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Magnetized strange quark matter and magnetized strange quark stars
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Strange quark matter could be found in the core of neutron stars or forming strange quark stars. As is
well known, these astrophysical objects are endowed with strong magnetic fields that affect the microscopic
properties of matter and modify the macroscopic properties of the system. In this article we study the role of a
strong magnetic field in the thermodynamical properties of a magnetized degenerate strange quark gas, taking
into account β-equilibrium and charge neutrality. Quarks and electrons interact with the magnetic field via their
electric charges and anomalous magnetic moments. In contrast to the magnetic field value of 1019 G, obtained
when anomalous magnetic moments are not taken into account, we find the upper bound B <∼ 8.6 × 1017 G, for
the stability of the system. A phase transition could be hidden for fields greater than this value.
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I. INTRODUCTION

There are two possibilities for the occurrence of a phase
transition between hadronic and strange quark matter (SQM)
that are well known. The first could occur at very high
temperatures and very low baryon density in the early universe,
and the second, as suggested by Bodmer [1], at densities of
higher order than the nuclear density n0 ∼ 0.16 fm−3. This
phase transition would occur in the universe, every time that
a massive star explodes as a supernova, with its consequent
remnant. If Bodmer’s conjecture is true, SQM could be
succeeded in the inner core of neutron stars where strange
quarks would be produced through the weak processes with a
dynamical chemical equilibrium among the constituents. It is
also possible that after a supernova explosion its core forms
directly a strange quark star (SQS) [2,3].

The key property of SQM is that it has a binding energy
that could be lower than that of 56Fe over a rather wide
range of the QCD parameters [4,5]. Thus, it is worthwhile to
seek connections between SQM or SQS that could explain
the observations of anomalous radiations from anomalous
X-pulsars (AXPs) and low energy γ -ray radiation from soft
γ -ray repeaters (SGRs) [6]. In several SQM studies the
essential conclusion is that a more compact matter would be
the cause of these observations [7]. However, astrophysical
observations point out that compact objects are endowed with
strong magnetic fields that should play an important role in
neutron stars or SQS. It is believed that magnetic fields larger
than 1014 G are the central engine of their radiations.

As is well known, a magnetic field modifies the microscopic
properties of matter with the corresponding macroscopic
implication. However, the role of the magnetic field in SQM
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has not been fully studied and understood. Reference [8] is
a pioneer work in this field. The thermodynamical properties
of quark matter in a strong magnetic field have also been
studied in Refs. [9,10], using the MIT bag model modified
by the inclusion of the magnetic field in the Lagrangian. In
these works, it has been confirmed that there is an anisotropy
of pressures due to the strong magnetic field [11,12] and that
the MIT bag model can be used satisfactorily to study the
magnetized quark matter. A first approach to consider the role
of the anomalous magnetic moment (AMM) for quark matter
has been followed in Ref. [10]. In connection with neutron
star matter, a detailed study of the effects of the interaction
of AMM with magnetic fields has been carried out within a
field-theoretical framework in Ref. [13].

There are theoretical and experimental studies that indicate
that quarks have an AMM [14–18]. A stringent bound on
the quark AMM has been obtained [17] from high-precision
measurements at the Large Electron-Positron Collider (LEP),
the Stanford Linear Collider (SLC), and the Hadron-Electron
Ring Accelerator (HERA). Thus, the contribution from the
AMM of the quarks could be significant in SQM. However,
for electrons, the effects of the AMM turn out to be small over
the range of magnetic fields typically attained in neutron stars
(1015–1019 G) [19] and, therefore, can be safely neglected in
our calculations.

