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Heart-shaped nuclei: Condensation of rotational-aligned octupole phonons
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The strong octupole correlations in the mass region A ≈ 226 are interpreted as rotation-induced condensation
of octupole phonons having their angular momentum aligned with the rotational axis. Discrete phonon energy and
parity conservation generate oscillations of the energy difference between the lowest rotational bands with positive
and negative parity. Anharmonicities tend to synchronize the rotation of the condensate and the quadrupole shape
of the nucleus forming a rotating heart shape.
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The appearance of rotational bands with alternating parity,
such as the one shown in Fig. 1, has been attributed to these
nuclei having an intrinsic pear shape, which is generated by
combining an axial octupole (Y30) with an axial quadrupole
(Y20) shape [1]. The pear shape has the same symmetry as
the more general heart shape in Fig. 1. The existence of a
reflection plane perpendicular to the rotational axis (z) has the
consequence that space inversion P is equivalent to Rz(π ),
a rotation by π about the z axis. The invariance with respect
to S = PRz(π ) implies the existence of the simplex quantum
number S|〉 = e−iπσ |〉 for the deformed intrinsic (mean field)
state, which leads to the alternating spin-parity sequence π =
(−1)I−σ of the rotational bands [2,3] (cf. also Ref. [4]). The
lowest band in even-even nuclei has σ = 0, like in Fig. 1.
Strong stretched dipole transitions result from combining the
octupole distortion of the shape with the quadrupole one, which
generates a collective charge dipole (cf. eg. [1]).

For a well-developed pear shape one expects that the
negative parity states interleave with the positive parity ones.
However, in all alternating bands of even-even nuclei (σ = 0)
the negative parity sequence is up-shifted relative to the
positive parity sequence, approaching it with increasing spin.
This has been interpreted as a rapid tunneling mode between
the two pear shapes related by P , which is progressively
suppressed with increasing spin and results in merging of
the two sequences [1,5–8]. Figure 2(a) shows the energy
difference �E(I ) between the π = − and π = + sequences in
220

88Ra132. Obviously, the two sequences do not merge but cross.
Figure 2(b) displays the angular momentum as a function
of the rotational frequency ω, which is the slope of E(I ).
The π = − sequence starts with about 3h̄ more angular
momentum than the π = + sequence but gains less, such that
at high ω the π = + sequence has more. The conventional
interpretation in terms of pear shape and tunneling does
not account for these observations in a simple way. In this
rapid communication we suggest an alternative interpretation:
condensation of rotational-aligned octupole phonons.

To present the concept, we temporally assume that the
quadrupole deformed nucleus is a rigid rotor with the moment
of inertia J , that the octupole vibration is harmonic with
frequency �3, and that there is no interaction between the
octupole phonons and the quadrupole deformed potential of
nucleus. The modifications caused by anharmonicities, phonon

interaction, and nonrigid rotation will be discussed later. The
energy of the nucleus in the n-boson state rotating with the
angular velocity ω is

En = h̄�3(n + 1/2) + ω2

2
J , (1)

which is the sum of the boson excitation energy and the
rotational energy, respectively. The state with maximal angular
momentum for given energy (yrast state) is generated by
aligning the angular momenta of all bosons with the axis of
rotation. If one boson carries i ≈ 3h̄ of angular momentum,
the total angular momentum and the energy of the aligned
n-boson state are, respectively, given by

I = ni + ωJ , (2)

En(I ) = h̄�3(n + 1/2) + (I − ni)2

2J . (3)

Figure 3(a) shows the resulting yrast region. At In =
h̄�3J /i + i(n + 1/2) it becomes energetically favorable to
increase I by exciting an aligned phonon instead of further
increasing the angular velocity ω. Figure 3(b) shows the
energies of the multiphonon states in the frame rotating with
the frequency ω,

