλ†

µ and the kinetic energy operator T can be written as

[
Oλ†

µ , T
] = −

3∑
k=1

zk

h̄2

2mN

[|rk − R|λY ∗
λ,µ

(
�yk

)
,�yk

]

=
3∑

k=1

zk

h̄2

mN

∇yk

(|rk − R|λY ∗
λ,µ

(
�yk

)) · ∇yk
, (A1)

where we have used �k[rj

k Yj,m(�k)] = 0.
The scalar product in Eq. (18) can be made by use of the

gradient formula. A derivation of this formula can be found
for instance in Chapter 5 of Ref. [22], from which one has

∇[φ(r)Y�m(�r )]

= −
(

� + 1

2� + 1

)1/2 (
d

dr
− �

r

)
φ(r)Y �,�+1,m(�)

+
(

�

2� + 1

)1/2 (
d

dr
+ � + 1

r

)
φ(r)Y �,�−1,m(�), (A2)

where

Y j,�,m(�) =
∑
m,q

Y�,m(�)〈�,m; 1, q|j,m〉eq (A3)

with e0 = ez and e±1 = ∓(ex ± iey)/
√

2.
Use of this expression permits us to rewrite Eq. (18) as[[

Oλ†
µ , T

]
,Oλ

µ

]
= h̄2

mN

3∑
i,k=1

(ci)
λ(ck)λzizk

λ∑
�=1

∑
m,n

√
2λ + 1

×
(

� λ − � λ

m n −µ

) √
4π (2λ + 1)!

(2� + 1)!(2λ − 2� + 1)!

× xλ−�
k Yλ−�,n

(
�xk

)
(sin ϕik)λ−�(cos ϕik)lyλ+�−2

k

× (2λ + 1)(2� + 1)
√

�λ
∑
qην

(−1)qYλ−1,η

(
�yk

)

×Y�−1,ν

(
�yk

)
(−1)λ−µ+�+m

(
λ − 1 1 λ

η q µ

)

×
(

� − 1 1 �

ν −q −m

)
. (A4)

Writing now the two spherical harmonics in terms of a
single one, and summing up three of the 3-j symbols [16], one
gets[[

Oλ†
µ , T

]
,Oλ

µ

]
= h̄2

mN

3∑
i,k=1

(ci)
λ(ck)λzizk

λ∑
�=1

∑
m,n

√
2λ + 1

×
(

� λ − � λ

m n −µ

) √
(2λ + 1)!

(2� + 1)!(2λ − 2� + 1)!
xλ−�

k

×Yλ−�,n

(
�xk

)
(sin ϕik)λ−�(cos ϕik)l

√
�(2� + 1)

×
√

λ(2λ + 1)yλ+�−2
k

∑
�

(−1)1−µ+m−n
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×
√

(2λ − 1)(2� − 1)(2� + 1)Y ∗
�,n

(
�yk

)

×
(

λ − 1 � − 1 �

0 0 0

)(
λ � �

µ −m −n

)

×
{

λ � �

� − 1 λ − 1 1

}
, (A5)

which, after summation over m and µ [with the summation
over µ coming from Eq. (14)], leads to Eq. (19) for the
contribution of the kinetic energy operator to the energy-
weighted sum rule S

(T )
1 .

We close the appendix by giving analytical expressions for
the two matrix elements entering in Eq. (31) for the particular
case of particles without spin. The expressions are obtained by
performing analytically the integrals over �xi

and �yi
:

〈
YKL0M0

�xi
�yi

(�i)
∣∣Oλ†

µ

∣∣YK ′′L′′M ′′
�′′
xi

�′′
yi

(�i)
〉

= (−1)µ+L0+M0+�′′
yi

−�′′
xi

√
(2L′′ + 1)(2L0 + 1)

(
2�′′

xi
+ 1

)(
2�xi

+ 1
)
(2�′′

yi
+ 1)(2�yi

+ 1)

4π

(
L′′ L0 λ

−M ′′ M0 µ

)
N

�′′
xi

�′′
yi

K ′′ N
�xi

�yi

K

×
λ∑

�=0

√
2λ!

2�!(2λ − 2�)!

(
�′′

yi
� �yi

0 0 0

) (
�′′

xi
λ − � �xi

0 0 0

) 


L′′ L0 λ

�′′
xi

�xi
λ − �

�′′
yi

�yi
�


 ρλ

3∑
k=1

zk(ck)λ
∫ π/2

0
dαi(sin αi)

�′′
xi

+�xi
+2

× (cos αi)
�′′
yi

+�yi
+2

P
(�′′

xi
+ 1

2 ,�′′
yi

+ 1
2 )

ν ′′
i

(cos 2αi)P
(�xi

+ 1
2 ,�yi

+ 1
2 )

νi
(cos 2αi)(sin ϕki)

λ−�(cos ϕki)
�(sin αi)

λ−�(cos αi)
�, (A6)

where N
�x�y

K is the normalization constant of
the hyperspherical harmonic YKLM

�x�y
(�), whose

precise form can be found for instance in
Ref. [13].

The expression for the second matrix element in Eq. (31) is

identical to Eq. (A6) but with the function [V
(�′′

xi
)

i (ρ sin αi) −
V

(�′
xi

)

i (ρ sin αi)] included as a factor in the integrand, and with
primes on the quantum numbers K, �xi

, and �yi
.
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