The scope of the present article is to study the role of
the AMM in the spectrum of particles and its relevance
in the thermodynamic properties and stability of the SQM,
considering β equilibrium and charge neutrality. We consider
that the constituents of SQM interact with the magnetic field
via their charges and their AMM. The effects of this interaction
with the AMM could be seen in two forms. The first one is
that quarks and electrons have the energy quantized in Landau
levels due to their charge. The normal magnetic moment is
included in the spectrum through an integer moment. This
quantization leads to a description of the polarization of the
particles and to a softer equation of state (EOS). The second
one is due to the inclusion of AMM terms. This causes a further
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splitting of the energy levels and the spectrum of the particles
is no longer degenerate. But the most relevant implication
of AMM in the spectrum of the particles comes from the
ground state: it could be zero depending on the magnetic field
strength. Thus, the AMM for individual particles establishes
upper bounds on the strength of the magnetic field. We analyze
the consequence of this fact in the macroscopic properties of
the SQM in β equilibrium.

For individual constituents, we find a saturation value for
the field that align particles parallel or antiparallel to the
magnetic field, depending on the AMM sign. This value
of the magnetic field corresponds to a maximum of spin
polarization and to the magnetization independent of B. This
is the usual paramagnetic behavior. Beyond this saturation
field, the spin polarization, magnetization, as well as other
thermodynamical quantities become complex, which points
toward a ferromagnetism phase transition.

Because our treatment is based on noninteracting particles,
we cannot address the question of whether this limiting value
corresponds to a phase transition. To clarify this issue a
detailed study of the spin-spin coupling becomes necessary.
Let us also remark that the SQM in β equilibrium adds new
restrictions to the upper bound on the magnetic field. In this
case, the polarization of SQM depends on the individual
polarization of the constituents and its orientation is related
to the AMM sign. The system is so complex that the total
polarization is not reached in any direction. Nevertheless, it is
possible to find a critical value of the magnetic field beyond
which the polarization becomes complex, lacking physical
sense.

Our results improve earlier works in three aspects. First,
we take into account Pauli paramagnetism in its relativistic
version, because the one-particle energy is the solution of the
Dirac equation including the AMM. This gives an important
contribution to the physics of the system. The upper bound
on the magnetic field for each particle is lower than the one
obtained classically. Second, we consider the anisotropies of
the pressures within the MIT bag model. This leads to changes
in the behavior of the total energy of the system for strong
magnetic fields. Finally, all quarks are assumed to interact
with the magnetic field. The most important astrophysical
implication of our study is the existence of a limiting value
for the magnetic field. For SQM with electrons we find an
upper bound on the magnetic field around 8.6 × 1017 G. This
allows us to conclude that there would not be quark stars with
magnetic fields greater than this value.

The AMM might also play a role if Bose-Einstein conden-
sation due to the bosonization of fermions takes place. We
expect in that case a ferromagnetic behavior, able to maintain
the applied magnetic field self-consistently [20].

The article is organized as follows. In Sec. II we study
the spectrum of constituents of the magnetized SQM: elec-
trons and quarks. Section III is devoted to the analysis of
the thermodynamic properties of the magnetized SQM. In
Sec. IV we establish the requirement for the stability of
SQM in β equilibrium and study the spin polarization and
its implication for the thermodynamical properties of the
system. In Sec. V we present our numerical results, including a

comparison of the behavior of SQM when AMM are taken into
account with the case when the latter are neglected. Finally,
our conclusions are presented in Sec. VI.

II. SPECTRUM FOR THE CONSTITUENTS OF
MAGNETIZED SQM

The relativistic spectrum of electrons in the presence of a
magnetic field with the inclusion of AMM is obtained from
the Dirac Pauli equation[

γ µ

(
∂µ + i

|e|Aµ

h̄c

)
− µ

i

2h̄c
Fµνγ

µγ ν + mec

h̄

]
ψe = 0,

(1)

where

µ = α

2π

eh̄

2mec
, (2)

e is the electron charge, me is the electron mass, Fµν is the
electromagnetic tensor, and α is the fine structure constant.
Considering a constant uniform magnetic field B in the x3

direction, the energy spectrum is given by1

Eη
e,n =

√√√√
p2

3 + m2
e

(√
B

Bc
e

(2n + 1 − η) + 1 − ηα
B

Bc
e

)2

, (3)

where

Bc
e = m2

e

|e| , (4)

η = ±1 are the eigenvalues corresponding to the orientations
of the particle magnetic moment, parallel or antiparallel to the
magnetic field.