E′(ω) = En(I ) − ωI = h̄�3(n + 1/2) − niω − ω2

2
J . (4)

These ‘Routhians’ cross at one and the same the critical
angular frequency ωc = �3/i, which means there is a boson
condensation when the intensive variable ω takes the critical
value ωc. It has the characteristic features of a quantum
phase transition in a small system. Figure 3(a) illustrates
how the transition shows up in the relation E(I ) between the
extensive variables E and I . It is spread over many quantal
states (the yrast line), which are distinguished by the discrete
variable I . The energy of these yrast states grows linearly with
I on the average, Ē(I ) = const + ωcI , while the individual
energies E(I ) fluctuate around it. The critical frequency ωc is
the slope of the tangent to the yrast sequence. In a macroscopic
system, the fluctuations due to quantization become negligible,
and one has the linear relation dE/dI = ωc characteristic for
a phase transition, which corresponds to a vertical section of
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FIG. 1. (Color online) Symmetry of a heart-shaped nucleus and
the spin-parity sequence of the rotational ground band (even-even,
σ = 0).

the function I (ω) at ωc. In a small system, as the nucleus, the
values ω(I ) will fluctuate around ωc.

The above-presented idealized scenario assumes harmonic,
noninteracting bosons. Now we discuss the consequences
of the substantial anharmonicities of the octupole mode in
real nuclei (cf. Ref. [7]). The energies of n-phonon states
grow faster than nh̄�3, i.e., E2 > 2E1, E3 > 3/2E2, . . .,
which signalizes the vicinity of instability to stable octupole
deformation. Figure 3(c) shows the consequences: There is
no longer a sharp value of ωc, as discussed for the harmonic
case. Rather the average angular frequency ω [average slope
of E(I )] increases very slowly in the condensation region. In
addition, the anharmonicities lead to an interaction between the
n-phonon states, which causes a repulsion between crossing
bands of the same parity, because due to parity conservation
only the states with even n or with odd n mix. Figure 3(c)
illustrates the case of moderate level repulsion: The order of
the π = + and π = − bands alternates with increasing I . Each
change of sign indicates that once more the phonon has entered
the condensate. Real nuclei are not rigid rotors, which means
the functions En(I ) grow somewhat slower with increasing I

than the parabolas in Fig. 3. Nevertheless, the sequence of the
scallop-shaped curves is retained, which represents the boson
condensation.

The first steps of the condensation are seen in 220Ra,
which correspond to the realistic case Fig. 3(c). Figure 2(a)
shows the energy difference �E = E− − E+ between the
lowest rotational sequence of each parity. The one-phonon
band crosses the zero-phonon band before it feels much of the
two-phonon band. At the crossing, �E changes sign. When

the two-phonon band encounters the zero-phonon one, the two
states mix and exchange character (avoided crossing). The
level repulsion attenuates the growth of −�E, which starts
decreasing when the π = + band has become predominantly
the two-phonon state. When the two-phonon band crosses
the one-phonon band, �E changes sign again. Its growth is
attenuated and reversed when the avoided crossing between the
one- and three-phonon bands is encountered, the beginning
of which is still visible. Figure 2(b) illustrates how the
phonon condensation shows up in the functions I (ω). The
π = − one-phonon band starts with 3h̄ more than the π = +
zero-phonon band at the same ω, which is the expected
angular momentum carried by an aligned octupole phonon.
The difference decreases, when the π = + two-phonon band,
which carries additional 6h̄, starts mixing into the zero-phonon
band. The (interpolated) π = − and π = + bands have equal
angular momentum at the frequency of maximal mixing
(0.5 × 0h̄ + 0.5 × 6h̄ = 3h̄). Near the one-two-phonon band
crossing at I = 24, where the mixing is small, the angular
momentum difference is −3h̄ (at h̄ω = 0.26 MeV). The other
indication for condensation is the slow growth of ω above
0.25 MeV, in particular for π = +. If the phonon spectrum
was harmonic the two functions I±(ω) would be about vertical,
oscillating around the critical frequency ωc. It would be
interesting to see if the oscillations of �E and I (ω), which
are the hallmarks of the condensation, continue in experiment
as shown in Fig. 3(c).