An analogous equation can be written for quarks, so the
spectra for all the constituents of SQM have the form

E
η

i,n =

√√√√
p2

3 + m2
i

(√
B

Bc
i

(2n + 1 − η) + 1 − ηyiB

)2

, (5)

with

Bc
i = m2

i

|ei | , yi = |Qi |
mi

, (6)

i = (e, u, d, s), and ei and mi denote the charges and the
masses of the particles, respectively. The quantities Qi are
the corresponding AMM of the particles,

Qe = 0.00116 µB, Qu = 1.85 µN,

Qd = −0.97 µN, Qs = −0.58 µN,
(7)

where

µB = e

2me

� 5.79 × 10−15 MeV/G,

µN = e

2mp

� 3.15 × 10−18 MeV/G.
(8)

1Hereafter we use the units h̄ = c = 1.
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In our calculations we shall take mu = md = 5 MeV and ms =
150 MeV for the light quark masses. The magnitudes of the
so-called critical fields Bc

i (when particle’s cyclotron energy
is comparable to its rest mass) are Bc

e = 4.4 × 1013 G, Bc
u =

6.3 × 1016 G, Bc
d = 1.3 × 1016 G, and Bc

s = 1.1 × 1019 G.
It can be seen from the spectra (5) that, in addition to

the quantization of their orbits in the plane perpendicular to
the magnetic field, charged particles with AMM undergo the
splitting of the energy levels with the corresponding disappear-
ance of the spectrum degeneracy. For the nonanomalous case,
Qi = 0, the minimum energy is independent of the magnetic
field strength and the magnetic field only quantizes the kinetic
energy perpendicular to the field. In this situation, the energy
is degenerate for Landau levels higher than zero. States with
spin parallel or antiparallel to the magnetic field orientation
(η = ±1) have the same energy. However, the anomalous case,
Qi �= 0, removes this degeneracy. In the latter case, the rest
energy of the particles depends on the magnetic field strength.
The ground state energy is

Ei,0 = mi(1 − yiB). (9)

The above equation leads to the appearance of a threshold
value for the magnetic field at which the effective mass
vanishes, mi ∼ |Qi |B. The thresholds of the field, Bs

i = 1/yi ,
for all the constituents of the SQM are given by

Bs
e = 7.6 × 1016 G, Bs

u = 8.6 × 1017 G,
(10)

Bs
d = 1.6 × 1018 G, Bs

s = 8.2 × 1019 G,

that are smaller than the ones obtained when the classical
AMM contribution is considered [8].

The meaning of the ground-state energy value for QED
was discussed long time ago [21]. Nevertheless, it was not
emphasized enough the fact that, due to the degeneracy of
the orbit center, such a ground-state level may be populated
by a larger number of particles. Equation (9) suggests that the
energy of the particles becomes smaller than the corresponding
one for the antiparticles, with the consequent creation of pairs.
The sign of the energy state is an invariant property for particles
and antiparticles. This also means that positive and negative
energy levels of electrons will never cross each other, i.e., there
exists a noncrossing property. The spontaneous pair creation
in a magnetic field is forbidden. Thus, for individual particles,
the correct meaning of this “critical” field is that it corresponds
to an upper bound.

Let us remark that in the SQM scenario all the constituents
interact with the magnetic field and are obliged to satisfy the
equilibrium conditions. Under such constraints, it turns out that
the dominant threshold field comes from u quarks, thus leading
to the upper bound B <∼ 8.6 × 1017 G (see Sec. V below). This
result has an important astrophysical consequence, because the
bound for SQM can be also extrapolated to the SQS scenario.
If SQS exist, the maximum magnetic field strength that they
could support would be around the above bound, i.e., 1018 G.

III. THERMODYNAMIC PROPERTIES OF MAGNETIZED
SQM WITH AMM

The MIT bag model is appropriate for the study of
magnetized quark matter [9]. In that model, confinement is
guaranteed by the bag and quarks are considered as a Fermi
gas of noninteracting particles. Under these assumptions, it is
possible to study the thermodynamical properties of a quark
gas in a strong magnetic field. In this section we investigate
the thermodynamical properties of the SQM when the AMM
is included.

The inclusion of AMM and the consequent loss of degen-
eracy implies that the sum over Landau levels is replaced by
two sums

ni
max∑

n=0

(2 − δ0n) ⇒
ni

max∑
n=0

∑
η

. (11)

For each thermodynamical quantity, the summation over the
spin orientation leads to two contributions, corresponding to
particles with the spin aligned parallel or antiparallel to the
magnetic field. Moreover, because particles have positive or
negative AMM, they have different preferences in the spin
orientation with respect to the magnetic field. As we shall
see below, this has important consequences in the EOS of
the system. The most relevant comes from the lowest energy
ground state, which depends on the strength of the magnetic
field and it could be zero [cf. Eq. (9)].

For a degenerate magnetized SQM, where only particles
contribute to the thermodynamical potential and temperature
can be formally taken as zero, the expression for the thermo-
dynamical potential can be written in the form [9]


i = M0
i B

∑
n

(
+
i + 
−

i ), M0
i = dieim

2
i

4π2
,

(12)


±
i = −xig

±
i + h±2

i ln
xi + g±

i

h±
i

,

where i = e, u, d, s, and di is a degeneration parameter (de =
2, du,d,s = 6). We have defined xi = µi/mi , where µi is the
chemical potential; hi and gi are dimensionless functions given
by2

g
η

i =
√

x2
i − h

η

i
2, (13)

h
η

i =
√

B

Bc
i

(2n + 1 − η) + 1 − ηyiB. (14)

The sum over the Landau levels n is up to ni
max given by the

expression

ni
max = I

[
(xi + ηyiB)2 − 1

2B/Bc
i

]
, (15)

where I [z] denotes the integer part of z.

2To simplify the notation, from now on we omit the Landau level
subscript n in all quantities.

015807-3
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The density of particles, defined as N = ∑
i Ni with Ni =

∂
i/∂µi gives

Ni = N0
i

B

Bc
i

∑
n

(g+
i + g−

i ), N0
i = dim

3
i

2π2
. (16)

The magnetization of the SQM is M = ∑
i Mi , with Mi =

−∂
i/∂B. We find

Mi = M0
i

∑
n

(M+
i + M−

i ),

(17)

M±
i = xig

±
i − (

h± 2
i + 2h±

i γ ±
i

)
ln

xi + g±
i

h±
i

,

with

γ
η

i = (2n + 1 − η)B

2Bc
i

√
B/Bc

i (2n + 1 − η) + 1
− ηyiB. (18)

We may also calculate the magnetic susceptibility χ =∑
i χi , which is defined as ∂Mi/∂B and can measure if a

phase transition takes place. The resulting expression is

χi = M0
i

B

∑
n

(χ+
i + χ−

i ), (19)

where

χ±
i = 2γ ±2

i xi

g±
i

− (
4γ ±

i h±
i + 2γ ±2

i

)
ln

xi + g±
i

h±
i

+ h±
i (2n + 1 ∓ 1)2(B/Bc

i )2

2[(2n + 1 ∓ 1)B/Bc
i + 1]3/2

ln
xi + g±

i

h±
i

. (20)

We notice that the magnetization and magnetic susceptibil-
ity are not linear functions of B. Moreover, the requirement for
the ground-state energy Ei,0 � 0 is equivalent to the condition
h

η

i (n = 0) � 0 [see Eq. (14)]. Because all the thermodynamical
quantities depend on h

η

i , they lose their physical meaning
when h

η

i < 0. Therefore, the condition h
η

i � 0 means that the
system cannot admit a value of the magnetic field greater than
Bs

i , which indicates that some phase transition occurs. The
magnetization reaches a value independent of the magnetic
field, as it occurs for a paramagnetic system, but beyond
this limit it becomes complex and could be associated to a
ferromagnetic transition.