Classically, the n-phonon states correspond to an octupole
wave running over the surface of the deformed nucleus with
the angular velocity ω3 = �3/3 [see Fig. 4(a)]. The factor 1/3
accounts for the fact that the octupole wave reaches an identical
position after turning 120◦. The quadrupole distortion rotates
with the angular velocity ω. If ω = ω3, the quadrupole and
octupole distortions combine to a heart shape rotating with
ω. In general, ω �= ω3, which means the octupole distortion
travels with angular velocity ω3 − ω relative to the quadrupole-
deformed shape [cf. Figs. 4(b) and 4(c)]. At the yrast line,
the frequencies ω, which is the slope of En(I ) in Fig. 3(c),
and ω3 = ωc, which is the slope of the envelope, tend to be
equal. However, they cannot completely synchronize because
the phonon number is discrete. The frequency difference is re-
flected by the fluctuations of the yrast line above the envelope.
They become negligible for a macroscopic system, for which
the boson number n can be considered as a continuous variable
measuring the amplitude of the oscillation. The frequency
difference suppresses the electric dipole transitions of the
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b FIG. 2. (Color online) (a) Energy diff-
erence �E(I ) = E−(I ) − (E+(I + 1) +
E+(I − 1))/2 between the positive and
negative parity yrast sequences in 220Ra.
(b) Angular momentum I (ω) as a function
of the angular frequency h̄ω(I ) = (E(I ) −
E(I − 2))/2 of the two sequences. Data are
from the ENSDF base.
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FIG. 3. (a) Energies of aligned octupole
multiphonon bands. Full lines show π =
+ states and dashed lines show π = − states.
The straight line is the common tangent
of the curves with the slope ωc. (b) Energy
in the rotating frame (Routhian), relative to
the zero-phonon state. (c) Same as Panel
(a), assuming an interaction between the
phonons and anharmonicities such that E3 >

3/2E2 > 2E1. The slope of the tangent, ω,
increases slowly during condensation.

type I+ → (I − 1)−. The difference ω(I+) − ω((I − 1)−) =
[I − ((I − 1) − 3)]/J corresponds to a decrease of the an-
gular momentum of the quadrupole rotor by 4h̄. The dipole
moment is proportional to the product of the quadrupole
moment Q2 and the octupole moment Q3 (cf. Refs. [7] and
[1]). The transition is suppressed because Q2 can only transfer
±2h̄ to the rotor. The difference ω(I−) − ω((I − 1)+) =
[I − 3 − (I − 1)]/J corresponds to an increase of 2h̄, which
can be transferred by Q2. The transitions I− → (I − 1)+ are
allowed.

The anharmonicities, which cause the repulsion between
the bands with n and n + 2 phonons shown in Fig. 3(c),
attenuate the frequency difference and as a consequence the
suppression of the I+ → (I − 1)− transitions. For sufficiently
strong interaction, the π = + and π = − sequences eventually
merge into a smooth sequence of good simplex π = (−1)I−σ ,
which characterizes a static heart shape. In this case the
transitions I+ → (I − 1)− and I− → (I − 1)+ have equal

FIG. 4. (Color online) An octupole wave traveling over the
surface of a quadrupole-deformed nucleus. In Panel (c), the octupole
wave has turned by 90◦ as compared to that in Panel (b).

strength, as expected for a rotating static dipole. (It is noted that
the discussion above does not assume rigid rotation. The J in
the estimates is to be understood as the dynamical moment of
inertia J (2).)

Figure 5 shows the Th isotopes. For N = 130, 132, the
π = − sequence starts with the extra ≈3h̄ of the rotational-
aligned octupole phonon. Its distance to the π = + sequence,
�E(I ), changes sign at I1 = h̄�3J /i + i/2. The mixing and
repulsion of the zero- and two-phonon bands increases with
N , which subsequently delays and attenuates the cross-over
phenomenon. For N = 134, the π = − sequence starts with
only ≈2h̄ of extra angular momentum, because the π =
+ sequence contains a substantial two-phonon component
right from the start, which reduces the angular momen-
tum difference with the π = − sequence. The tendency is
continued for N = 136. The two sequences start with an
angular momentum difference of only ≈1.5h̄ and rather merge
than cross. The progressive synchronization of the angular
velocities of the π = + and − sequences with increasing N

signalizes the appearance of a static heart shape. The traditional
view is that the nucleus attains an octupole deformation and
there is strong inversion tunneling, which is suppressed by
rotation [1,5,6]. The two interpretation do not contradict each
other. From the energies and the B(E3) values of the 3−
states one can estimate [7] that the average elongation of
the two-phonon state,

√
〈2|β2

3 |2〉∼0.1, is comparable with the
static deformation given by mean field calculations around
N = 134 [1]. Such a deformation is generated by a strong
admixture of the two-phonon state and some admixture of the
four-phonon state to the zero-phonon state. However, we argue
that the heart shape should be energetically preferred over the
pear shape studied so far, which needs to be confirmed by
appropriate mean field calculations. Such studies are on the
way [11].
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b FIG. 5. (Color online) Same as Fig. 2
except for the Th isotopes. Data are from the
ENSDF base and Ref. [9]. For more expanded
versions of Panel (b) see Fig. 15 of Ref. [10].