A. Pressure and energy density

Let us now write down the expression for the anisotropy of
pressures and for the energy density of SQM when the AMM
is included. The energy density, U , for the gas of i particles can
be obtained from the energy-momentum tensor [9], leading to

U =
∑

i

Ui, Ui = 
i + xiNi. (21)

Evaluating this expression we find

Ui = M0
i B

∑
n

(U+
i + U−

i ),

(22)

U±
i = xig

±
i + h±2

i ln
xi + g±

i

h±
i

.

The pressures are obtained from the expressions

P⊥ =
∑

i

Pi ⊥, Pi ⊥ = −
i − MiB,

(23)
P‖ =

∑
i

Pi ‖, Pi ‖ = −
i.

Using Eqs. (12) and (17) we find

Pi ‖ = M0
i B

∑
n

(P +
i ‖ + P −

i ‖),

(24)

P ±
i ‖ = xig

±
i − h±2

i ln
xi + g±

i

h±
i

,

and

Pi ⊥ = M0
i B

∑
n

(P +
i ⊥ + P −

i ⊥),

(25)

P ±
i ⊥ = 2h±

i γ ±
i ln

xi + g±
i

h±
i

.

IV. THE STABILITY CONDITION FOR MAGNETIZED
SQM

In this section we study the stability condition of the SQM
in a strong magnetic field. In the context of the MIT bag model
and in the absence of a magnetic field, the stability condition
for SQM means to study the equation

PT + Bbag =
∑

i

Pi, (26)

together with the total energy

UT − Bbag =
∑

i

Ui, (27)

under the condition PT = 0.
In the presence of a strong magnetic field, the bag pressure

Bbag has an anisotropic form that depends on the B direction
in space,

B
‖
bag ≡

∑
i

Pi ‖,

(28)
B⊥

bag ≡
∑

i

Pi ⊥.

Because the magnetization is always a positive function,
this anisotropy in the pressures implies P⊥ < P‖. Thus, the
stability condition for strong fields changes from PT = 0 to
P ⊥

T = 0 or, equivalently,∑
i


i = −
∑

i

MiB. (29)

The total energy becomes

UT =
∑

i

(−MiB + xiNi). (30)
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For weak fields P⊥ = P‖ and we get the expression

UT =
∑

i

xiNi, (31)

which is in agreement with Ref. [22] where anisotropies due
to strong magnetic fields have not been considered.

A. Paramagnetism response: spin polarization

In Ref. [8] the Landau diamagnetism related to charged
particles in a magnetic field was studied, treating classically
the relativistic behavior and Pauli paramagnetism associated
with the inclusion of AMM. Our starting viewpoint is different.
We consider a relativistic equation of motion, taking into
account both contributions from a relativistic point of view.
In this sense, our treatment is more robust because the AMM
is included in the spectrum of particles as a relativistic effect.

As we have already shown, the thermodynamical quantities
for each constituent of SQM have two terms, related to particles
with spin up and down orientations. The number density is not
excluded from this fact, so it is important to study its behavior
because it gives us information about the spin polarization of
the system. Let us rewrite Eq. (16) in the form

Ni = N
↑
i + N

↓
i . (32)

In the absence of a magnetic field or when B → 0 we can
see that N

↑
i = N

↓
i . However, in the presence of a magnetic

field, the relation for the number density implies the existence
of a magnetic field strength threshold for which complete
saturation of each constituent of the SQM occurs. Whether a
complete saturation for all the particles involved in the system
is attained will depend on the SQM equilibrium conditions.