The decrease of 3− energy and the increase of the
anharmonicities and phonon coupling with N reflect the
neutron Fermi level moving into the region where g9/2 and
low-�j15/2 orbitals are close together. As seen in the Nilsson
diagram in Figs. 5–3 of Ref. [7], for δ = 0.2 the orbitals
[633]5/2 (g9/2) and [761]3/2 (j15/2) are both at the Fermi
surface for N = 136 and the [770]1/2 orbital is the next
below. The coupling of these orbitals generates increasingly
soft, anharmonic octupole phonons that easily align with the
rotational axis. For N > 136, the 3− energy increases strongly
with N . The angular momentum difference of i ≈ 3 near
�E = 0 indicates that the coupling between the zero- and
two-phonon bands must be reduced. This can be attributed
to the Fermi level moving from the g9/2 to the d5/2–i11/2

orbitals ([622]5/2 and [631]1/2 in Figs. 5–3 of Ref. [7]),
which couple much weaker with the j15/2 orbitals via the
octupole field. The larger quadrupole deformation in the
heavier isotopes increases the quadrupole-octupole coupling,
which favors the K = 0 octupole phonon. As a consequence,
the full alignment of the octupole phonon is only reached
for h̄ω > 0.15 MeV, where the Coriolis force overcomes the
coupling of the phonons to the quadrupole-deformed potential.
In the light isotopes the phonons align immediately, because
the deformation is small.

As seen in Figs. 5–3 of Ref. [7], the orbitals [622]5/2
and [642]7/2, which have a strong g9/2 component at the
larger deformation of δ ≈ 0.3, come close to the Fermi
surface around N = 148. Their coupling with the nearby j15/2

orbitals [743]7/2 and [734]9/2 may lead to rotation-induced
condensation of octupole phonons again. An enhancement of
octupole correlations around N = 146 has been reported in
Refs. [12] and [13].

For N = 130 the quadrupole deformation is no longer
stable. The yrast line is formed by a combined condensation
of quadrupole and octupole phonons. As suggested in Ref. [9],

the rotating condensate forms a heart-shaped wave running
over the nuclear surface. The condensation is seen in Fig.
5(b) as the roughly vertical π = + and π = − sequences
fluctuating around the critical frequency h̄ωc ≈ 0.21 MeV. The
Z = 88 and 86 isotones behave similarly [10].

In summary, the strong octupole correlations of rotational
bands in the light actinides may be interpreted as the conden-
sation of rotational-aligned octupole phonons. Condensation
sets in when the nucleus reaches the angular velocity of the
condensate. During the condensation of harmonic phonons the
energy of the yrast states increases on the average linearly with
angular momentum. The discreteness of the phonon energy
combined with parity conservation causes oscillations of the
lowest positive and negative parity rotational bands around this
classical mean value, which are in antiphase. The mismatch of
their angular velocities causes a preference of electromagnetic
dipole transitions I− → (I − 1)+ over I+ → (I − 1)−. The
first oscillations of this quantum phase transition are clearly
seen in the N = 132 isotones up to the encounter of the
three phonon state. The anharmonicity and interaction of the
phonons increase with N , which softens the phase transition
and attenuates the oscillations. As a result, the angular
velocities of the octupole condensate and the quadrupole shape
of the nucleus are progressively synchronized approaching a
rotating static heart shape. The N = 136 isotones are closest
to this limit, which shows up as rotational band of levels with
alternating parity that interleave and equal strength of dipole
transitions in both directions. For larger N the phonons become
again more harmonic. The strong octupole correlations of
rotational bands observed in other mass regions can also be
interpreted as phonon condensation.
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