We can define the spin polarization rate as

Si↑↓
p = N

↑↓
i

N
↑
i + N

↓
i

. (33)

When Bs
i is reached, we have the following condition for each

constituent particle,

Si↑
p = 1, Si↓

p = 0, (34)

which means that N
↑
i is maximum and N

↓
i = 0. The threshold

field value Bs
i saturates the system and aligns all particles

parallel or antiparallel to the magnetic field. This alignment
depends on the sign of the AMM of each particle. From
the thermodynamical point of view, this behavior could be
understood as a paramagnetic response of the system and it
makes an important difference. Beyond this magnetic field
value all the thermodynamical quantities become complex for
a pure gas of particles.

Let us recall that the conditions of β equilibrium and charge
neutrality add new restrictions to the threshold values Bs

i .
These values will be computed numerically in the next section
to study the spin polarization in the regime of a strong magnetic
field. As it turns out, the β equilibrium and charge neutrality are
satisfied only for magnetic field values below certain threshold.
Above this, the number density of electrons and u quarks are
fixed, independently of the magnetic field, and β equilibrium

will require µe < 0. Our numerical results confirm that the
main contribution to the threshold field comes from u quarks,
which imply the upper bound B <∼ Bs

u = 8.6 × 1017 G.

V. SQM IN β EQUILIBRIUM AND CHARGE NEUTRALITY:
NUMERICAL RESULTS

In this section we perform a complete numerical study
with the aim to determine all the relevant thermodynamical
quantities for SQM and discuss its stability, taking into account
β equilibrium and charge neutrality. This requires the solution
of a system of equations to obtain the chemical potentials of
all the species involved in the system. If SQM exists in the
core of neutron stars or forms itself a SQS, weak processes
will be responsible for the appearance of the s quarks. Once
this occurs, the equilibrium among the constituents will be
dynamically established.

The three ingredients for the SQM in equilibrium are β

equilibrium, charge neutrality and the conservation of the
baryonic density nB :

µu + µe = µd, µd = µs, 2Nu − Nd − Ns − 3Ne = 0,

1

3
(Nu + Nd + Ns) = nB. (35)

Here we assume that there is no neutrino trapping in the
system, so that they do not play any role on the β-equilibrium
conditions. For a given baryon density (we take nB = 2.5n0 =
0.4 fm−3) and magnetic field strength, these equations together
with Eqs. (16) allow us to determine the chemical potentials
and evaluate all the thermodynamic properties of the system.
At the end of this section we shall comment on the dependence
of our results with the variation of nB .

In Fig. 1 we show the chemical potentials µi , i.e., the
solution of Eqs. (35), as functions of the magnetic field B.
Note that the chemical potentials remain practically constant
up to the threshold Bs

u around 8.6 × 1017 G, which corresponds
to the upper bound on the magnetic field determined by the
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FIG. 1. (Color online) Chemical potentials µi for SQM as func-
tions of the magnetic field strength B with (solid lines) and without
(dashed lines) AMM. The vertical dot-dashed line corresponds to the
threshold value Bs

u � 8.6 × 1017 G.
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FIG. 2. (Color online) The variation of the number densities with
the magnetic field. The solid (dashed) lines correspond to the case
with (without) AMM. The baryon density is fixed at the value nB =
0.4 fm−3.

β-equilibrium condition. The variation of the number densities
for all the SQM constituents with the magnetic field B is shown
in Fig. 2. Comparing this variation with and without the AMM
inclusion, we can see that for relatively small values of the
magnetic field, B <∼ 1016 G, all the number densities remain
practically constant. At around the magnetic field value of
4 × 1016 G, the electron density Ne start to increase with
B, whereas the quark densities remain almost constant up
to field strengths of 1019 G. Above this value the s-quark
density Ns decreases with B and becomes negligibly small.
The oscillations due to the presence of Landau levels can be
seen for the case when the AMM is not considered. Clearly,
the AMM curves are bounded by the upper bound Bs

u; for
fields greater than this value all the number densities become
complex.

The total spin polarization of SQM, S
↑↓
p = ∑

i S
i↑↓
p , is

plotted in Fig. 3 as a function of the magnetic field. We
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FIG. 3. (Color online) Spin polarization for SQM as a function of
the magnetic field strength B with (solid lines) and without (dashed
lines) AMM.
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FIG. 4. (Color online) Magnetization as a function of the mag-
netic field with (solid line) and without (dashed line) AMM.

see that the spin polarization of the system increases with
the increasing of the magnetic field. When the AMM are not
included, a total polarization is achieved for B � 2 × 1019 G.
However, when the AMM are taken into account the system
cannot reach a total spin polarization because for values greater
than Bs

u the density number becomes complex.
The behavior of the magnetization M is depicted in Fig. 4.

It is always a positive quantity for fields greater than 1016 G.
It also exhibits the so-called de Haas-van Alphen oscillations,
with increasing amplitude as B increases. This is even more
noticeable when the AMM is not considered as higher values
of B are allowed. The corresponding magnetic susceptibility
χ is presented in Fig. 5. It shows the paramagnetism behavior
of SQM for fields larger than 1016 G. Below this magnetic field
strength, χ has an oscillating behavior. The upper bound on the
magnetic field around 8.6 × 1017 G encloses a phase transition
of second type, because at this value all particles align parallel
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FIG. 5. (Color online) Susceptibility as a function of magnetic
field for the two cases considered: without the inclusion of AMM
(dashed line) and with their inclusion (solid line).
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FIG. 6. (Color online) Anisotropy of the SQM pressures as
functions of the magnetic field strength. The cases with (solid lines)
and without (dashed lines) AMM have been considered.

or antiparallel to the magnetic field with a positive value of the
magnetization.

Let us now consider the pressure and total energy of the
system. We plot in Fig. 6 the behavior of the pressure with
the variation of the magnetic field. The system persists being
anisotropic when the AMM are considered. For vanishing
AMM, the perpendicular component of the pressure P⊥ goes
to zero at about 2 × 1019 G, when the total spin polarization
is reached. However, the inclusion of the AMM forbids fields
above the threshold Bs

u. Thus, for SQM the anisotropy in the
pressures is relatively small, i.e, P⊥ � P‖.

Figure 7 shows the behavior of the total energy per baryon
with the magnetic field. We have plotted two curves: particles
with AMM and without it. The figure confirms that SQM is
stable up to the corresponding field threshold. For B <∼ Bs

u the
energy per baryon remains almost constant and decreases for
higher values of the magnetic field.
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FIG. 7. (Color online) Energy per baryon versus B. As in previous
figures, the dashed line corresponds to the case when the AMM is
not included, whereas the solid line takes into account the AMM of
all the SQM constituents.
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FIG. 8. (Color online) Energy per baryon versus nB with AMM
included for B = 1013, 1015, 1017 G.

To conclude this section, let us comment on the variation
of the thermodynamic properties with the baryon density nB .
In Fig. 8 we show the dependence of the total energy per
baryon with the baryon density for three different values of
the magnetic field, 1013, 1015, and 1017 G, taking into account
the AMM. As the baryon density increases, the total energy
of the system increases too. It also turns out that SQM is
energetically more stable in the presence of a strong magnetic
field.3 For a fixed value of nB , we remark that there are no
significant changes as the magnetic field varies (the three
curves are almost indistinguishable, as can be seen from
the figure). The same is observed for other thermodynamical
quantities. Nevertheless, the total spin polarization increases
with the increasing of the magnetic field strength and the decr-
easing of the baryon density nB , as can be seen in Fig. 9.

3In the absence of a magnetic field, and for a given value of nB ,
the SQM energy per baryon is always higher than the value obtained
when B �= 0 [8].
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FIG. 9. (Color online) Total spin polarization versus nB with
AMM included for B = 1013, 1015, 1017 G.
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VI. CONCLUSIONS

We have studied the magnetized SQM in β equilibrium in
the presence of a strong magnetic field. We have taken into
account the Landau diamagnetism related to the quantization
of the Landau levels as well as the Pauli paramagnetism, due
to the presence of AMM for all the constituents of SQM.
The influence of the paramagnetism in the system is more
relevant than the diamagnetism because it is responsible for the
upper bound on the magnetic field found for the SQM system.
This bound is lower than the one obtained classically [8].
Furthermore, it implies that a phase transition should occur at
this value, because all individual particles are aligned parallel
or antiparallel to the magnetic field (depending on the AMM
sign) in the ground state of the energy.

For SQM in β equilibrium and with neutral charge the
situation is mathematically complex. The condition of β

equilibrium implies an upper bound on the magnetic field, B <∼
Bs

u = 8.6 × 1017 G. Above this value, the chemical potential
of electrons becomes negative and all the thermodynamical
quantities loose their physical meaning. As a consequence, a
total spin polarization is not achieved, in contrast with the case
without AMM, where such a polarization is reached for fields
∼1019 G.

From the quantum statistical point of view the lowest energy
states with AMM contain important physical consequences:
for particles with mass mi and anomalous magnetic moment
Qi , the magnetic field has a critical value given by the
expression Bs

i ∼ mi/|Qi |. It remains to clarify if, for a
magnetic field strength of this order, quark matter undergoes
a phase transition. This question deserves particular study.
However, it becomes clear that the stability condition of SQM
is modified in the presence of a strong magnetic field.

In this work we have shown the differences that the
AMM introduces in all thermodynamic properties. We have
concluded that magnetized SQM with AMM is stable as it
is in the case when no AMM is introduced. In both cases,
magnetized SQM is more stable than SQM without a magnetic
field. The pressures preserve the anisotropies found in Ref. [12]
for pure neutron and electron gases in strong magnetic fields.
Nevertheless, a significant anisotropy cannot be reached due
to the presence of the AMM.

In summary, we have obtained a threshold value for the
magnetic field that is equal to the saturation field for the u

quarks. This value of the magnetic field is due to the restrictions
of β equilibrium and it limits all the thermodynamical quan-
tities. From the astrophysical point of view, our conclusions

imply that, if SQS exist, they cannot support magnetic fields
greater than 1018 G.

As mentioned before, if there is bosonization, which is
otherwise expected, for instance, in the form of diquarks, the
model of Bose condensation developed in Refs. [20,23] could
be applied. For SQM, in that case, the ferromagnetic phase
transition due to AMM would be guaranteed for fields of the
order ∼1018 G. This could indicate another type of phase
transition for SQM, in addition to the CFL [24] (or mCFL [25])
phases.

Another effect associated with the inclusion of the AMM in
the particle spectrum is that it can avoid the divergence arising
through the lowest Landau level (n = 0) in the calculation of
the surface tension and curvature for dense matter and that
play a crucial role in the quark droplet nucleation process [8].
Indeed, the nucleation rate of stable quark matter droplets
due to fluctuations in a metastable medium is given by � =
�0 exp(−σ 3/C), where �0 and C are finite constants, and σ is
the surface tension. Neglecting the AMM, one can show that
in the infrared limit (p3 → 0), the surface tension goes as σ ∼
ln p⊥, where p⊥ = (2|ei |Bn)1/2 is the momentum component
perpendicular to the magnetic field direction. Thus, it diverges
logarithmically for the lowest Landau level n = 0. However,
the inclusion of AMM in the quark energy spectrum removes
this divergence, because the AMM acts as an infrared cutoff for
p⊥. In this case, σ ∼ ln |BQi(BQi − 2mi)|, which is always
finite for magnetic field strengths smaller than the threshold
value Bs

u = 8.6 × 1017 G. This means that it is still possible
that a first-order phase transition to quark matter can occur
[26]. This effect and its astrophysical consequences deserve
further investigation.
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